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Abstract
In this paper, we define the q-analogue of the generalized linear positive operators
introduced by Ibragimov and Gadjiev in 1970. We study some approximation
properties of these new operators, and we show that this sequence of operators is a
generalization of well-known q-Bernstein, q-Chlodowsky, and q-Szász–Mirakyan
operators as a particular case.
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1 Introduction
In [1], Ibragimov and Gadjiev defined a general sequence of positive operators and showed
that this sequence of linear positive operators contains as a particular case the well-known
operators of Bernstein, Bernstein–Chlodowsky, Szász, and Baskakov. They also studied
the uniform convergence of these operators in the class of continuous functions C[0, A],
where A > 0 is a given number, and the properties of their convexity or concavity.

Now, we recall this construction. Let A > 0 be a given number, {ϕn(t)} and {ψn(t)}
be the sequences of functions in C[0, A] such that ϕn(0) = 0, and ψn(t) > 0 for each
t ∈ [0, A]. Let also {αn} be a sequence of positive real numbers such that limn→∞ αn

n = 1,
limn→∞ 1

n2ψn(0) = 0.
Assume that a sequence of functions of three variables {Kn(x, t, u)} (x, t ∈ [0, A], –∞ <

u < ∞) satisfies the following conditions:
1o. Each function of this family is an entire analytic function with respect to u for fixed

x, t ∈ [0, A];
2o. Kn(x, 0, 0) = 1 for any x ∈ [0, A] and for all n ∈N;
3o. {(–1)ν ∂ν

∂uν Kn(x, t, u)|u=αnψn(t)
t=0

} ≥ 0 (ν, n = 1, 2, . . . ; x ∈ [0, A]);
4o. ∂ν

∂uν Kn(x, t, u)|u=αnψn(t)
t=0

= –nx[ ∂ν–1

∂uν–1 Kn+m(x, t, u)|u=αnψn(t)
t=0

] (ν, n = 1, 2, . . . ; x ∈ [0, A]),

where m is a number such that m + n is zero or a natural number.
Ibragimov–Gadjiev operators have the following form:

Ln(f ; x) =
∞∑

ν=0

f
(

ν

n2ψn(0)

)[
∂ν

∂uν
Kn(x, t, u)

∣∣∣∣u=αnψn(t)
t=0

]
(–αnψn(0))ν

ν!
(1.1)

for x ∈R+ and any function f defined on R+.
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By ν-multiple application of property 4o, the operator (1.1) can be reduced to the form

Ln(f ; x) =
∞∑

ν=0

f
(

ν

n2ψn(0)

)
n(n + m) · · · (n + (ν – 1)m)

ν!

× (
xαnψn(0)

)νKn+νm
(
x, 0,αnψn(0)

)
.

As we mentioned before, these operators contain as a particular case a series of known
operators. For instance, by choosing Kn(x, t, u) = (1 – ux

1+t )n and αn = n, ψn(0) = 1
n , the oper-

ators defined by (1.1) are transformed into Bernstein polynomials; for αn = n, ψn(0) = 1
nbn

(limn→∞ bn = ∞, limn→∞ bn
n = 0), we get Bernstein–Chlodowsky polynomials; and for

Kn(x, t, u) = e–n(t+ux), αn = n, ψn(0) = 1
n , we get Szasz–Mirakjan operators. Moreover, if

we choose Kn(x, t, u) = Kn(t + ux), αn = n, ψn(0) = 1
n , then we obtain Baskakov operators.

Ibragimov–Gadjiev operators were studied widely in different papers, see [2–8].
After the construction of a generalization of Bernstein polynomials involving q-integers

by Lupaş [9] and then by Phillips [10], many authors studied a q-based generalization of
the linear positive operators, some of them may be found in [11–18]. This is because, the
q-generalized operators are more flexible than the classical ones, that is, they coincide with
the classical ones, while for q = 1 they also possess interesting properties and, depending
on the selection of q, can obtain better approximation while q �= 1. The aim of this paper
is to introduce a q-analogue of the Ibragimov–Gadjiev operators defined by (1.1).

2 Construction and some properties of q-Ibragimov–Gadjiev operators
Before introducing the q-operators, we mention some basic definitions of q-calculus, see
[19–22].

Let q > 0. For any natural number n ∈N∪ {0}, the q-integer [n] = [n]q is defined by

[n] =
1 – qn

1 – q
, [0] = 0,

and the q-factorial [n]! = [n]q! by

[n]! = [1][2] · · · [n], [0]! = 1.

For integers 0 ≤ k ≤ n, the q-binomial coefficient is defined by

[
n
k

]
=

[n]!
[n – k]![k]!

.

Clearly, for q = 1,

[n]1 = n, [n]1! = n!,

[
n
k

]

1

=

(
n
k

)
.

The q-derivative of a function f : R →R is defined by

Dqf (x) =

⎧
⎨

⎩

f (x)–f (qx)
(1–q)x , x �= 0,

f ′(0), x = 0,
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for functions which are differentiable at x = 0, and the higher q-derivatives are

D0
qf = f , Dn

qf = Dq
(
Dn–1

q f
)
, n = 1, 2, 3, . . . .

Note that

lim
q→1

Dqf (x) =
df (x)

dx
.

The q-analogue of (x – a)n is the polynomial

(x – a)n
q =

⎧
⎨

⎩
1 if n = 0,

(x – a)(x – qa) · · · (x – qn–1a) if n ≥ 1.

The q-exponential functions are given as follows:

eq(x) =
∞∑

k=0

xk

[k]!
, |x| <

1
1 – q

, |q| < 1,

Eq(x) =
∞∑

k=0

q
k(k–1)

2
xk

[k]!
, x ∈R, |q| < 1.

Now, we are ready to introduce a q-analogue of the Ibragimov–Gadjiev operators as fol-
lows:

Let 0 < q < 1 and A > 0 be a given number and {ψn(t)} be a sequence of functions in
C[0, A] such that ψn(t) > 0 for each t ∈ [0, A], limn→∞ 1

[n]2ψn(0) = 0. Also, let {αn} be a se-
quence of positive real numbers such that limn→∞ αn

[n] = 1.
Assume that a function Kq

n,ν(x, t, u) (x, t ∈ [0, A], –∞ < u < ∞) depends on the three
parameters n, ν , and q, and satisfies the following conditions:

(i) The function Kq
n,ν is infinitely q-differentiable with respect to u for fixed x, t ∈ [0, A];

(ii) For any x ∈ [0, A] and for all n ∈N,

∞∑

ν=0

q
ν(ν–1)

2
[
Dν

q,uKq
n,ν(x, t, u)

∣∣u=αnψn(t)
t=0

] (–qαnψn(0))ν

[ν]!
= 1;

(iii) {(–1)νDν
q,uKq

n,ν(x, t, u)|u=αnψn(t)
t=0

} ≥ 0 (ν, n = 1, 2, . . . ; x ∈ [0, A]);
(This notation means that the q-derivative with respect to u is taken ν times,

then one sets u = αnψn(t) and t = 0.)
(iv) Dν

q,uKq
n,ν(x, t, u)|u=αnψn(t)

t=0
= –[n]xq1–ν[Dν–1

q,u Kq
n+m,ν–1(x, t, u)|u=αnψn(t)

t=0
] (ν, n = 1, 2, . . . ;

x ∈ [0, A]), where m is a number such that m + n is zero or a natural number.
According to these conditions, we define q-Ibragimov–Gadjiev operators as follows:

Ln(f ; q; x) =
∞∑

ν=0

q
ν(ν–1)

2 f
(

[ν]
[n]2ψn(0)

)[
Dν

q,uKq
n,ν(x, t, u)

∣∣u=αnψn(t)
t=0

] (–qαnψn(0))ν

[ν]!
(2.1)

for x ∈R+ and any function f defined on R+.
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By ν-multiple application of property (iv), Ln(f ; q; x) can be reduced to the form

Ln(f ; q; x) =
∞∑

ν=0

f
(

[ν]
[n]2ψn(0)

)
[n][n + m][n + 2m] · · · [n + (ν – 1)m]

[ν]!

× (
xqαnψn(0)

)νKq
n+νm,0

(
x, 0,αnψn(0)

)
. (2.2)

Note that for q = 1, the operators Ln(f ; q; x) are classical Ibragimov–Gadjiev operators. It
is easily verified that these operators are linear and positive from (iii).

In this section we give the following moment estimate, which is necessary to prove our
theorems.

Lemma 1 For Ln(ts; q; x), s = 0, 1, 2, one has

Ln(1; q; x) = 1, (2.3)

Ln(t; q; x) =
qαn

[n]
x, (2.4)

Ln
(
t2; q; x

)
=

(
qαn

[n]
x
)2( [n + m + 1]

[n]
–

1
[n]

)
+

(
qαn

[n]
x
)

1
[n]2ψn(0)

. (2.5)

Proof Using the definition (2.1) of Ln(f ; q; x) and from condition (ii), we have

Ln(1; q; x) =
∞∑

ν=0

q
ν(ν–1)

2 Dν
q,uKq

n,ν(x, t, u)
∣∣u=αnψn(t)

t=0

(–qαnψn(0))ν

[ν]!

= 1.

Therefore, we can see that the result can be verified for s = 0. Next we consider the case
s = 1 as follows:

Ln(t; q; x) =
∞∑

ν=1

q
ν(ν–1)

2
[ν]

[n]2ψn(0)
[
Dν

q,uKq
n,ν(x, t, u)

∣∣u=αnψn(t)
t=0

] (–qαnψn(0))ν

[ν]!

= –
qαn

[n]2

∞∑

ν=1

q
(ν–2)(ν–1)

2 qν–1[Dν
q,uKq

n,ν(x, t, u)
∣∣u=αnψn(t)

t=0

] (–qαnψn(0))ν–1

[ν – 1]!
.

By using conditions (ii) and (iv), we have

Ln(t; q; x) =
qαnx
[n]

∞∑

ν=0

q
ν(ν–1)

2
[
Dν

q,uKq
n+m,ν(x, t, u)

∣∣u=αnψn(t)
t=0

] (–qαnψn(0))ν

[ν]!

=
qαnx
[n]

.

Finally, for s = 2,

Ln
(
t2; q; x

)
=

∞∑

ν=1

q
ν(ν–1)

2
[ν]2

[n]4ψ2
n (0)

[
Dν

q,uKq
n,ν(x, t, u)

∣∣u=αnψn(t)
t=0

] (–qαnψn(0))ν

[ν]!

= –
qαn

[n]4

∞∑

ν=1

q
ν(ν–1)

2
[ν]

ψn(0)
[
Dν

q,uKq
n,ν(x, t, u)

∣∣u=αnψn(t)
t=0

] (–qαnψn(0))ν–1

[ν – 1]!
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= –
qαn

[n]4

∞∑

ν=1

q
ν(ν–1)

2
[ν] – 1
ψn(0)

[
Dν

q,uKq
n,ν(x, t, u)

∣∣u=αnψn(t)
t=0

] (–qαnψn(0))ν–1

[ν – 1]!

–
qαn

[n]4

∞∑

ν=1

q
ν(ν–1)

2
1

ψn(0)
[
Dν

q,uKq
n,ν(x, t, u)

∣∣u=αnψn(t)
t=0

] (–qαnψn(0))ν–1

[ν – 1]!

= –
qαn

[n]4

∞∑

ν=2

q
ν(ν–1)

2
q[ν – 1]
ψn(0)

[
Dν

q,uKq
n,ν(x, t, u)

∣∣u=αnψn(t)
t=0

] (–qαnψn(0))ν–1

[ν – 1]!

–
qαn

[n]4ψn(0)

∞∑

ν=1

q
(ν–2)(ν–1)

2 qν–1[Dν
q,uKq

n,ν(x, t, u)
∣∣u=αnψn(t)

t=0

]

× (–qαnψn(0))ν–1

[ν – 1]!

=
q2α2

n
[n]4

∞∑

ν=2

q
(ν–3)(ν–2)

2 q2ν–3q
[
Dν

q,uKq
n,ν(x, t, u)

∣∣u=αnψn(t)
t=0

]

× (–qαnψn(0))ν–2

[ν – 2]!

–
qαn

[n]4
1

ψn(0)

∞∑

ν=1

q
(ν–2)(ν–1)

2 qν–1[Dν
q,uKq

n,ν(x, t, u)
∣∣u=αnψn(t)

t=0

]

× (–qαnψn(0))ν–1

[ν – 1]!
.

Using conditions (ii) and (iv), we have

Ln
(
t2; q; x

)
= –

q2α2
nx

[n]3

∞∑

ν=2

q
(ν–3)(ν–2)

2 qν–1[Dν–1
q,u Kq

n+m,ν–1(x, t, u)
∣∣u=αnψn(t)

t=0

]

× (–qαnψn(0))ν–2

[ν – 2]!

+
qαnx

[n]3ψn(0)

∞∑

ν=1

q
(ν–2)(ν–1)

2
[
Dν–1

q,u Kq
n+m,ν–1(x, t, u)

∣∣u=αnψn(t)
t=0

]

× (–qαnψn(0))ν–1

[ν – 1]!

= –
q2α2

nx
[n]3

∞∑

ν=2

q
(ν–3)(ν–2)

2 qν–1[Dν–1
q,u Kq

n+m,ν–1(x, t, u)
∣∣u=αnψn(t)

t=0

]

× (–qαnψn(0))ν–2

[ν – 2]!
+

qαnx
[n]3ψn(0)

.

Using condition (iv) for the second time, we obtain

Ln
(
t2; q; x

)
=

q2α2
n[n + m]x2

[n]3

∞∑

ν=2

q
(ν–3)(ν–2)

2 q
[
Dν–2

q,u Kq
n+2m,ν–2(x, t, u)

∣∣u=αnψn(t)
t=0

]

× (–qαnψn(0))ν–2

[ν – 2]!
+

qαnx
[n]3ψn(0)
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=
q3α2

n[n + m]x2

[n]3

∞∑

ν=0

q
ν(ν–1)

2
[
Dν

q,uKq
n+2m,ν(x, t, u)

∣∣u=αnψn(t)
t=0

]

× (–qαnψn(0))ν

[ν]!
+

qαnx
[n]3ψn(0)

=
q3α2

n[n + m]x2

[n]3 +
qαnx

[n]3ψn(0)

=
(

qαnx
[n]

)2 [n + m]q
[n]

+
(

qαnx
[n]

)
1

[n]2ψn(0)

=
(

qαnx
[n]

)2( [n + m + 1]
[n]

–
1

[n]

)
+

(
qαnx
[n]

)
1

[n]2ψn(0)
. �

If we denote kth order central moment of the operator (2.1) as μn,k(x) = Ln((t – x)k ; q; x),
for abbreviation, we obtain the following from the equalities in (2.3)–(2.5) by direct com-
putation:

μn,1(x) = x
(

qαn

[n]
– 1

)
, (2.6)

μn,2(x) = x2
[(

qαn

[n]

)2( [n + m + 1]
[n]

–
1

[n]

)
– 2

qαn

[n]
+ 1

]

+
xqαn

[n]
1

[n]2ψn(0)
. (2.7)

Examining relations (2.4) and (2.5), it is observed that for 0 < q < 1, one has limn→∞ 1
[n] =

1–q. This implies that the sequence of the operators in (2.1) does not satisfy the conditions
of the Bohman–Korovkin-type theorem. For this reason, we consider a sequence (qn),
0 < qn < 1, such that limn→∞ qn = 1. We can now give the following Bohman–Korovkin-
type theorem.

Theorem 1 Let (qn) be a sequence of real numbers such that 0 < qn < 1 and limn→∞ qn = 1.
Then, for f ∈ C[0, A], the sequence of {Ln(f ; qn; ·)} converges uniformly to f on any closed
interval [0, A], where A is a fixed positive real number.

Proof Replacing q by a sequence (qn) with the given conditions, the result follows from
(2.3)–(2.5) and the Bohman–Korovkin theorem. �

3 Rate of convergence
Using the standard methods, we will estimate the rate of convergence in terms of the mod-
ulus of continuity and the Peetre-K functional.

Let f ∈ C[0, A]. The modulus of continuity of f denoted by ω(f ; δ) gives the maximum
oscillation of f in any interval of length not exceeding δ > 0 and given by the relation

ω(f ; δ) = sup
|t–x|≤δ

∣∣f (t) – f (x)
∣∣, t, x ∈ [0, A].

For f ∈ C[0, A] and δ > 0, the Peetre K-functional is defined by

K(f ; δ) = inf
g∈C2[0,A]

{‖f – g‖C[0,A] + δ‖g‖C2[0,A]
}

.
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Here we note that

‖g‖C2[0,A] = ‖g‖C[0,A] +
∥∥g ′∥∥

C[0,A] +
∥∥g ′′∥∥

C[0,A].

Theorem 2 Let (qn) be a sequence of real numbers such that 0 < qn < 1 and limn→∞ qn = 1.
If f ∈ C[0, A], then we have

∣∣Ln(f ; qn; x) – f (x)
∣∣ ≤ 2ω

(
f ;

√
μn,2(x)

)
, (3.1)

where μn,2(x) is given by (2.7).

Proof By using the well-known technique of Popoviciu, we have

∣∣Ln(f ; qn; x) – f (x)
∣∣ ≤ ω(f ; δ)

[
1 +

1
δ

√
μn,2(x)

]
.

By choosing δ =
√

μn,2(x), we obtain the quantitative estimate in (3.1). Since
√

μn,2(x) →
0 for n → ∞, the estimation in (3.1) gives the rate of approximation for the operators
(2.1). �

Theorem 3 Let (qn) be a sequence of real numbers such that 0 < qn < 1 and limn→∞ qn = 1.
If f ∈ C[0, A], then

∥∥Ln(f ; qn; ·) – f
∥∥

C[0,A] ≤ 2K(f ; δn),

where

δn =
A
2

(
qnαn

[n]
– 1

)
+

A2

4

[(
qnαn

[n]

)2( [n + m + 1]
[n]

–
1

[n]

)
– 2

qnαn

[n]
+ 1

]

+
A
4

qnαn

[n]
1

[n]2ψn(0)
.

Proof Let g ∈ C2[0, A], from Taylor’s expansion we have

g(t) – g(x) = g ′(x)(t – x) +
∫ t

x
g ′′(s)(t – s) ds.

Applying operators (2.1) on both sides of the above equation, we get

∣∣Ln(g; qn; x) – g(x)
∣∣ =

∣∣∣∣Ln
(
g ′(x)(t – x); qn; x

)
+ Ln

(∫ t

x
g ′′(s)(t – s) ds; qn; x

)∣∣∣∣

≤ ∥∥g ′∥∥
C[0,A]

∣∣Ln
(
(t – x); qn; x

)∣∣ +
∥∥g ′′∥∥

C[0,A]

×
∣∣∣∣Ln

(∫ t

x
(t – s) ds; qn; x

)∣∣∣∣.

Since
∫ t

x
(t – s) ds =

(t – x)2

2
,
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one obtains from (2.6) and (2.7)

∣∣Ln(g; qn; x) – g(x)
∣∣ ≤ ∥∥g ′∥∥

C[0,A]

∣∣μn,1(x)
∣∣ +

1
2
∥∥g ′′∥∥

C[0,A]

∣∣μn,2(x)
∣∣.

Finally we have

∣∣Ln(g; qn; x) – g(x)
∣∣ ≤ ‖g‖C2[0,A]

{
x
(

qnαn

[n]
– 1

)
+

x2

2

[(
qnαn

[n]

)2( [n + m + 1]
[n]

–
1

[n]

)

– 2
qnαn

[n]
+ 1

]
+

xqnαn

2[n]
1

[n]2ψn(0)

}
. (3.2)

On the other hand, by the linearity property of (2.1), we get

∣∣Ln(f ; qn; x) – f (x)
∣∣ ≤ ∣∣Ln(f ; qn; x) – Ln(g; qn; x)

∣∣ +
∣∣Ln(g; qn; x) – g(x)

∣∣

+
∣∣g(x) – f (x)

∣∣

≤ ‖f – g‖C[0,A]
∣∣Ln(1; qn; x)

∣∣ + ‖f – g‖C[0,A]

+
∣∣Ln(g; qn; x) – g(x)

∣∣.

From inequality (3.2), one has

∣∣Ln(f ; qn; x) – f (x)
∣∣ ≤ 2‖f – g‖C[0,A] + ‖g‖C2[0,A]

{
x
(

qnαn

[n]
– 1

)

+
x2

2

[(
qnαn

[n]

)2( [n + m + 1]
[n]

–
1

[n]

)
– 2

qnαn

[n]
+ 1

]

+
xqnαn

2[n]
1

[n]2ψn(0)

}
.

Taking the infimum on the right-hand side of the above inequality over all g ∈ C2[0, A],
we obtain

∥∥Ln(f ; qn; ·) – f
∥∥

C[0,A] ≤ 2K(f ; δn),

where

δn =
A
2

(
qnαn

[n]
– 1

)
+

A2

4

[(
qnαn

[n]

)2( [n + m + 1]
[n]

–
1

[n]

)
– 2

qnαn

[n]
+ 1

]

+
A
4

qnαn

[n]
1

[n]2ψn(0)
.

This completes the proof. �

4 An application of q-Ibragimov–Gadjiev operators
It should be emphasized that the operator (2.1), in a special case, consists of some well-
known operators related to q-integers:



Herdem and Büyükyazıcı Advances in Difference Equations  (2018) 2018:304 Page 9 of 10

1. In the case

Kq
n,ν(x, t, u) =

(
1 –

q1–νux
1 + t

)n

q
,

the operator (2.1) assumes the form

Ln(f ; q; x) =
n∑

ν=0

f
(

[ν]
[n]2ψn(0)

)[
n
ν

]
(
xqαnψn(0)

)ν(1 – qxαnψn(0)
)n–ν

q . (4.1)

Conditions (i)–(iv) are fulfilled and m = –1. For αn = [n]
q , ψn(0) = 1

[n] , we have q-
Bernstein polynomials

L〈1〉
n (f ; q; x) =

n∑

ν=0

f
(

[ν]
[n]

)[
n
ν

]
xν(1 – x)νq

which are introduced by Phillips [10].
2. In (4.1) for αn = [n]

q , ψn(0) = 1
[n]bn

(limn→∞ bn = ∞, limn→∞ bn
[n] = 0), the operators be-

come q-Chlodowsky polynomials

L〈2〉
n (f ; q; x) =

n∑

ν=0

f
(

[ν]
[n]

bn

)[
n
ν

](
x
bn

)ν(
1 –

x
bn

)n–ν

q

defined by Karslıand Gupta [14].
3. By choosing

Kq
n,ν(x, t, u) = Eq

(
–[n]

(
t + q1–νux

))
,

conditions (i)–(iv) are fulfilled and m = 0. The operator (2.1) becomes

Ln(f ; q; x) =
∞∑

ν=0

f
(

[ν]
[n]2ψn(0)

)
[n][n] · · · [n]

[ν]!

× (
qxαnψn(0)

)νEq
(
–[n]xqαnψn(0)

)
.

If we choose αn = [n]
q , ψn(0) = 1

[n]bn
(limn→∞ bn = ∞, limn→∞ bn

[n] = 0), we get the q-
analogue of the classical Szász–Mirakjan operators

L〈3〉
n (f ; q; x) =

∞∑

ν=0

f
(

[ν]bn

[n]

)
([n]x)ν

[ν]!(bn)ν
Eq

(
–[n]

x
bn

)
.

These operators were defined by Aral [11].
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