Measurement of the Inclusive and Differential Higgs Boson Production Cross Sections in the Decay Mode to a Pair of τ Leptons in pp Collisions at $\sqrt{s}=13 \mathrm{TeV}$

A. Tumasyan et al. ${ }^{*}$
(CMS Collaboration)

(Received 23 July 2021; accepted 24 January 2022; published 23 February 2022)

Abstract

Measurements of the inclusive and differential fiducial cross sections of the Higgs boson are presented, using the τ lepton decay channel. The differential cross sections are measured as functions of the Higgs boson transverse momentum, jet multiplicity, and transverse momentum of the leading jet in the event, if any. The analysis is performed using proton-proton collision data collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of $138 \mathrm{fb}^{-1}$. These are the first differential measurements of the Higgs boson cross section in the final state of two τ leptons. In final states with a large jet multiplicity or with a Lorentz-boosted Higgs boson, these measurements constitute a significant improvement over measurements performed in other final states.

DOI: 10.1103/PhysRevLett. 128.081805

Measuring differential production cross sections of the Higgs boson could eventually highlight the contribution of beyond-the-standard-model physics to the Higgs boson couplings [1,2], e.g., by the observation of deviations from the standard model (SM) in the Higgs boson transverse momentum p_{T} distribution predicted with high accuracy at next-to-next-to-leading-order (NNLO) precision [3]. Such measurements are also powerful probes of the SM predictions, in particular, of the higher-order corrections in perturbation theory, and could help improve event modeling.

Differential cross sections of Higgs boson production have been measured in the $\gamma \gamma, Z Z, W^{+} W^{-}$, and $b \bar{b}$ decay channels for various sets of observables by the ATLAS and CMS Collaborations at the CERN LHC at center-ofmass energies of 7,8 , and 13 TeV [4-10]. The $H \rightarrow \tau^{+} \tau^{-}$ decay channel $[11,12]$ can also contribute to differential measurements of the Higgs boson production, providing complementary information with other decay modes. It is competitive in parts of the phase space where small production cross sections are compensated by a relatively large branching fraction $\mathcal{B}\left(H \rightarrow \tau^{+} \tau^{-}\right)=6.2 \%$ [13]; this is particularly the case for high jet multiplicities ($N_{\text {jets }}$) and large Lorentz boosts of the Higgs boson. This Letter presents the first differential fiducial measurements of the Higgs boson production cross section using its decays to a pair of τ leptons. The Higgs boson cross section is measured as functions of its transverse momentum

[^0]$\left(p_{T}^{H}\right), N_{\text {jets }}$, and the leading jet $p_{T}\left(p_{T}^{j_{1}}\right)$, using data collected by the CMS experiment in proton-proton ($p p$) collisions at a center-of-mass energy of 13 TeV between 2016 and 2018, corresponding to an integrated luminosity of $138 \mathrm{fb}^{-1}$. A measurement of the inclusive fiducial Higgs boson cross section is also presented in a phase space complementary to those studied with other final states.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two end cap sections. Forward calorimeters extend the pseudorapidity coverage provided by the barrel and end cap detectors. Muons are detected in gaseous detectors embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [14].

Simulated events with Higgs bosons are generated for the different production modes (gluon fusion, vector boson fusion, and productions in association with a vector boson, W or Z, or with top quarks) at next-to-leading-order (NLO) precision in perturbative quantum chromodynamics (QCD), including finite quark mass effects, with the powheg 2.0 [15-19] generator. The distributions of p_{T}^{H} and $N_{\text {jets }}$ in the gluon fusion production simulation are corrected to match the predictions of the nnlops generator [20,21]. The Higgs boson mass is assumed to be 125.38 GeV [22].

The madgraph5_AMC@nlo2.2.2 (2.4.2) event generator [23] is used to simulate the Drell-Yan process at
leading order with the MLM jet matching and merging scheme [24] for the simulation of data taken in 2016 (2017 and 2018). It is also used to model the diboson production at NLO in $\left(\alpha_{S}\right)$, whereas POWHEG 2.0 and 1.0 are used for $t \bar{t}$ and single top quark production, respectively. Single top quark production in the t-channel and diboson events are normalized to their cross sections at NLO precision or higher [25,26]. Drell-Yan events, as well as \bar{t} events and single top quark production in the $t W$ channel, are normalized to their cross sections at NNLO precision [27,28]. The generators are interfaced with PYTHIA8.212 [29] to model the parton showering and fragmentation, as well as the decay of the τ leptons. The pythia tunes CUETP8M1 and CUETP8M4 [30] are used in simulation corresponding to the 2016 data-taking conditions, and the CP5 tune [31] is used for 2017 and 2018 simulations. The parton density function (PDF) set is NNPDF3.0 for 2016 simulations, and NNPDF 3.1 for 2017 and 2018 simulations [32-34]. Additional proton-proton interactions per bunch crossing, called pileup, are added to the simulations with the profile observed in data. Simulated events are processed through a GEANT4 [35] simulation of the CMS detector.

The particle-flow (PF) algorithm [36] is used to reconstruct the events on the basis of information from the different CMS subdetectors. Muons are reconstructed from tracks and hits in the tracker and muon systems [37,38]. Electrons are reconstructed from tracks in the tracking system and calorimeter deposits, and identified with a multivariate discriminant described in Ref. [39]. The relative isolation of electrons (muons) is calculated on the basis of the p_{T} of tracks in a cone of $\Delta R=$ $\sqrt{(\Delta \eta)^{2}+(\Delta \phi)^{2}}<0.3$ (0.4) centered on the lepton track, corrected for charged and neutral pileup contributions; it is required to be less than 0.15 . Jets are clustered from PF candidates using the anti- $\left(k_{T}\right)$ FASTJET algorithm with distance parameter R of 0.4 [40,41], requiring $p_{T}>$ 30 GeV and $|\eta|<4.7$. Jet energy corrections are applied on an event-by-event basis [36,42,43]. In events collected in 2017, jets with $p_{T}<50 \mathrm{GeV}$ and $2.65<|\eta|<3.14$ are discarded to eliminate spurious jets caused by detector noise. Hadronic jets originating from b quarks are tagged with the medium working point of the DEEPCSV algorithm [44]. The hadrons-plus-strips algorithm [45], which combines one or three tracks with energy deposits in the calorimeters, is used to reconstruct τ leptons decaying hadronically, denoted as τ_{h}. Deep neural network discriminants are used to reduce the fraction of quark and gluon jets, electrons, and muons misidentified as τ_{h} candidates [46]. All particles reconstructed in the event are used to determine the missing transverse momentum $\vec{p}_{T}^{\text {miss }}$, which is defined as the negative vectorial sum of the transverse momenta of all PF candidates originating from the primary $p p$ interaction vertex, which is the vertex with the largest value of summed physics object p_{T}^{2} [47]. It is adjusted for
the effect of jet energy corrections. Corrections to the $\vec{p}_{T}^{\text {miss }}$ are applied to reduce the mismodeling of the simulated $Z+$ jets and Higgs boson samples [11].

Events are selected in four final states: $e \mu, e \tau_{h}, \mu \tau_{h}$, and $\tau_{h} \tau_{h}$. In the $e \mu$ final state, a combination of triggers requiring an electron and a muon is used, and in the $\tau_{h} \tau_{h}$ final state, the triggers require the presence of two isolated τ_{h} candidates. In the $e \tau_{h}\left(\mu \tau_{h}\right)$ final state, the events are selected with a trigger that relies on the presence of a single electron (muon) with p_{T} above 25-32 (22-24) GeV , or a trigger that requires both an electron with $p_{T}>24 \mathrm{GeV}$ and a τ_{h} candidate with $p_{T}>$ 20-27 GeV (a muon with $p_{T}>19-20 \mathrm{GeV}$ and a τ_{h} candidate with $p_{T}>27-30 \mathrm{GeV}$) if the lepton p_{T} is too low to satisfy the single-lepton trigger thresholds. In the $\tau_{h} \tau_{h}$ final state, the triggers select two τ_{h} candidates with $p_{T}>35-40 \mathrm{GeV}$. The thresholds depend on the data-taking year. The off-line event selection criteria are given in Table I, where the symbol m_{T} denotes the invariant mass between two objects in the transverse plane. In the $e \mu, e \tau_{h}$, and $\mu \tau_{h}$ final states, the small fraction of events without a reconstructed jet with $p_{T}>30 \mathrm{GeV}$ and with ΔR between the visible decay products of the two τ leptons below 2 is vetoed because of the difficulty in accurately estimating the backgrounds in this particular topology. In the $\tau_{h} \tau_{h}$ final state, all events are required to contain at least one jet. This requirement significantly reduces the QCD multijet background, while it does not affect the signal acceptance significantly since the Higgs bosons need to be boosted for their decay products to pass the high- p_{T} trigger thresholds. All events with a jet tagged as originating from a bottom quark are discarded in the $e \mu, e \tau_{h}$, and $\mu \tau_{h}$ final states, where the $t \bar{t}$ background would otherwise be consequential.

The fiducial region is defined to be as close as possible to the reconstructed event selection. All variables used in the definition of the fiducial region are calculated at the generator level after parton showering and hadronization, and the electrons and muons are "dressed" in that the lepton momentum includes the momenta of photons radiated within

TABLE I. Event selection criteria. The p_{T} ranges are related to different triggers used during different data-taking periods. In events collected in 2016 in the $\mu \tau_{h}$ channel, τ_{h} candidates with $0.2<|\eta|<0.3$ are discarded because of a significantly larger misidentification rate of muons as τ_{h} objects.

	$e \mu$	$e \tau_{h}$	$\mu \tau_{h}$	$\tau_{h} \tau_{h}$
$p_{T}^{e}(\mathrm{GeV})$	$>15 / 24$	$>25-26$	\cdots	\cdots
$\left\|\eta^{e}\right\|$	<2.4	<2.1	\cdots	\cdots
$p_{T}^{\mu}(\mathrm{GeV})$	$>24 / 15$	\cdots	$>20-21$	\cdots
$\left\|\eta_{\mu}^{\mu}\right\|$	<2.4	\cdots	<2.1	\cdots
$p_{T}^{\tau_{h}}(\mathrm{GeV})$	\cdots	>30	>30	>40
$\left\|\eta^{\tau_{h}}\right\|$	\cdots	<2.3	<2.3	<2.1
$m_{T}\left(e / \mu, \vec{p}_{T}^{\text {miss }}\right)(\mathrm{GeV})$	\cdots	<50	<50	\cdots
$m_{T}\left(e+\mu, \vec{p}_{T}^{\text {miss }}\right)(\mathrm{GeV})$	<60	\cdots	\cdots	\cdots
$N_{\text {jets }}$	\cdots	\cdots	\cdots	>0

a cone of $\Delta R<0.1$ centered on the lepton. In the $e \tau_{h}\left(\mu \tau_{h}\right)$ final state, the electron (muon) is required to have p_{T} above 25 (20) GeV and $|\eta|<2.1$, while the τ_{h} candidate must have a visible p_{T} greater than 30 GeV and visible $|\eta|<2.3$. Here, the term visible refers to the kinematic variables constructed from the momenta of the visible decay products of the τ leptons, excluding the invisible neutrinos. In addition, the transverse mass $m_{T}\left(e / \mu, \vec{p}_{T}^{\text {miss }}\right)$ must be less than 50 GeV . In the $\tau_{h} \tau_{h}$ final state, the visible p_{T} of both τ_{h} must exceed 40 GeV , while their visible $|\eta|$ must be within 2.1, and there must be at least one jet with $p_{T}>30 \mathrm{GeV}$. In the $e \mu$ final state, the leading (subleading) lepton must have $p_{T}>24$ (15) GeV , both leptons must have $|\eta|<2.4$, and the m_{T} of the dilepton system and $\vec{p}_{T}^{\text {miss }}$ must be below 60 GeV to remove the overlap with the $H \rightarrow W W$ measurement [8]. Decays of the Higgs boson other than $H \rightarrow \tau \tau$ are considered to be outside the fiducial region. About 95% of $H \rightarrow \tau \tau$ events passing the reconstructed event selection belong to the fiducial region as estimated from simulation. The SM prediction for the Higgs boson cross section in this fiducial region is $408 \pm 27 \mathrm{fb}$, using the inclusive cross sections and branching fractions in Refs. [48-50] and the fiducial acceptance from the NLO predictions of the POWHEG 2.0 generator with corrections from the NNLOPS generator for the gluon fusion production mechanism. In particular, the gluon fusion simulation is normalized to the cross section computed at next-to-NNLO QCD accuracy and NLO electroweak precision. Events outside the fiducial region are treated as backgrounds in the measurement and are normalized to their SM expectations. This treatment is chosen because most nonfiducial events correspond to Higgs boson decays to a pair of W bosons, especially in the $e \mu$ final state, for which the differential distributions have been measured to be compatible with the SM expectation [8].

The di- τ background, mainly composed of $Z \rightarrow \tau \tau$, leptonically decaying $t \bar{t}$, and diboson processes, is modeled with an "embedded sample" [51], where muons from dimuon events in data are replaced with simulated τ leptons. The background with jets misidentified as τ_{h} candidates is estimated from data with a so-called "misidentification rate method" [52]. The probability for loosely isolated jets to be misidentified as τ_{h} is measured in control regions enriched in QCD multijet, $W+$ jets, or $t \bar{t}$ events, as a function of $p_{T}^{\tau_{h}}$, for different $N_{\text {jets }}$, and separately in the barrel and end caps of the detector. Differences between processes, $N_{\text {jets }}$, and the detector region are typically of the order of $15 \%, 10 \%$, and 10%, respectively. The misidentification probabilities are corrected on an event-by-event basis depending on the p_{T} of the other τ lepton in the event p_{T}^{H} and $p_{T}^{j_{1}}$, with multiplicative corrections ranging 0.5-1.2 for each variable. The reconstructed variable p_{T}^{H} is evaluated as the vectorial p_{T} sum of the visible decay products of the τ leptons and $\vec{p}_{T}^{\text {miss }}$, multiplied with a correction factor that is measured in signal simulation and depends on this same vectorial sum to make it an unbiased estimator of the
generated p_{T}^{H}. The correction factor reaches a plateau between 1.05 and 1.10 at high- p_{T}^{H} values, and is significantly below 1.0 at low- p_{T}^{H} values. For events with $p_{T}^{H}>$ 350 GeV at the generator level, the reconstructed p_{T}^{H} resolution is better than 10%, whereas it is worse than 30% for $p_{T}^{H}<45 \mathrm{GeV}$.

The misidentification probabilities as a function of the p_{T} of the other τ, p_{T}^{H}, and $p_{T}^{j_{1}}$ were measured after the initial tau p_{T} misidentification measurement due to the large number of variables impacting the misidentification probabilities. These corrections are determined by a comparison of data-to-prediction distributions in the aforementioned control regions. Additionally, corrections for the selection criteria that differ between the signal and control regions, such as the same-sign charge requirement for the τ leptons in the QCDenriched region and the high m_{T} requirement in the W enriched region, are introduced and depend on the reconstructed di- τ mass, $m_{\tau \tau}$. They are typically close to 1.0 but can reach up to 1.2 in parts of the phase space. In the $e \tau_{h}$ and $\mu \tau_{h}$ final states, the overall misidentification rate is a weighted average of the corrected misidentification rates measured for the different types of processes. The weights are proportional to the expected fraction of each process with respect to the total background determined event by event as a function of $N_{\text {jets }}$ and $m_{\tau \tau}$ using simulations for the $W+$ jets and $t \bar{t}$ backgrounds. In the $\tau_{h} \tau_{h}$ final state, the misidentification probabilities are measured only in the dominant QCD multijet background. They are used to reweight events where the leading τ_{h} candidate fails the τ_{h} identification criteria. The very small contribution of events where only the subleading τ_{h} is a jet but the leading τ_{h} is genuine is estimated from simulation.
The background with jets misidentified as electrons or muons in the $e \mu$ final state, essentially events from QCD multijet, $W+$ jets, and semileptonically decaying $t \bar{t}$ production, is estimated from data events where the electron and the muon have the same sign, reweighted with an extrapolation factor that depends on $N_{\text {jets }}$ and $\Delta R(e, \mu)$. Other backgrounds are estimated from simulation and scaled to their theoretical cross sections.

To increase the signal sensitivity without introducing a strong model dependence, events are classified in different categories depending on $p_{T}^{\tau_{h}}$. In the $e \tau_{h}$ and $\mu \tau_{h}$ final states, the categories are defined with the following requirements: $30<p_{T}^{\tau_{h}}<50,50<p_{T}^{\tau_{h}}<70$, and $p_{T}^{\tau_{h}}>70 \mathrm{GeV}$. In the $\tau_{h} \tau_{h}$ channel, the requirements are based on the subleading τ_{h} candidate because the misidentification probability decreases with $p_{T}^{\tau_{h}}: 40<p_{T}^{\tau_{h}}<50,50<p_{T}^{\tau_{h}}<70$, and $p_{T}^{\tau_{h}}>70 \mathrm{GeV}$. No categorization is introduced in the $e \mu$ channel because the signal-to-background ratio does not significantly increase with the lepton p_{T}.

Systematic uncertainties are associated with the triggering and reconstruction of the different objects selected in the analysis and they amount to typically $2 \%-3 \%$ in the efficiency and $0.5 \%-3.0 \%$ in the energy scale, per object.

Uncertainties in the small misidentification rates of electrons and muons as τ_{h} candidates range between 5% and 40% depending on the decay mode and η, while the uncertainty in the momentum scale for these objects is up to 6%. Similar uncertainties, partially correlated, are considered for the objects in the embedded samples [51]. Uncertainties in the jet momentum scales and $\vec{p}_{T}^{\text {miss }}$ measurement are evaluated event by event. The uncertainty in the b tagging reaches up to 10% for processes with heavyflavor jets.

Uncertainties of $2.0 \%, 4.2 \%, 5.0 \%$, and 5.0% are used for the predicted cross sections of the Drell-Yan, $t \bar{t}$, single top quark, and diboson productions, respectively [25-28]. The $Z \rightarrow \tau \tau$ process yield, which is estimated with embedded samples, has an uncertainty of 4% to account for the dimuon trigger used to select the initial events in data before the muons are replaced with τ leptons. Additionally, an uncertainty of 10% is assigned to the normalization of embedded events without any jet in the $e \tau_{h}$ and $\mu \tau_{h}$ final states to cover for a potential mismodeling introduced by the $m_{T}\left(e / \mu, \vec{p}_{T}^{\text {miss }}\right)$ selection criterion.

Several sources of uncertainty are taken into account for the estimate of the background with jets misidentified as τ_{h} candidates: statistical uncertainties in the misidentification rate measurement as a function of $p_{T}^{\tau_{h}}$; systematic uncertainties in the description of other variables $\left(p_{T}^{j_{1}}, p_{T}^{e / \mu}\right.$, and p_{T}^{H}), as determined from closure tests; systematic uncertainties in the extrapolation between the regions where the misidentification rates are measured and the signal region; systematic uncertainties to cover for a finer granularity of some variables in the signal region, e.g., signal regions with two, three, or four jets while the misidentification rates are measured inclusively for $N_{\text {jets }} \geq 2$. In particular, the last source of uncertainty includes a 5\% uncertainty in the yield of the reducible background in each bin of $N_{\text {jets. }}$. Events with misidentified jets in the highest- $p_{T}^{\tau_{h}}$ categories also have a yield uncertainty in the range of $5 \%-10 \%$, depending on the final state. This avoids propagating constraints from the low$p_{T}^{\tau_{h}}$ categories under the assumption that the p_{T} dependence of the misidentification probabilities is linear.

Statistical uncertainties in the number of simulated events in the signal region or observed event yields in the control regions are considered in all bins of the distributions. The uncertainty in the integrated luminosity for the combined 2016-2018 period is 1.6%, while individual years have uncertainties in the range $1.2 \%-2.5 \%$, with partial correlations between data-taking years [53-55]

For the signal, uncertainties from missing higher-order corrections in the perturbative QCD expansion are estimated by varying the renormalization and factorization scales by factors of 2 . In the case of the gluon fusion production, the uncertainty scheme proposed in Ref. [48] is used. For the signal in the fiducial region, the uncertainties are implemented in such a way that they do not modify the fiducial cross sections in any of the generator-level bins before the
selection considering the shape effect only. The uncertainties can, however, modify the normalization of the Higgs boson events outside of the fiducial region since the cross section for these events is normalized to the SM expectation. The fraction of the Higgs boson events in this region is less than 3% and 8% in the $\tau_{h} \tau_{h}$ and $\mu \tau_{h}$ final states, respectively.

In each category, two-dimensional distributions of $m_{\tau \tau}$ reconstructed with a simplified matrix element algorithm [56] with a resolution around 20%, and of the variable considered for the differential measurement $\left(p_{T}^{H}, N_{\text {jets }}\right.$, or $p_{T}^{j_{1}}$) are built. In practice, this is equivalent to making $m_{\tau \tau}$ distributions in different bins of the other observable. At the generator level, $p_{T}^{H}, N_{\text {jets }}$, and $p_{T}^{j_{1}}$ are evaluated with a RIVET implementation [57] of the simplified template cross sections scheme [48], where jets with $p_{T}>30 \mathrm{GeV}$ are formed from clusters of final-state particles from the primary vertex, excluding the decay products of the Higgs boson. Signal events from one generator-level bin contribute to multiple reconstruction-level bins. By performing one simultaneous fit over all reconstruction-level bins, the signal strength modifiers of the different generator-level observable bins modeled as freely floating parameters of interest, can be determined using all the selected events. This simultaneous fit is equivalent to a signal extraction in the reconstructionlevel bins and its unfolding into generator-level bins performed in a single step. The signal strengths per observable range are assumed fully correlated among final states since similar phase spaces are selected with the fiducial region definitions. This unfolding procedure can be sensitive to statistical fluctuations in the observed distributions and to small variations in the response matrix, and a Tikhonov regularization of the unfolded distribution is performed by adding to the likelihood function a multiplicative penalty term $[58,59]$. Regularization reduces statistical fluctuations and unphysical solutions, but it can lead to undercoverage of the uncertainty intervals and introduce systematic biases, which, in this Letter, are negligible with respect to the systematic and statistical uncertainties. These effects are controlled by optimizing the strength of the regularization term with the minimum global correlation coefficient [60]. The optimum regularization factor is 1.85 (1.35 and 2.35) for the p_{T}^{H} ($N_{\text {jets }}$ and $p_{T}^{j_{1}}$, respectively) measurement.

The predicted and measured differential fiducial cross sections are shown in Fig. 1 for the regularized fits. Tabulated results are available in the HepData database [61] for the regularized and unregularized cases. The fit has a p value with respect to the SM expectation from the NNLOPS prediction of $17 \%, 71 \%$, and 45% for the measurements of $p_{T}^{H}, N_{\text {jets }}$, and $p_{T}^{j_{1}}$, respectively. No significant deviation with respect to the SM predictions is observed, and the measurements are compatible with both the POWHEG and NNLOPS expectations. The low measured cross sections for $0<$ $p_{T}^{H}<45 \mathrm{GeV}$ and $45<p_{T}^{H}<80 \mathrm{GeV}$ do not coincide with the much more precise measurements performed in this

FIG. 1. Observed and expected differential fiducial cross section in bins of p_{T}^{H} (upper), $N_{\text {jets }}$ (middle), and $p_{T}^{j_{1}}$ (lower). Both regularized (full markers) and unregularized (hollow markers) are shown. The most-left bin in the $p_{T}^{j_{1}}$ distribution includes all events without a jet with $p_{T}>30 \mathrm{GeV}$. The uncertainty bands in the theoretical predictions include uncertainties from the following sources: PDF, renormalization and factorization scale, underlying event and parton showering, and branching fraction of the Higgs boson to τ leptons. The last bins include the overflow.
phase space in other final states [6,9], and are attributed to statistical fluctuations.

The results are dominated by statistical and theoretical uncertainties. After the maximum likelihood fit described later in this Letter, the uncertainty in the background with jets misidentified as τ_{h} candidates is at the percent level in the phase space region with large background contributions, and up to $10 \%-15 \%$ at high p_{T}^{H}. The impacts on the template normalization from the uncertainties for embedded events without any reconstructed jet are 7% and 4% in the case of no jets and one jet, respectively, and become negligible at high jet multiplicity. Acceptance uncertainties for the $g g H$ signal give the largest contribution to the overall impacts on the fit results from the theoretical part. The impacts on the fits from the uncertainties due to migration between different jet multiplicity bins are less than 8% overall, while the combined effect of the other theoretical uncertainties is less than 3%.

The measurement is precise with respect to the measurements in other final states for $120<p_{T}^{H}<600 \mathrm{GeV}$, $N_{\text {jets }} \geq 2$, and $p_{T}^{j_{1}}>120 \mathrm{GeV}$. More specifically, this measurement for $120<p_{T}^{H}<200 \mathrm{GeV}$ is comparable in precision with the measurements by the CMS [10] and ATLAS [9] Collaborations in the $H \rightarrow Z Z \rightarrow 4 \ell$ decay channel with $137-139 \mathrm{fb}^{-1}$, and 50% more sensitive than the CMS measurement in the $H \rightarrow W W$ channel with $137 \mathrm{fb}^{-1}$ [8] and the combination performed by the CMS Collaboration with $36 \mathrm{fb}^{-1}$ in the $b b, \gamma \gamma$, and $Z Z$ decay channels [6]. For $200<p_{T}^{H}<600 \mathrm{GeV}$, the current measurement has a significantly higher precision and granularity than the measurements in Refs. [4-10].

The inclusive fiducial cross section is measured from the distributions used in the differential measurements of $N_{\text {jets }}$ by reformulating the parameters of interest such that one modifies the total inclusive fiducial cross section. Its measured value is $426 \pm 102 \mathrm{fb}$, compatible with the SM expectation of $408 \pm 27 \mathrm{fb}$.

In summary, measurements of the differential fiducial cross sections of the Higgs boson have been performed for the first time at the LHC in the decay channel of two τ leptons. The differential cross sections as functions of the Higgs boson transverse momentum, the jet multiplicity, and transverse momentum of the leading jet are in agreement with the expectations of the standard model, with a competitive precision with respect to measurements in other final states in the phase spaces with a large jet multiplicity, or with a Higgs boson transverse momentum above 120 GeV . In addition, the fiducial inclusive cross section has been measured to be $426 \pm 102 \mathrm{fb}$, in agreement with the standard model expectation of $408 \pm 27 \mathrm{fb}$.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success
of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).
[1] M. Grazzini, A. Ilnicka, M. Spira, and M. Wiesemann, Modeling BSM effects on the Higgs transverse-momentum spectrum in an EFT approach, J. High Energy Phys. 03 (2017) 115.
[2] F. Bishara, U. Haisch, P. F. Monni, and E. Re, Constraining Light-Quark Yukawa Couplings from Higgs Distributions, Phys. Rev. Lett. 118, 121801 (2017).
[3] S. Alioli, A. Broggio, S. Kallweit, M. A. Lim, and L. Rottoli, Higgsstrahlung at NNLL' + NNLO matched to parton showers in geneva, Phys. Rev. D 100, 096016 (2019).
[4] CMS Collaboration, Measurement of the transverse momentum spectrum of the Higgs boson produced in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$ using $H \rightarrow W W$ decays, J. High Energy Phys. 03 (2017) 032.
[5] ATLAS Collaboration, Combined measurement of differential and total cross sections in the $H \rightarrow \gamma \gamma$ and the $H \rightarrow Z Z^{*} \rightarrow 4 \ell$ decay channels at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector, Phys. Lett. B 786, 114 (2018).
[6] CMS Collaboration, Measurement and interpretation of differential cross sections for Higgs boson production at $\sqrt{s}=13 \mathrm{TeV}$, Phys. Lett. B 792, 369 (2019).
[7] CMS Collaboration, Measurement of inclusive and differential Higgs boson production cross sections in the diphoton
decay channel in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$, J. High Energy Phys. 01 (2019) 183.
[8] CMS Collaboration, Measurement of the inclusive and differential Higgs boson production cross sections in the leptonic $W W$ decay mode at $\sqrt{s}=13 \mathrm{TeV}$, J. High Energy Phys. 03 (2021) 003.
[9] ATLAS Collaboration, Measurements of the Higgs boson inclusive and differential fiducial cross sections in the 4ℓ decay channel at $\sqrt{s}=13 \mathrm{TeV}$, Eur. Phys. J. C 80, 942 (2020).
[10] CMS Collaboration, Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$, Eur. Phys. J. C 81, 488 (2021).
[11] CMS Collaboration, Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector, Phys. Lett. B 779, 283 (2018).
[12] ATLAS Collaboration, Cross-section measurements of the Higgs boson decaying into a pair of τ-leptons in protonproton collisions at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector, Phys. Rev. D 99, 072001 (2019).
[13] P. A. Zyla et al. (Particle Data Group), Review of particle physics, Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
[14] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3, S08004 (2008).
[15] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, J. High Energy Phys. 11 (2004) 040.
[16] S. Frixione, P. Nason, and C. Oleari, Matching NLO QCD computations with parton shower simulations: The POWHEG method, J. High Energy Phys. 11 (2007) 070.
[17] S. Alioli, P. Nason, C. Oleari, and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: The powheg box, J. High Energy Phys. 06 (2010) 043.
[18] S. Alioli, K. Hamilton, P. Nason, C. Oleari, and E. Re, Jet pair production in POWHEG, J. High Energy Phys. 04 (2011) 081.
[19] S. Alioli, P. Nason, C. Oleari, and E. Re, NLO Higgs boson production via gluon fusion matched with shower in powheg, J. High Energy Phys. 04 (2009) 002.
[20] K. Hamilton, P. Nason, E. Re, and G. Zanderighi, nnlops simulation of Higgs boson production, J. High Energy Phys. 10 (2013) 222.
[21] K. Hamilton, P. Nason, and G. Zanderighi, Finite quarkmass effects in the nnlops powheg+minlo Higgs generator, J. High Energy Phys. 05 (2015) 140.
[22] CMS Collaboration, A measurement of the Higgs boson mass in the diphoton decay channel, Phys. Lett. B 805, 135425 (2020).
[23] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of tree-level and next-toleading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2014) 079.
[24] J. Alwall, S. Höche, F. Krauss, N. Lavesson, L. Lönnblad, F. Maltoni, M. L. Mangano, M. Moretti, C. G. Papadopoulos, F. Piccinini, S. Schumann, M. Treccani, J. Winter, and M. Worek, Comparative study of various algorithms for the
merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53, 473 (2008).
[25] J. M. Campbell, R. K. Ellis, and C. Williams, Vector boson pair production at the LHC, J. High Energy Phys. 07 (2011) 018.
[26] T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhöfer, A. von Manteuffel, S. Pozzorini, D. Rathlev, and L. Tancredi, $W^{+} W^{-}$Production at Hadron Colliders in Next to Next to Leading Order QCD, Phys. Rev. Lett. 113, 212001 (2014).
[27] K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through $O\left(\alpha_{s}^{2}\right)$, Phys. Rev. D 74, 114017 (2006).
[28] M. Czakon and A. Mitov, Top++: A program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun. 185, 2930 (2014).
[29] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, An introduction to PYTHIA8.2, Comput. Phys. Commun. 191, 159 (2015).
[30] CMS Collaboration, CMS Physics Analysis Summary CMS-PAS-TOP-16-021, 2016, https://cds.cern.ch/ record/2235192.
[31] CMS Collaboration, Extraction and validation of a new set of CMS PYthia8 tunes from underlying-event measurements, Eur. Phys. J. C 80, 4 (2020).
[32] R. D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J. I. Latorre, J. Rojo, and M. Ubiali, Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO, Nucl. Phys. B855, 153 (2012).
[33] R. D. Ball, V. Bertone, S. Carrazza, L. Del Debbio, S. Forte, A. Guffanti, N. P. Hartland, and J. Rojo (NNPDF Collaboration), Parton distributions with QED corrections, Nucl. Phys. B877, 290 (2013).
[34] R. D. Ball et al. (NNPDF Collaboration), Parton distributions from high-precision collider data, Eur. Phys. J. C 77, 663 (2017).
[35] S. Agostinelli et al. (GEANT4 Collaboration), GEANT4-a simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[36] CMS Collaboration, Particle-flow reconstruction and global event description with the CMS detector, J. Instrum. 12, P10003 (2017).
[37] CMS Collaboration, Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$, J. Instrum. 13, P06015 (2018).
[38] CMS Collaboration, Performance of the reconstruction and identification of high-momentum muons in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$, J. Instrum. 15, P02027 (2020).
[39] CMS Collaboration, Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC, J. Instrum. 16, P05014 (2021).
[40] M. Cacciari, G. P. Salam, and G. Soyez, The anti- k_{t} jet clustering algorithm, J. High Energy Phys. 04 (2008) 063.
[41] CMS Collaboration, CMS Physics Analysis Summary CMS-PAS-JME-16-003, 2017, https://cds.cern.ch/ record/2256875.
[42] CMS Collaboration, Jet energy scale and resolution in the CMS experiment in $p p$ collisions at 8 TeV , J. Instrum. 12, P02014 (2017).
[43] CMS Collaboration, CMS Physics Analysis Summary CMS-DP-2020-019, 2020, https://cds.cern.ch/record/2715872.
[44] CMS Collaboration, Identification of heavy-flavour jets with the CMS detector in $p p$ collisions at 13 TeV , J. Instrum. 13, P05011 (2018).
[45] CMS Collaboration, Performance of reconstruction and identification of τ leptons decaying to hadrons and ν_{τ} in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$, J. Instrum. 13, P10005 (2018).
[46] CMS Collaboration, CMS Physics Analysis Summary CMS-DP-2019-033, 2019, https://cds.cern.ch/record/2694158.
[47] CMS Collaboration, Performance of missing transverse momentum reconstruction in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$ using the CMS detector, J. Instrum. $\mathbf{1 4}$, P07004 (2019).
[48] LHC Higgs Cross Section Working Group, CMS Physics Analysis Summary CERN-2017-002-M, 2016, 10.23731/ CYRM-2017-002.
[49] A. Denner, S. Heinemeyer, I. Puljak, D. Rebuzzi, and M. Spira, Standard model Higgs-boson branching ratios with uncertainties, Eur. Phys. J. C 71, 1753 (2011).
[50] R. D. Ball, V. Bertone, F. Cerutti, L. D. Debbio, S. Forte, A. Guffanti, J. I. Latorre, J. Rojo, and M. Ubiali (NNPDF Collaboration), Impact of heavy quark masses on parton distributions and LHC phenomenology, Nucl. Phys. B849, 296 (2011).
[51] CMS Collaboration, An embedding technique to determine $\tau \tau$ backgrounds in proton-proton collision data, J. Instrum. 14, P06032 (2019).
[52] CMS Collaboration, Measurement of the $Z \gamma^{*} \rightarrow \tau \tau$ cross section in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ and validation of τ lepton analysis techniques, Eur. Phys. J. C 78, 708 (2018).
[53] CMS Collaboration, Precision luminosity measurement in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$ in 2015 and 2016 at CMS, Eur. Phys. J. C 81, 800 (2021).
[54] CMS Collaboration, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2017, https://cds.cern.ch/ record/2621960.
[55] CMS Collaboration, CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2019, https://cds.cern.ch/record/2676164.
[56] L. Bianchini, J. Conway, E. K. Friis, and C. Veelken, Reconstruction of the Higgs mass in $H \rightarrow \tau \tau$ events by dynamical likelihood techniques, J. Phys. Conf. Ser. 513, 022035 (2014).
[57] C. Bierlich, A. Buckley, J. Butterworth, C. H. Christensen, L. Corpe, D. Grellscheid, J. F. Grosse-Oetringhaus, C. Gutschow, P. Karczmarczyk, J. Klein, L. Lönnblad, C. S. Pollard, P. Richardson, H. Schulz, and F. Siegert, Robust independent validation of experiment and theory: RIVET version 3, SciPost Phys. 8, 026 (2020).
[58] A. N. Tikhonov, Solution of incorrectly formulated problems and the regularization method, Sov. Math. Dokl. 4, 1035 (1963), https://mathscinet.ams.org/mathscinetgetitem?mr=0211218.
[59] A. Hocker and V. Kartvelishvili, SVD approach to data unfolding, Nucl. Instrum. Methods Phys. Res., Sect. A 372, 469 (1996).
[60] S. Schmitt, TUNFOLD: an algorithm for correcting migration effects in high energy physics, J. Instrum. 7, T10003 (2012).
[61] HEPData record for this analysis, 10.17182/hepdata. 105961 (2021).
A. Tumasyan, ${ }^{1}$ W. Adam, ${ }^{2}$ J. W. Andrejkovic, ${ }^{2}$ T. Bergauer, ${ }^{2}$ S. Chatterjee, ${ }^{2}$ M. Dragicevic, ${ }^{2}$ A. Escalante Del Valle, ${ }^{2}$ R. Frühwirth, ${ }^{2, b}$ M. Jeitler, ${ }^{2, b}$ N. Krammer, ${ }^{2}$ L. Lechner, ${ }^{2}$ D. Liko, ${ }^{2}$ I. Mikulec, ${ }^{2}$ P. Paulitsch, ${ }^{2}$ F. M. Pitters, ${ }^{2}$ J. Schieck, ${ }^{2, b}$ R. Schöfbeck, ${ }^{2}$ D. Schwarz, ${ }^{2}$ S. Templ, ${ }^{2}$ W. Waltenberger, ${ }^{2}$ C.-E. Wulz, ${ }^{2, b}$ V. Chekhovsky, ${ }^{3}$ A. Litomin, ${ }^{3}$ V. Makarenko, ${ }^{3}$ M. R. Darwish, ${ }^{4, c}$ E. A. De Wolf, ${ }^{4}$ T. Janssen, ${ }^{4}$ T. Kello, ${ }^{4, \mathrm{~d}}$ A. Lelek, ${ }^{4}$ H. Rejeb Sfar, ${ }^{4}$ P. Van Mechelen, ${ }^{4}$ S. Van Putte, ${ }^{4}$
N. Van Remortel, ${ }^{4}$ F. Blekman, ${ }^{5}$ E. S. Bols, ${ }^{5}$ J. D'Hondt, ${ }^{5}$ M. Delcourt, ${ }^{5}$ H. El Faham, ${ }^{5}$ S. Lowette, ${ }^{5}$ S. Moortgat, ${ }^{5}$ A. Morton, ${ }^{5}$ D. Müller, ${ }^{5}$ A. R. Sahasransu, ${ }^{5}$ S. Tavernier, ${ }^{5}$ W. Van Doninck, ${ }^{5}$ P. Van Mulders, ${ }^{5}$ D. Beghin, ${ }^{6}$ B. Bilin, ${ }^{6}$ B. Clerbaux, ${ }^{6}$ G. De Lentdecker, ${ }^{6}$ L. Favart, ${ }^{6}$ A. Grebenyuk, ${ }^{6}$ A. K. Kalsi, ${ }^{6}$ K. Lee, ${ }^{6}$ M. Mahdavikhorrami, ${ }^{6}$ I. Makarenko, ${ }^{6}$ L. Moureaux, ${ }^{6}$ L. Pétré, ${ }^{6}$ A. Popov, ${ }^{6}$ N. Postiau, ${ }^{6}$ E. Starling, ${ }^{6}$ L. Thomas, ${ }^{6}$ M. Vanden Bemden, ${ }^{6}$ C. Vander Velde, ${ }^{6}$ P. Vanlaer, ${ }^{6}$ L. Wezenbeek, ${ }^{6}$ T. Cornelis, ${ }^{7}$ D. Dobur, ${ }^{7}$ J. Knolle, ${ }^{7}$ L. Lambrecht, ${ }^{7}$ G. Mestdach, ${ }^{7}$ M. Niedziela, ${ }^{7}$ C. Roskas, ${ }^{7}$ A. Samalan, ${ }^{7}$ K. Skovpen, ${ }^{7}$ M. Tytgat, ${ }^{7}$ B. Vermassen, ${ }^{7}$ M. Vit, ${ }^{7}$ A. Benecke, ${ }^{8}$ A. Bethani, ${ }^{8}$ G. Bruno, ${ }^{8}$ F. Bury, ${ }^{8}$ C. Caputo, ${ }^{8}$ P. David,,${ }^{8}$ C. Delaere, ${ }^{8}$ I. S. Donertas, ${ }^{8}$ A. Giammanco, ${ }^{8}$ K. Jaffel, ${ }^{8}$ Sa. Jain, ${ }^{8}$ V. Lemaitre, ${ }^{8}$ K. Mondal, ${ }^{8}$ J. Prisciandaro, ${ }^{8}$ A. Taliercio, ${ }^{8}$ M. Teklishyn, ${ }^{8}$ T. T. Tran, ${ }^{8}$ P. Vischia, ${ }^{8}$ S. Wertz, ${ }^{8}$ G. A. Alves, ${ }^{9}$ C. Hensel, ${ }^{9}$ A. Moraes, ${ }^{9}$ W. L. Aldá Júnior ${ }^{10}$
M. Alves Gallo Pereira, ${ }^{10}$ M. Barroso Ferreira Filho, ${ }^{10}$ H. Brandao Malbouisson, ${ }^{10}$ W. Carvalho, ${ }^{10}$ J. Chinellato, ${ }^{10, e}$
E. M. Da Costa, ${ }^{10}$ G. G. Da Silveira, ${ }^{10, f}$ D. De Jesus Damiao, ${ }^{10}$ S. Fonseca De Souza, ${ }^{10}$ D. Matos Figueiredo, ${ }^{10}$ C. Mora Herrera, ${ }^{10}$ K. Mota Amarilo, ${ }^{10}$ L. Mundim, ${ }^{10}$ H. Nogima, ${ }^{10}$ P. Rebello Teles,,${ }^{10}$ A. Santoro, ${ }^{10}$ S. M. Silva Do Amaral, ${ }^{10}$ A. Sznajder, ${ }^{10}$ M. Thiel, ${ }^{10}$ F. Torres Da Silva De Araujo, ${ }^{10, g}$ A. Vilela Pereira, ${ }^{10}$ C. A. Bernardes, ${ }^{11 a, f}$ L. Calligaris, ${ }^{11 a}$ T. R. Fernandez Perez Tomei, ${ }^{11 a}$ E. M. Gregores, ${ }^{11 a, 11 \mathrm{~b}}$ D. S. Lemos, ${ }^{11 a}$ P. G. Mercadante, ${ }^{11 a, 11 b}$ S. F. Novaes, ${ }^{11 a}$ Sandra S. Padula, ${ }^{11 \mathrm{a}}$ A. Aleksandrov, ${ }^{12}$ G. Antchev, ${ }^{12}$ R. Hadjiiska, ${ }^{12}$ P. Iaydjiev, ${ }^{12}$ M. Misheva, ${ }^{12}$ M. Rodozov, ${ }^{12}$ M. Shopova, ${ }^{12}$ G. Sultanov, ${ }^{12}$ A. Dimitrov, ${ }^{13}$ T. Ivanov, ${ }^{13}$ L. Litov, ${ }^{13}$ B. Pavlov, ${ }^{13}$ P. Petkov, ${ }^{13}$ A. Petrov, ${ }^{13}$ T. Cheng, ${ }^{14}$ T. Javaid, ${ }^{14, h}$ M. Mittal, ${ }^{14}$ L. Yuan, ${ }^{14}$ M. Ahmad, ${ }^{15}$ G. Bauer, ${ }^{15}$ C. Dozen,,${ }^{15, i}$ Z. Hu, ${ }^{15}$ J. Martins,,${ }^{15, j}$ Y. Wang, ${ }^{15}$ K. Yi,,${ }^{15, k, l}$ E. Chapon, ${ }^{16}$ G. M. Chen, ${ }^{16, h}$ H. S. Chen, ${ }^{16, h}$ M. Chen, ${ }^{16}$ F. Iemmi, ${ }^{16}$ A. Kapoor, ${ }^{16}$ D. Leggat, ${ }^{16}$ H. Liao, ${ }^{16}$ Z.-A. Liu, ${ }^{16, m}$ V. Milosevic, ${ }^{16}$ F. Monti, ${ }^{16}$ R. Sharma, ${ }^{16}$ J. Tao, ${ }^{16}$ J. Thomas-wilsker, ${ }^{16}$ J. Wang, ${ }^{16}$ H. Zhang, ${ }^{16}$ J. Zhao, ${ }^{16}$ A. Agapitos, ${ }^{17}$ Y. An, ${ }^{17}$ Y. Ban,,${ }^{17}$ C. Chen, ${ }^{17}$ A. Levin, ${ }^{17}$ Q. Li, ${ }^{17}$ X. Lyu,,${ }^{17}$ Y. Mao,,${ }^{17}$ S. J. Qian, ${ }^{17}$ D. Wang, ${ }^{17}$
 J. Fraga, ${ }^{21}$ J. Mejia Guisao, ${ }^{22}$ F. Ramirez, ${ }^{22}$ J. D. Ruiz Alvarez, ${ }^{22}$ C. A. Salazar González, ${ }^{22}$ D. Giljanovic, ${ }^{23}$ N. Godinovic, ${ }^{23}$ D. Lelas, ${ }^{23}$ I. Puljak, ${ }^{23}$ Z. Antunovic, ${ }^{24}$ M. Kovac, ${ }^{24}$ T. Sculac, ${ }^{24}$ V. Brigljevic, ${ }^{25}$ D. Ferencek, ${ }^{25}$ D. Majumder,,${ }^{25}$ M. Roguljic, ${ }^{25}$ A. Starodumov, ${ }^{25, n}$ T. Susa, ${ }^{25}$ A. Attikis, ${ }^{26}$ K. Christoforou, ${ }^{26}$ E. Erodotou, ${ }^{26}$ A. Ioannou, ${ }^{26}$ G. Kole, ${ }^{26}$ M. Kolosova, ${ }^{26}$ S. Konstantinou,,26 J. Mousa, ${ }^{26}$ C. Nicolaou, ${ }^{26}$ F. Ptochos, ${ }^{26}$ P. A. Razis,,${ }^{26}$ H. Rykaczewski, ${ }^{26}$ H. Saka, ${ }^{26}$ M. Finger,,27,0 M. Finger Jr., ${ }^{27,0}$ A. Kveton, ${ }^{27}$ E. Ayala, ${ }^{28}$ E. Carrera Jarrin, ${ }^{29}$ H. Abdalla, ${ }^{30, p}$ A. A. Abdelalim, ${ }^{30,9, r}$ A. Lotfy, ${ }^{31}$ M. A. Mahmoud, ${ }^{31}$ S. Bhowmik, ${ }^{32}$ R. K. Dewanjee, ${ }^{32}$ K. Ehataht, ${ }^{32}$ M. Kadastik, ${ }^{32}$ S. Nandan, ${ }^{32}$ C. Nielsen, ${ }^{32}$ J. Pata, ${ }^{32}$ M. Raidal, ${ }^{32}$ L. Tani, ${ }^{32}$ C. Veelken, ${ }^{32}$ P. Eerola, ${ }^{33}$ L. Forthomme, ${ }^{33}$ H. Kirschenmann, ${ }^{33}$ K. Osterberg, ${ }^{33}$ M. Voutilainen, ${ }^{33}$ S. Bharthuar, ${ }^{34}$ E. Brücken, ${ }^{34}$ F. Garcia, ${ }^{34}$ J. Havukainen, ${ }^{34}$ M. S. Kim, ${ }^{34}$ R. Kinnunen, ${ }^{34}$ T. Lampén, ${ }^{34}$ K. Lassila-Perini, ${ }^{34}$ S. Lehti,,${ }^{34}$ T. Lindén, ${ }^{34}$ M. Lotti, ${ }^{34}$ L. Martikainen, ${ }^{34}$ M. Myllymäki, ${ }^{34}$ J. Ott, ${ }^{34}$ H. Siikonen, ${ }^{34}$ E. Tuominen, ${ }^{34}$ J. Tuominiemi, ${ }^{34}$ P. Luukka, ${ }^{35}$ H. Petrow, ${ }^{35}$ T. Tuuva, ${ }^{35}$ C. Amendola, ${ }^{36}$ M. Besancon, ${ }^{36}$ F. Couderc, ${ }^{36}$ M. Dejardin, ${ }^{36}$ D. Denegri, ${ }^{36}$ J. L. Faure, ${ }^{36}$ F. Ferri, ${ }^{36}$ S. Ganjour, ${ }^{36}$ A. Givernaud, ${ }^{36}$ P. Gras, ${ }^{36}$ G. Hamel de Monchenault, ${ }^{36}$ P. Jarry, ${ }^{36}$ B. Lenzi, ${ }^{36}$ E. Locci, ${ }^{36}$ J. Malcles, ${ }^{36}$ J. Rander, ${ }^{36}$ A. Rosowsky, ${ }^{36}$ M. Ö. Sahin, ${ }^{36}$ A. Savoy-Navarro, ${ }^{36, s}$ M. Titov, ${ }^{36}$ G. B. Yu, ${ }^{36}$ S. Ahuja, ${ }^{37}$ F. Beaudette, ${ }^{37}$ M. Bonanomi, ${ }^{37}$ A. Buchot Perraguin, ${ }^{37}$ P. Busson, ${ }^{37}$ A. Cappati, ${ }^{37}$ C. Charlot, ${ }^{37}$ O. Davignon, ${ }^{37}$ B. Diab, ${ }^{37}$ G. Falmagne,,${ }^{37}$ S. Ghosh, ${ }^{37}$ R. Granier de Cassagnac, ${ }^{37}$ A. Hakimi, ${ }^{37}$ I. Kucher,${ }^{37}$ J. Motta, ${ }^{37}$ M. Nguyen, ${ }^{37}$ C. Ochando, ${ }^{37}$ P. Paganini, ${ }^{37}$ J. Rembser, ${ }^{37}$ R. Salerno, ${ }^{37}$ U. Sarkar, ${ }^{37}$ J. B. Sauvan, ${ }^{37}$ Y. Sirois, ${ }^{37}$ A. Tarabini, ${ }^{37}$ A. Zabi, ${ }^{37}$ A. Zghiche, ${ }^{37}$ J.-L. Agram,,${ }^{38, t}$ J. Andrea, ${ }^{38}$ D. Apparu, ${ }^{38}$ D. Bloch, ${ }^{38}$ G. Bourgatte, ${ }^{38}$ J.-M. Brom, ${ }^{38}$ E. C. Chabert, ${ }^{38}$ C. Collard, ${ }^{38}$ D. Darej,,38 J.-C. Fontaine, ${ }^{38, t}$ U. Goerlach, ${ }^{38}$ C. Grimault, ${ }^{38}$ A.-C. Le Bihan,${ }^{38}$ E. Nibigira, ${ }^{38}$ P. Van Hove, ${ }^{38}$ E. Asilar, ${ }^{39}$ S. Beauceron, ${ }^{39}$ C. Bernet, ${ }^{39}$ G. Boudoul, ${ }^{39}$ C. Camen,,${ }^{39}$ A. Carle, ${ }^{39}$ N. Chanon, ${ }^{39}$ D. Contardo, ${ }^{39}$ P. Depasse, ${ }^{39}$ H. El Mamouni, ${ }^{39}$ J. Fay, ${ }^{39}$ S. Gascon, ${ }^{39}$ M. Gouzevitch, ${ }^{39}$ B. Ille, ${ }^{39}$ I. B. Laktineh, ${ }^{39}$ H. Lattaud, ${ }^{39}$ A. Lesauvage, ${ }^{39}$ M. Lethuillier, ${ }^{39}$ L. Mirabito, ${ }^{39}$ S. Perries, ${ }^{39}$ K. Shchablo, ${ }^{39}$ V. Sordini, ${ }^{39}$ L. Torterotot, ${ }^{39}$ G. Touquet, ${ }^{39}$ M. Vander Donckt, ${ }^{39}$ S. Viret, ${ }^{39}$ I. Lomidze, ${ }^{40}$ T. Toriashvili, ${ }^{40, u}$ Z. Tsamalaidze,,${ }^{40,0}$ V. Botta, ${ }^{41}$ L. Feld, ${ }^{41}$ K. Klein, ${ }^{41}$ M. Lipinski, ${ }^{41}$ D. Meuser, ${ }^{41}$ A. Pauls, ${ }^{41}$ N. Röwert, ${ }^{41}$ J. Schulz, ${ }^{41}$ M. Teroerde, ${ }^{41}$ A. Dodonova, ${ }^{42}$ D. Eliseev, ${ }^{42}$
M. Erdmann, ${ }^{42}$ P. Fackeldey, ${ }^{42}$ B. Fischer, ${ }^{42}$ S. Ghosh, ${ }^{42}$ T. Hebbeker, ${ }^{42}$ K. Hoepfner, ${ }^{42}$ F. Ivone, ${ }^{42}$ L. Mastrolorenzo, ${ }^{42}$ M. Merschmeyer, ${ }^{42}$ A. Meyer, ${ }^{42}$ G. Mocellin, ${ }^{42}$ S. Mondal, ${ }^{42}$ S. Mukherjee, ${ }^{42}$ D. Noll, ${ }^{42}$ A. Novak, ${ }^{42}$ T. Pook, ${ }^{42}$ A. Pozdnyakov, ${ }^{42}$ Y. Rath, ${ }^{42}$ H. Reithler, ${ }^{42}$ J. Roemer,,${ }^{42}$ A. Schmidt, ${ }^{42}$ S. C. Schuler, ${ }^{42}$ A. Sharma, ${ }^{42}$ L. Vigilante, ${ }^{42}$ S. Wiedenbeck, ${ }^{42}$ S. Zaleski, ${ }^{42}$ C. Dziwok, ${ }^{43}$ G. Flügge, ${ }^{43}$ W. Haj Ahmad, ${ }^{43, v}$ O. Hlushchenko, ${ }^{43}$ T. Kress, ${ }^{43}$ A. Nowack, ${ }^{43}$ C. Pistone, ${ }^{43}$ O. Pooth,,${ }^{43}$ D. Roy, ${ }^{43}$ H. Sert, ${ }^{43}$ A. Stahl, ${ }^{43, w}$ T. Ziemons, ${ }^{43}$ A. Zotz, ${ }^{43}$ H. Aarup Petersen, ${ }^{44}$ M. Aldaya Martin, ${ }^{44}$ P. Asmuss, ${ }^{44}$ S. Baxter,,${ }^{44}$ M. Bayatmakou, ${ }^{44}$ O. Behnke, ${ }^{44}$ A. Bermúdez Martínez, ${ }^{44}$ S. Bhattacharya, ${ }^{44}$ A. A. Bin Anuar, ${ }^{44}$ K. Borras, ${ }^{44, x}$ D. Brunner, ${ }^{44}$ A. Campbell,,${ }^{44}$ A. Cardini, ${ }^{44}$ C. Cheng, ${ }^{44}$ F. Colombina, ${ }^{44}$ S. Consuegra Rodríguez, ${ }^{44}$ G. Correia Silva, ${ }^{44}$ V. Danilov, ${ }^{44}$ M. De Silva, ${ }^{44}$ L. Didukh, ${ }^{44}$ G. Eckerlin, ${ }^{44}$ D. Eckstein, ${ }^{44}$ L. I. Estevez Banos, ${ }^{44}$ O. Filatov, ${ }^{44}$ E. Gallo, ${ }^{44, y}$ A. Geiser, ${ }^{44}$ A. Giraldi, ${ }^{44}$ A. Grohsjean, ${ }^{44}$ M. Guthoff, ${ }^{4}$ A. Jafari, ${ }^{44, z}$ N. Z. Jomhari, ${ }^{44}$ H. Jung, ${ }^{44}$ A. Kasem, ${ }^{44, x}$ M. Kasemann, ${ }^{44}$ H. Kaveh, ${ }^{44}$ C. Kleinwort, ${ }^{44}$ D. Krücker, ${ }^{44}$ W. Lange, ${ }^{44}$ J. Lidrych, ${ }^{44}$ K. Lipka, ${ }^{44}$ W. Lohmann, ${ }^{44, a a}$ R. Mankel, ${ }^{44}$ I.-A. Melzer-Pellmann, ${ }^{44}$ M. Mendizabal Morentin, ${ }^{44}$ J. Metwally, ${ }^{44}$ A. B. Meyer, ${ }^{44}$ M. Meyer, ${ }^{44}$ J. Mnich,,${ }^{44}$ A. Mussgiller, ${ }^{44}$ Y. Otarid, ${ }^{44}$ D. Pérez Adán, ${ }^{44}$ D. Pitzl, ${ }^{44}$ A. Raspereza, ${ }^{44}$ B. Ribeiro Lopes, ${ }^{44}$ J. Rübenach, ${ }^{44}$ A. Saggio, ${ }^{44}$ A. Saibel, ${ }^{44}$ M. Savitskyi, ${ }^{44}$ M. Scham, ${ }^{44, b b}$ V. Scheurer, ${ }^{44}$ P. Schütze, ${ }^{44}$ C. Schwanenberger, ${ }^{44, y}$ M. Shchedrolosiev, ${ }^{44}$ R. E. Sosa Ricardo, ${ }^{44}$ D. Stafford, ${ }^{44}$ N. Tonon, ${ }^{44}$ M. Van De Klundert, ${ }^{44}$ R. Walsh, ${ }^{44}$ D. Walter, ${ }^{44}$ Y. Wen, ${ }^{44}$ K. Wichmann, ${ }^{44}$ L. Wiens, ${ }^{44}$ C. Wissing, ${ }^{44}$ S. Wuchterl, ${ }^{44}$ R. Aggleton, ${ }^{45}$ S. Albrecht,,${ }^{45}$ S. Bein, ${ }^{45}$ L. Benato,,${ }^{45}$ P. Connor, ${ }^{45}$ K. De Leo, ${ }^{45}$ M. Eich,,${ }^{45}$ F. Feindt, ${ }^{45}$ A. Fröhlich,,${ }^{45}$ C. Garbers, ${ }^{45}$ E. Garutti, ${ }^{45}$ P. Gunnellini, ${ }^{45}$ M. Hajheidari, ${ }^{45}$ J. Haller, ${ }^{45}$ A. Hinzmann, ${ }^{45}$ G. Kasieczka, ${ }^{45}$ R. Klanner,,${ }^{45}$ R. Kogler, ${ }^{45}$ T. Kramer, ${ }^{45}$ V. Kutzner, ${ }^{45}$ J. Lange, ${ }^{45}$ T. Lange, ${ }^{45}$ A. Lobanov, ${ }^{45}$ A. Malara, ${ }^{45}$ A. Nigamova, ${ }^{45}$ K. J. Pena Rodriguez, ${ }^{45}$ O. Rieger, ${ }^{45}$ P. Schleper, ${ }^{45}$ M. Schröder, ${ }^{45}$ J. Schwandt,,${ }^{45}$ J. Sonneveld, ${ }^{45}$ H. Stadie, ${ }^{45}$ G. Steinbrück, ${ }^{45}$ A. Tews, ${ }^{45}$ I. Zoi, ${ }^{45}$ J. Bechtel,,${ }^{46}$ S. Brommer, ${ }^{46}$ E. Butz, ${ }^{46}$ R. Caspart, ${ }^{46}$ T. Chwalek, ${ }^{46}$ W. De Boer,,${ }^{46, a}$ A. Dierlamm, ${ }^{46}$ A. Droll, ${ }^{46}$ K. El Morabit, ${ }^{46}$ N. Faltermann, ${ }^{46}$ M. Giffels, ${ }^{46}$ J. o. Gosewisch, ${ }^{46}$ A. Gottmann, ${ }^{46}$ F. Hartmann, ${ }^{46, w}$ C. Heidecker, ${ }^{46}$ U. Husemann, ${ }^{46}$ P. Keicher, ${ }^{46}$ R. Koppenhöfer, ${ }^{46}$ S. Maier, ${ }^{46}$ M. Metzler, ${ }^{46}$ S. Mitra, ${ }^{46}$ Th. Müller, ${ }^{46}$ M. Neukum, ${ }^{46}$ A. Nürnberg, ${ }^{46}$ G. Quast, ${ }^{46}$ K. Rabbertz, ${ }^{46}$ J. Rauser, ${ }^{46}$ D. Savoiu, ${ }^{46}$ M. Schnepf, ${ }^{46}$ D. Seith, ${ }^{46}$ I. Shvetsov, ${ }^{46}$ H. J. Simonis, ${ }^{46}$ R. Ulrich, ${ }^{46}$ J. Van Der Linden, ${ }^{46}$ R. F. Von Cube, ${ }^{46}$ M. Wassmer, ${ }^{46}$ M. Weber, ${ }^{46}$ S. Wieland, ${ }^{46}$ R. Wolf,,${ }^{46}$ S. Wozniewski, ${ }^{46}$ S. Wunsch, ${ }^{46}$ G. Anagnostou, ${ }^{47}$ G. Daskalakis, ${ }^{47}$ T. Geralis, ${ }^{47}$ A. Kyriakis, ${ }^{47}$ D. Loukas, ${ }^{47}$
A. Stakia, ${ }^{47}$ M. Diamantopoulou, ${ }^{48}$ D. Karasavvas, ${ }^{48}$ G. Karathanasis, ${ }^{48}$ P. Kontaxakis, ${ }^{48}$ C. K. Koraka, ${ }^{48}$ A. Manousakis-Katsikakis, ${ }^{48}$ A. Panagiotou, ${ }^{48}$ I. Papavergou, ${ }^{48}$ N. Saoulidou, ${ }^{48}$ K. Theofilatos, ${ }^{48}$ E. Tziaferi, ${ }^{48}$ K. Vellidis, ${ }^{48}$ E. Vourliotis, ${ }^{48}$ G. Bakas, ${ }^{49}$ K. Kousouris, ${ }^{49}$ I. Papakrivopoulos, ${ }^{49}$ G. Tsipolitis, ${ }^{49}$ A. Zacharopoulou, ${ }^{49}$ K. Adamidis, ${ }^{50}$ I. Bestintzanos, ${ }^{50}$ I. Evangelou, ${ }^{50}$ C. Foudas, ${ }^{50}$ P. Gianneios, ${ }^{50}$ P. Katsoulis,,${ }^{50}$ P. Kokkas, ${ }^{50}$ N. Manthos, ${ }^{50}$ I. Papadopoulos, ${ }^{50}$ J. Strologas, ${ }^{50}$ M. Csanad, ${ }^{51}$ K. Farkas, ${ }^{51}$ M. M. A. Gadallah,,${ }^{51, c c}$ S. Lökös, ${ }^{51, \text { dd }}$ P. Major,,${ }^{51}$ K. Mandal, ${ }^{51}$ A. Mehta, ${ }^{51}$ G. Pasztor, ${ }^{51}$ A. J. Rádl,,${ }^{51}$ O. Surányi, ${ }^{51}$ G. I. Veres, ${ }^{51}$ M. Bartók,,${ }^{52, e e}$ G. Bencze, ${ }^{52}$ C. Hajdu, ${ }^{52}$ D. Horvath,,${ }^{52, f f}$ F. Sikler, ${ }^{52}$ V. Veszpremi, ${ }^{52}$ S. Czellar, ${ }^{53}$ J. Karancsi, ${ }^{53, e \mathrm{ee}}$ J. Molnar, ${ }^{53}$ Z. Szillasi, ${ }^{53}$ D. Teyssier, ${ }^{53}$ P. Raics, ${ }^{54}$ Z. L. Trocsanyi, ${ }^{54, g g}$ B. Ujvari, ${ }^{54}$ T. Csorgo, ${ }^{55, h h}$ F. Nemes, ${ }^{55, h h}$ T. Novak, ${ }^{55}$ S. Choudhury, ${ }^{56}$ J. R. Komaragiri, ${ }^{56}$ D. Kumar, ${ }^{56}$ L. Panwar, ${ }^{56}$ P. C. Tiwari, ${ }^{56}$ S. Bahinipati, ${ }^{57, i \mathrm{i}}$ C. Kar, ${ }^{57}$ P. Mal, ${ }^{57}$ T. Mishra, ${ }^{57}$ V. K. Muraleedharan Nair Bindhu,,${ }^{57, \mathrm{ji}}$ A. Nayak, ${ }^{57, \mathrm{jj}}$ P. Saha, ${ }^{57}$ N. Sur,,${ }^{57}$ S. K. Swain, ${ }^{57}$ D. Vats, ${ }^{57 . j \mathrm{j}}$ S. Bansal, ${ }^{58}$ S. B. Beri, ${ }^{58}$ V. Bhatnagar, ${ }^{58}$ G. Chaudhary, ${ }^{58}$ S. Chauhan, ${ }^{58}$ N. Dhingra, ${ }^{58, k k}$ R. Gupta, ${ }^{58}$ A. Kaur, ${ }^{58}$ M. Kaur, ${ }^{58}$ S. Kaur, ${ }^{58}$ P. Kumari, ${ }^{58}$ M. Meena, ${ }^{58}$ K. Sandeep, ${ }^{58}$ J. B. Singh, ${ }^{58}$ A. K. Virdi, ${ }^{58}$ A. Ahmed, ${ }^{59}$ A. Bhardwaj, ${ }^{59}$ B. C. Choudhary, ${ }^{59}$ M. Gola, ${ }^{59}$ S. Keshri, ${ }^{59}$ A. Kumar, ${ }^{59}$ M. Naimuddin, ${ }^{59}$ P. Priyanka, ${ }^{59}$ K. Ranjan, ${ }^{59}$ A. Shah,,${ }^{59}$ M. Bharti, ${ }^{60,11}$ R. Bhattacharya, ${ }^{60}$ S. Bhattacharya, ${ }^{60}$ D. Bhowmik, ${ }^{60}$ S. Dutta, ${ }^{60}$ S. Dutta, ${ }^{60}$ B. Gomber, ${ }^{60, \mathrm{~mm}}$ M. Maity ${ }^{60, \mathrm{nn}}$ P. Palit, ${ }^{60}$ P. K. Rout, ${ }^{60}$ G. Saha, ${ }^{60}$ B. Sahu, ${ }^{60}$ S. Sarkar, ${ }^{60}$ M. Sharan, ${ }^{60}$ B. Singh,,${ }^{60,11}$ S. Thakur, ${ }^{60,11}$ P. K. Behera, ${ }^{61}$ S. C. Behera, ${ }^{61}$ P. Kalbhor, ${ }^{61}$ A. Muhammad, ${ }^{61}$ R. Pradhan, ${ }^{61}$ P. R. Pujahari, ${ }^{61}$
A. Sharma, ${ }^{61}$ A. K. Sikdar, ${ }^{61}$ D. Dutta, ${ }^{62}$ V. Jha, ${ }^{62}$ V. Kumar, ${ }^{62}$ D. K. Mishra,,${ }^{62}$ K. Naskar,,${ }^{62,00}$ P. K. Netrakanti, ${ }^{62}$ L. M. Pant, ${ }^{62}$ P. Shukla, ${ }^{62}$ T. Aziz, ${ }^{63}$ S. Dugad, ${ }^{63}$ M. Kumar, ${ }^{63}$ S. Banerjee, ${ }^{64}$ R. Chudasama,,${ }^{64}$ M. Guchait, ${ }^{64}$ S. Karmakar, ${ }^{64}$ S. Kumar, ${ }^{64}$ G. Majumder, ${ }^{64}$ K. Mazumdar, ${ }^{64}$ S. Mukherjee, ${ }^{64}$ K. Alpana, ${ }^{65}$ S. Dube, ${ }^{65}$ B. Kansal, ${ }^{65}$ A. Laha,,${ }^{65}$ S. Pandey, ${ }^{65}$ A. Rane, ${ }^{65}$ A. Rastogi, ${ }^{65}$ S. Sharma, ${ }^{65}$ H. Bakhshiansohi, ${ }^{66, p p}$ E. Khazaie, ${ }^{66}$ M. Zeinali, ${ }^{66, q 9}$ S. Chenarani, ${ }^{67, r r}$
S. M. Etesami,,${ }^{67}$ M. Khakzad, ${ }^{67}$ M. Mohammadi Najafabadi, ${ }^{67}$ M. Grunewald, ${ }^{68}$ M. Abbrescia, ${ }^{69,69 b}$ R. Aly, ${ }^{69 a, 69 b, s s}$ C. Aruta ${ }^{69 a, 69 b}$ A. Colaleo, ${ }^{69 a}$ D. Creanza, ${ }^{69 a, 69 c}$ N. De Filippis, ${ }^{69 a, 69 c}$ M. De Palma, ${ }^{69 a, 69 b}$ A. Di Florio, ${ }^{699,69 b}$
A. Di Pilato, ${ }^{69 a, 69 b}$ W. Elmetenawee,,${ }^{69 a, 69 b}$ L. Fiore, ${ }^{69 a}$ A. Gelmi, ${ }^{69 a, 69 b}$ M. Gul, ${ }^{69 a}$ G. Iaselli, ${ }^{69 a, 69 c}$ M. Ince, ${ }^{69 a, 69 b}$ S. Lezki, ${ }^{69 a, 69 b}$ G. Maggi, ${ }^{69 a, 69 c}$ M. Maggi, ${ }^{69 a}$ I. Margjeka, ${ }^{69 a, 69 b}$ V. Mastrapasqua, ${ }^{69,69 b}$ J. A. Merlin, ${ }^{69 a}$ S. My, ${ }^{69 a, 69 b}$ S. Nuzzo, ${ }^{69 a, 69 b}$ A. Pellecchia, ${ }^{69 a, 69 b}$ A. Pompili, ${ }^{69 a, 69 b}$ G. Pugliese, ${ }^{69 a, 69 \mathrm{c}}$ D. Ramos, ${ }^{69 \mathrm{a}}$ A. Ranieri, ${ }^{69 \mathrm{a}}$ G. Selvaggi, ${ }^{69 a, 69 b}$
L. Silvestris, ${ }^{69 \mathrm{a}}$ F. M. Simone, ${ }^{69 a, 69 b}$ R. Venditti, ${ }^{69 \mathrm{a}}$ P. Verwilligen, ${ }^{69 \mathrm{a}}$ G. Abbiendi, ${ }^{70 \mathrm{a}}$ C. Battilana, ${ }^{70 a, 70 b}$ D. Bonacorsi, ${ }^{70 a, 70 b}$ L. Borgonovi, ${ }^{70 a}$ L. Brigliadori, ${ }^{70 \mathrm{a}}$ R. Campanini, ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$ P. Capiluppi, ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$ A. Castro, ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$ F. R. Cavallo, ${ }^{70 \mathrm{a}}$ M. Cuffiani, ${ }^{70 a, 70 \mathrm{~b}}$ G. M. Dallavalle, ${ }^{70 \mathrm{a}}$ T. Diotalevi,,$^{70 \mathrm{a}, 70 \mathrm{~b}}$ F. Fabbri, ${ }^{7 \mathrm{a}}$ A. Fanfani, ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$ P. Giacomelli, ${ }^{7 \mathrm{a}} \mathrm{L}$ L. Giommi, ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$ C. Grandi, ${ }^{70 \mathrm{a}}$ L. Guiducci, ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$ S. Lo Meo, ${ }^{70 a, t t}$ L. Lunerti, ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$ S. Marcellini, ${ }^{70 \mathrm{a}}$ G. Masetti, ${ }^{7 \mathrm{a}}$ F. L. Navarria, ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$ A. Perrotta, ${ }^{70 \mathrm{a}}$ F. Primavera, ${ }^{70,70 \mathrm{~b}}$ A. M. Rossi, ${ }^{70 a, 70 \mathrm{~b}}$ T. Rovelli, ${ }^{70 a, 70 \mathrm{~b}}$ G. P. Siroli,,${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$ S. Albergo, ${ }^{7 \mathrm{a}, 71 \mathrm{~b}, \text { uu }}$ S. Costa, ${ }^{71 \mathrm{a}, 7 \mathrm{ll}, \text { uu }}$ A. Di Mattia, ${ }^{71 a}$ R. Potenza, ${ }^{7 \mathrm{a}, 71 \mathrm{lb}}$ A. Tricomi, ${ }^{7 \mathrm{la}, 7 \mathrm{llb}, \text { uu }}$ C. Tuve, ${ }^{71 a, 71 b}$ G. Barbagli, ${ }^{72 a}$ A. Cassese, ${ }^{72 \mathrm{a}}$ R. Ceccarelli, ${ }^{72 a, 72 b}$ V. Ciulli, ${ }^{72 a, 72 b}{ }^{72}$ C. Civinini, ${ }^{72 a}$ R. D'Alessandro, ${ }^{72 a, 72 b}$ E. Focardi, ${ }^{72 a, 72 b}$ G. Latino, ${ }^{72 a, 72 b}$ P. Lenzi, ${ }^{72 a, 72 b}$ M. Lizzo, ${ }^{72 a, 72 b}$ M. Meschini, ${ }^{72 a}$ S. Paoletti, ${ }^{72 a}$ R. Seidita, ${ }^{72 a, 72 b}$ G. Sguazzoni, ${ }^{72 a}$ L. Viliani, ${ }^{72 a}$ L. Benussi, ${ }^{73}$ S. Bianco, ${ }^{73}$ D. Piccolo, ${ }^{73}$ M. Bozzo, ${ }^{74 \mathrm{a}, 74 \mathrm{~b}}$ F. Ferro, ${ }^{74 \mathrm{a}}$ R. Mulargia, ${ }^{74 \mathrm{a}, 74 \mathrm{~b}}$ E. Robutti, ${ }^{74 \mathrm{a} a}$ S. Tosi, ${ }^{74 \mathrm{a}, 74 \mathrm{~b}}$ A. Benaglia, ${ }^{75 \mathrm{a}}$ G. Boldrini, ${ }^{75 \mathrm{a}}$ F. Brivio, ${ }^{75 \mathrm{a}, 75 \mathrm{~b}}$ F. Cetorelli, ${ }^{75 a, 75 b}$ F. De Guio, ${ }^{75 a, 75 b}$ M. E. Dinardo, ${ }^{75 a, 75 b}$ P. Dini, ${ }^{75 a}$ S. Gennai, ${ }^{75 a}$ A. Ghezzi, ${ }^{75 a, 75 b}$ P. Govoni, ${ }^{75 a, 75 b}$ L. Guzzi, ${ }^{75 a, 75 b}$ M. T. Lucchini, ${ }^{75 a, 75 b}$ M. Malberti, ${ }^{75 a}$ S. Malvezzi, ${ }^{75 a}$ A. Massironi, ${ }^{75 a}$ D. Menasce, ${ }^{75 a}$ L. Moroni, ${ }^{75 a}$ M. Paganoni, ${ }^{75 a, 75 b}$ D. Pedrini, ${ }^{75 a}$ B. S. Pinolini, ${ }^{75 a}$ S. Ragazzi, ${ }^{75 a, 75 b}$ N. Redaelli, ${ }^{75 a}$ T. Tabarelli de Fatis, ${ }^{75 a, 75 b}$ D. Valsecchi, ${ }^{75 a, 75 b, w}$ D. Zuolo, ${ }^{75 a, 75 b}$ S. Buontempo, ${ }^{76 \mathrm{a}}$ F. Carnevali, ${ }^{76 a, 76 \mathrm{~b}}$ N. Cavallo, ${ }^{76 \mathrm{a}, 76 \mathrm{c}}$ A. De Iorio, ${ }^{76 a, 76 \mathrm{~b}}$ F. Fabozzi, ${ }^{76 a, 76 c}$ A. O. M. Iorio, ${ }^{76 a, 76 b}$ L. Lista, ${ }^{76 a, 76 b}$ S. Meola, ${ }^{76 a, 76 d, w}$ P. Paolucci, ${ }^{76 a, w}$ B. Rossi, ${ }^{76 a}$ C. Sciacca, ${ }^{76 a, 76 b}$ P. Azzi, ${ }^{77 a}$ N. Bacchetta, ${ }^{77 a}$ D. Bisello, ${ }^{77 a, 77 b}$ P. Bortignon, ${ }^{77 a}$ A. Bragagnolo, ${ }^{77 a, 77 b}$ R. Carlin, ${ }^{77 a, 77 b}$ P. Checchia, ${ }^{77 a}$ T. Dorigo, ${ }^{77 \mathrm{a}}$ U. Dosselli, ${ }^{77 \mathrm{a}}$ F. Gasparini, ${ }^{77 \mathrm{a}, 77 \mathrm{~b}}$ U. Gasparini, ${ }^{77 \mathrm{a}, 7 \mathrm{7b}}$ G. Grosso, ${ }^{77 \mathrm{a}}$ S. Y. Hoh, ${ }^{77 \mathrm{a}, 77 \mathrm{~b}}$ L. Layer, ${ }^{77 \mathrm{a}, \mathrm{vv}}$ E. Lusiani, ${ }^{77 \mathrm{a}}$ M. Margoni, ${ }^{77 \mathrm{a}, 77 \mathrm{~b}}$ A. T. Meneguzzo, ${ }^{77 \mathrm{a}, 77 \mathrm{~b}}$ J. Pazzini, ${ }^{77 \mathrm{a}, 77 \mathrm{~b}}$ P. Ronchese, ${ }^{77 \mathrm{a}, 77 \mathrm{~b}}$ R. Rossin, ${ }^{77 \mathrm{a}, 77 \mathrm{~b}}$ F. Simonetto, ${ }^{77 a, 77 b}$ G. Strong, ${ }^{77 \mathrm{a}}$ M. Tosi, ${ }^{\text {, } 7 \mathrm{a} a, 77 \mathrm{~b}}$ H. Yarar, ${ }^{77 \mathrm{a}, 77 \mathrm{~b}}$ M. Zanetti, ${ }^{\text {, }}$, ${ }^{7 \mathrm{a}, 7 \mathrm{~b}}$ P. Zotto, ${ }^{77 a, 77 b}$ A. Zucchetta, ${ }^{77 \mathrm{a}, 77 \mathrm{~b}}$ G. Zumerle,,$^{77 a, 77 b}$ C. Aime ${ }^{6}{ }^{78 \mathrm{a}, 78 \mathrm{~b}}$ A. Braghieri, ${ }^{78 \mathrm{a}}$ S. Calzaferri, ${ }^{78 \mathrm{a}, 78 \mathrm{~b}}$ D. Fiorina, ${ }^{78,78 \mathrm{~b}}$ P. Montagna, ${ }^{78 \mathrm{a}, 78 \mathrm{~b}}$ S. P. Ratti, ${ }^{78 \mathrm{a}, 78 \mathrm{~b}}$ V. Re, ${ }^{78 a}$ C. Riccardi, ${ }^{78 a, 78 b}$ P. Salvini, ${ }^{78 a}$ I. Vai, ${ }^{78 a}$ P. Vitulo, ${ }^{78 a, 78 b}$ P. Asenov, ${ }^{79 a, w w}$ G. M. Bilei, ${ }^{79 a}$ D. Ciangottini, ${ }^{79 a, 79 b}$ L. Fanò, ${ }^{79 a, 79 b}$ P. Lariccia, ${ }^{7 a, 79 b}$ M. Magherini, ${ }^{79,79 b}$ G. Mantovani, ${ }^{79 a, 79 b}$ V. Mariani, ${ }^{79 a, 79 b}$ M. Menichelli, ${ }^{79 a}$ F. Moscatelli, ${ }^{79 a, w w}$ A. Piccinelli, ${ }^{79 a, 79 b}$ M. Presilla, ${ }^{79 a, 79 b}$ A. Rossi, ${ }^{79,79 b}$ A. Santocchia, ${ }^{79 a, 79 b}$ D. Spiga, ${ }^{79 a}$ T. Tedeschi, ${ }^{79 a, 79 b}$ P. Azzurri, ${ }^{80 a}$ G. Bagliesi, ${ }^{80 a}$ V. Bertacchi, ${ }^{80 a, 80 c}$ L. Bianchini, ${ }^{80 a}$ T. Boccali, ${ }^{80 a}$ E. Bossini, ${ }^{80 a, 80 b}$ R. Castaldi, ${ }^{80 a}$ M. A. Ciocci, ${ }^{80 a, 80 \mathrm{~b}}$ V. D'Amante, ${ }^{80 a, 80 \mathrm{~d}}$ R. Dell'Orso, ${ }^{80 \mathrm{a}}$ M. R. Di Domenico, ${ }^{80 a, 80 \mathrm{~d}}$ S. Donato, ${ }^{80 \mathrm{a}}$ A. Giassi, ${ }^{80 \mathrm{a}}$ F. Ligabue, ${ }^{80 a, 80 \mathrm{c}}$ E. Manca, ${ }^{80 \mathrm{a}, 80 \mathrm{c}}$ G. Mandorli, ${ }^{80 a, 80 \mathrm{c}}$ A. Messineo, ${ }^{80 a, 80 \mathrm{~b}}$ F. Palla, ${ }^{80 \mathrm{a}}$ S. Parolia, ${ }^{80 a, 80 \mathrm{~b}}$ G. Ramirez-Sanchez, ${ }^{80 a, 80 c}$ A. Rizzi, ${ }^{80 a, 80 b}$ G. Rolandi, ${ }^{80 a, 80 c}$ S. Roy Chowdhury, ${ }^{80 a, 80 c}$ A. Scribano, ${ }^{80 a}$ N. Shafiei, ${ }^{80 a, 80 b}$ P. Spagnolo, ${ }^{80 a}$ R. Tenchini, ${ }^{80 a}$ G. Tonelli, ${ }^{80 a, 80 b}$ N. Turini, ${ }^{80 a, 80 d}$ A. Venturi ${ }^{80 a}$ P. G. Verdini, ${ }^{80 a}$ P. Barria, ${ }^{81 a}$ M. Campana, ${ }^{81 a, 81 \mathrm{~b}}$ F. Cavallari, ${ }^{81 \mathrm{a}}$ D. Del Re, ${ }^{81 \mathrm{a}, 81 \mathrm{~b}}$ E. Di Marco, ${ }^{81 \mathrm{a}}$ M. Diemoz, ${ }^{81 \mathrm{a}}$ E. Longo, ${ }^{81 a, 81 \mathrm{~b}}$ P. Meridiani, ${ }^{81 a}$ G. Organtini,,$^{81 a, 81 b}$ F. Pandolfi, ${ }^{81 a}$ R. Paramatti, ${ }^{81 a, 81 b}$ C. Quaranta, ${ }^{81 a, 81 b}$ S. Rahatlou, ${ }^{81 a, 81 b}$ C. Rovelli, ${ }^{81 a}$ F. Santanastasio, ${ }^{81 a, 81 b}$ L. Soffi, ${ }^{81 \mathrm{a}}$ R. Tramontano, ${ }^{81 a, 81 b}$ N. Amapane, ${ }^{82 a, 82 b}$ R. Arcidiacono, ${ }^{82 a, 82 c}$ S. Argiro, ${ }^{82 a, 82 b}$ M. Arneodo,,$^{82 a, 82 c}$ N. Bartosik, ${ }^{82 a}$ R. Bellan, ${ }^{82 a, 82 b}$ A. Bellora, ${ }^{82 a, 82 b}$ J. Berenguer Antequera, ${ }^{82,82 b}{ }^{82}$ C. Biino, ${ }^{82 a}$ N. Cartiglia, ${ }^{82 a}$ S. Cometti, ${ }^{82 a}$ M. Costa,,${ }^{82 a, 82 b}$ R. Covarelli, ${ }^{82 a, 82 b}$ N. Demaria, ${ }^{82 a}$ B. Kiani, ${ }^{82 a, 82 b}$ F. Legger, ${ }^{82 a}$ C. Mariotti, ${ }^{82 a}$ S. Maselli, ${ }^{82 a}$ E. Migliore,,${ }^{82 a, 82 b}$ E. Monteil,,${ }^{82 a, 82 b}$ M. Monteno, ${ }^{82 a}$ M. M. Obertino, ${ }^{82 a, 82 b}$ G. Ortona, ${ }^{82 a}$ L. Pacher, ${ }^{82 a, 82 b}$ N. Pastrone,,$^{82 a}$ M. Pelliccioni, ${ }^{82 a}$ G. L. Pinna Angioni, ${ }^{82 a, 82 b}$ M. Ruspa, ${ }^{82 a, 82 c}$ K. Shchelina, ${ }^{82 a}$ F. Siviero, ${ }^{82 a, 82 b}$ V. Sola, ${ }^{82 a}$ A. Solano, ${ }^{82 a, 82 b}$ D. Soldi, ${ }^{82 a, 82 b}$ A. Staiano, ${ }^{82 a}$ M. Tornago, ${ }^{82 a, 82 b}$ D. Trocino, ${ }^{82 a}$ A. Vagnerini,,${ }^{82 a, 82 b}$ S. Belforte, ${ }^{83 a}$ V. Candelise, ${ }^{83 a, 83 b}$ M. Casarsa, ${ }^{83 a}$ F. Cossutti, ${ }^{83 a}$ A. Da Rold, ${ }^{83 a, 83 b}$ G. Della Ricca, ${ }^{83 a, 83 b}$ G. Sorrentino, ${ }^{83 a, 83 b}$ F. Vazzoler, ${ }^{83 a, 83 b}$ S. Dogra, ${ }^{84}$ C. Huh, ${ }^{84}$ B. Kim, ${ }^{84}$ D. H. Kim, ${ }^{84}$ G. N. Kim, ${ }^{84}$ J. Kim, ${ }^{84}$ J. Lee, ${ }^{84}$ S. W. Lee, ${ }^{84}$ C. S. Moon, ${ }^{84}$ Y. D. Oh, ${ }^{84}$ S. I. Pak, ${ }^{84}$ B. C. Radburn-Smith, ${ }^{84}$ S. Sekmen, ${ }^{84}$ Y. C. Yang, ${ }^{84}$ H. Kim, ${ }^{85}$ D. H. Moon, ${ }^{85}$ B. Francois, ${ }^{86}$ T. J. Kim, ${ }^{86}$ J. Park, ${ }^{86}$ S. Cho, ${ }^{87}$ S. Choi, ${ }^{87}$ Y. Go, ${ }^{87}$ B. Hong, ${ }^{87}$ K. Lee, ${ }^{87}$ K. S. Lee,,${ }^{87}$ J. Lim, ${ }^{87}$ J. Park, ${ }^{87}$ S. K. Park, ${ }^{87}$ J. Yoo, ${ }^{87}$ J. Goh, ${ }^{88}$ A. Gurtu, ${ }^{88}$ H. S. Kim, ${ }^{89}$ Y. Kim, ${ }^{89}$ J. Almond, ${ }^{90}$ J. H. Bhyun, ${ }^{90}$ J. Choi, ${ }^{90}$ S. Jeon, ${ }^{90}$ J. Kim, ${ }^{90}$ J. S. Kim, ${ }^{90}$ S. Ko, ${ }^{90}$ H. Kwon, ${ }^{90}$ H. Lee, ${ }^{90}$ S. Lee, ${ }^{90}$ B. H. Oh,,${ }^{90}$ M. Oh,${ }^{90}$ S. B. Oh, ${ }^{90}$ H. Seo, ${ }^{90}$ U. K. Yang,${ }^{90}$ I. Yoon,,${ }^{90}$ W. Jang,${ }^{91}$ D. Y. Kang, ${ }^{91}$ Y. Kang, ${ }^{91}$ S. Kim, ${ }^{91}$ B. Ko, ${ }^{91}$ J. S. H. Lee, ${ }^{91}$ Y. Lee,,${ }^{91}$ I. C. Park, ${ }^{91}$ Y. Roh, ${ }^{91}$ M. S. Ryu, ${ }^{91}$ D. Song, ${ }^{91}$ I. J. Watson, ${ }^{91}$ S. Yang, ${ }^{91}$ S. Ha, ${ }^{92}$ H. D. Yoo, ${ }^{92}$ M. Choi, ${ }^{93}$ H. Lee, ${ }^{93}$ Y. Lee, ${ }^{93}$ I. Yu, ${ }^{93}$ T. Beyrouthy, ${ }^{94}$ Y. Maghrbi, ${ }^{94}$ T. Torims, ${ }^{95}$ V. Veckalns, ${ }^{95, x x}$ M. Ambrozas, ${ }^{96}$ A. Carvalho Antunes De Oliveira, ${ }^{96}$ A. Juodagalvis, ${ }^{96}$ A. Rinkevicius, ${ }^{96}$ G. Tamulaitis, ${ }^{96}$ N. Bin Norjoharuddeen, ${ }^{97}$ W. A. T. Wan Abdullah, ${ }^{97}$ M. N. Yusli, ${ }^{97}$ Z. Zolkapli, ${ }^{97}$ J. F. Benitez, ${ }^{98}$ A. Castaneda Hernandez, ${ }^{98}$ M. León Coello, ${ }^{98}$ J. A. Murillo Quijada,,${ }^{98}$ A. Sehrawat, ${ }^{98}$ L. Valencia Palomo, ${ }^{98}$ G. Ayala, ${ }^{99}$ H. Castilla-Valdez, ${ }^{99}$ E. De La Cruz-Burelo, ${ }^{99}$ I. Heredia-De La Cruz, ${ }^{99, y y}$ R. Lopez-Fernandez, ${ }^{99}$ C. A. Mondragon Herrera, ${ }^{99}$ D. A. Perez Navarro, ${ }^{99}$ A. Sanchez-Hernandez, ${ }^{99}$ S. Carrillo Moreno, ${ }^{100}$ C. Oropeza Barrera, ${ }^{100}$ F. Vazquez Valencia, ${ }^{100}$ I. Pedraza, ${ }^{101}$ H. A. Salazar Ibarguen, ${ }^{101}$ C. Uribe Estrada, ${ }^{101}$ J. Mijuskovic, ${ }^{102, z z}$ N. Raicevic,,${ }^{102}$
D. Krofcheck,,103 P. H. Butler, ${ }^{104}$ A. Ahmad, ${ }^{105}$ M. I. Asghar, ${ }^{105}$ A. Awais, ${ }^{105}$ M. I. M. Awan, ${ }^{105}$ H. R. Hoorani, ${ }^{105}$ W. A. Khan, ${ }^{105}$ M. A. Shah, ${ }^{105}$ M. Shoaib, ${ }^{105}$ M. Waqas, ${ }^{105}$ V. Avati, ${ }^{106}$ L. Grzanka, ${ }^{106}$ M. Malawski, ${ }^{106}$ H. Bialkowska, ${ }^{107}$ M. Bluj, ${ }^{107}$ B. Boimska, ${ }^{107}$ M. Górski, ${ }^{107}$ M. Kazana, ${ }^{107}$ M. Szleper, ${ }^{107}$ P. Zalewski, ${ }^{107}$ K. Bunkowski, ${ }^{108}$ K. Doroba, ${ }^{108}$ A. Kalinowski, ${ }^{108}$ M. Konecki, ${ }^{108}$ J. Krolikowski, ${ }^{108}$ M. Araujo, ${ }^{109}$ P. Bargassa, ${ }^{109}$ D. Bastos, ${ }^{109}$ A. Boletti, ${ }^{109}$ P. Faccioli, ${ }^{109}$ M. Gallinaro, ${ }^{109}$ J. Hollar, ${ }^{109}$ N. Leonardo, ${ }^{109}$ T. Niknejad, ${ }^{109}$ M. Pisano, ${ }^{109}$ J. Seixas, ${ }^{109}$ O. Toldaiev, ${ }^{109}$ J. Varela, ${ }^{109}$ S. Afanasiev, ${ }^{110}$ D. Budkouski, ${ }^{110}$ I. Golutvin, ${ }^{110}$ I. Gorbunov, ${ }^{110}$ V. Karjavine,,${ }^{110}$ V. Korenkov, ${ }^{110}$ A. Lanev,,${ }^{110}$ A. Malakhov, ${ }^{110}$ V. Matveev,,${ }^{110, a a a, b b b}$ V. Palichik, ${ }^{110}$ V. Perelygin,,${ }^{110}$ M. Savina, ${ }^{110}$ D. Seitova, ${ }^{110}$ V. Shalaev, ${ }^{110}$ S. Shmatov, ${ }^{110}$ S. Shulha, ${ }^{110}$ V. Smirnov, ${ }^{110}$ O. Teryaev, ${ }^{110}$ N. Voytishin, ${ }^{110}$ B. S. Yuldashev, ${ }^{110, c c c}$ A. Zarubin, ${ }^{110}$
 I. Smirnov, ${ }^{111}$ D. Sosnov, ${ }^{111}$ V. Sulimov, ${ }^{111}$ L. Uvarov, ${ }^{111}$ S. Volkov, ${ }^{111}$ A. Vorobyevv ${ }^{111}$ Yu. Andreev, ${ }^{112}$ A. Dermenev,,${ }^{112}$ S. Gninenko, ${ }^{112}$ N. Golubev, ${ }^{112}$ A. Karneyeu, ${ }^{112}$ D. Kirpichnikov, ${ }^{112}$ M. Kirsanov, ${ }^{112}$ N. Krasnikov,,${ }^{112}$ A. Pashenkov, ${ }^{112}$ G. Pivovarov, ${ }^{112}$ A. Toropin, ${ }^{112}$ V. Epshteyn, ${ }^{113}$ V. Gavrilov, ${ }^{113}$ N. Lychkovskaya, ${ }^{113}$ A. Nikitenko, ${ }^{113, f f f}$ V. Popov, ${ }^{113}$ A. Stepennov, ${ }^{113}$ M. Toms, ${ }^{113}$ E. Vlasov, ${ }^{113}$ A. Zhokin, ${ }^{113}$ T. Aushev, ${ }^{114}$ M. Chadeeva, ${ }^{115, g g 8}$ A. Oskin, ${ }^{115}$ P. Parygin,,${ }^{115}$ S. Polikarpov, ${ }^{115, \text { hhh }}$ E. Popova, ${ }^{115}$ D. Selivanova, ${ }^{115}$ V. Andreev, ${ }^{116}$ M. Azarkin, ${ }^{116}$ I. Dremin, ${ }^{116}$ M. Kirakosyan, ${ }^{116}$ A. Terkulov, ${ }^{116}$ A. Belyaev, ${ }^{117}$ E. Boos, ${ }^{117}$ V. Bunichev, ${ }^{117}$ M. Dubinin,,${ }^{117, i i}$ L. Dudko, ${ }^{117}$ A. Ershov, ${ }^{117}$ A. Gribushin,,${ }^{117}$ V. Klyukhin, ${ }^{117}$ O. Kodolova,,${ }^{117}$ I. Lokhtin, ${ }^{117}$ S. Obraztsov, ${ }^{117}$ S. Petrushanko, ${ }^{117}$ V. Savrin, ${ }^{117}$ V. Blinov, ${ }^{118, j \mathrm{jj}}$ T. Dimova, ${ }^{18, i j i}$ L. Kardapoltsev, ${ }^{118, \mathrm{jij}}$ A. Kozyrev, ${ }^{18, \mathrm{ijj}}$ I. Ovtin, ${ }^{118, \mathrm{ijj}}$ Y. Skovpen, ${ }^{18, \mathrm{ijj}}$ I. Azhgirey, ${ }^{119}$ I. Bayshev, ${ }^{119}$ D. Elumakhov, ${ }^{119}$ V. Kachanov, ${ }^{119}$ D. Konstantinov, ${ }^{119}$ P. Mandrik, ${ }^{119}$ V. Petrov, ${ }^{119}$ R. Ryutin, ${ }^{119}$ S. Slabospitskii, ${ }^{119}$ A. Sobol, ${ }^{119}$ S. Troshin, ${ }^{119}$ N. Tyurin, ${ }^{119}$ A. Uzunian, ${ }^{119}$ A. Volkov, ${ }^{119}$ A. Babaev, ${ }^{120}$ V. Okhotnikov, ${ }^{120}$ V. Borshch, ${ }^{121}$ V. Ivanchenko, ${ }^{121}$ E. Tcherniaev, ${ }^{121}$ P. Adzic, ${ }^{122, k k k}$ M. Dordevic, ${ }^{122}$ P. Milenovic, ${ }^{122}$ J. Milosevic, ${ }^{122}$ M. Aguilar-Benitez, ${ }^{123}$ J. Alcaraz Maestre, ${ }^{123}$ A. Álvarez Fernández, ${ }^{123}$ I. Bachiller, ${ }^{123}$ M. Barrio Luna, ${ }^{123}$ Cristina F. Bedoya, ${ }^{123}$ C. A. Carrillo Montoya, ${ }^{123}$ M. Cepeda, ${ }^{123}$ M. Cerrada, ${ }^{123}$ N. Colino, ${ }^{123}$ B. De La Cruz, ${ }^{123}$ A. Delgado Peris, ${ }^{123}$ J. P. Fernández Ramos, ${ }^{123}$ J. Flix, ${ }^{123}$ M. C. Fouz, ${ }^{123}$ O. Gonzalez Lopez, ${ }^{123}$ S. Goy Lopez, ${ }^{123}$ J. M. Hernandez, ${ }^{123}$ M. I. Josa, ${ }^{123}$ J. León Holgado, ${ }^{123}$ D. Moran, ${ }^{123}$ Á. Navarro Tobar, ${ }^{123}$ C. Perez Dengra, ${ }^{123}$ A. Pérez-Calero Yzquierdo, ${ }^{123}$ J. Puerta Pelayo, ${ }^{123}$ I. Redondo, ${ }^{123}$ L. Romero, ${ }^{123}$ S. Sánchez Navas, ${ }^{123}$ L. Urda Gómez, ${ }^{123}$ C. Willmott, ${ }^{123}$ J. F. de Trocóniz, ${ }^{124}$ R. Reyes-Almanza, ${ }^{124}$ B. Alvarez Gonzalez, ${ }^{125}$ J. Cuevas, ${ }^{125}$ C. Erice, ${ }^{125}$ J. Fernandez Menendez, ${ }^{125}$ S. Folgueras, ${ }^{125}$ I. Gonzalez Caballero, ${ }^{125}$ J. R. González Fernández, ${ }^{125}$ E. Palencia Cortezon, ${ }^{125}$ C. Ramón Álvarez, ${ }^{125}$ V. Rodríguez Bouza, ${ }^{125}$ A. Soto Rodríguez, ${ }^{125}$ A. Trapote, ${ }^{125}$ N. Trevisani, ${ }^{125}$ C. Vico Villalba, ${ }^{125}$ J. A. Brochero Cifuentes, ${ }^{126}$ I. J. Cabrillo, ${ }^{126}$ A. Calderon, ${ }^{126}$ J. Duarte Campderros, ${ }^{126}$ M. Fernandez, ${ }^{126}$
C. Fernandez Madrazo, ${ }^{126}$ P. J. Fernández Manteca, ${ }^{126}$ A. García Alonso, ${ }^{126}$ G. Gomez, ${ }^{126}$ C. Martinez Rivero, ${ }^{126}$ P. Martinez Ruiz del Arbol, ${ }^{126}$ F. Matorras, ${ }^{126}$ Pablo Matorras-Cuevas, ${ }^{126}$ J. Piedra Gomez, ${ }^{126}$ C. Prieels, ${ }^{126}$ T. Rodrigo, ${ }^{126}$ A. Ruiz-Jimeno, ${ }^{126}$ L. Scodellaro, ${ }^{126}$ I. Vila, ${ }^{126}$ J. M. Vizan Garcia, ${ }^{126}$ M. K. Jayananda, ${ }^{127}$ B. Kailasapathy, ${ }^{127,111}$ D. U. J. Sonnadara, ${ }^{127}$ D. D. C. Wickramarathna, ${ }^{127}$ W. G. D. Dharmaratna, ${ }^{128}$ K. Liyanage, ${ }^{128}$ N. Perera, ${ }^{128}$ N. Wickramage, ${ }^{128}$ T. K. Aarrestad, ${ }^{129}$ D. Abbaneo, ${ }^{129}$ J. Alimena, ${ }^{129}$ E. Auffray, ${ }^{129}$ G. Auzinger, ${ }^{129}$ J. Baechler, ${ }^{129}$ P. Baillon, ${ }^{129, a}$ D. Barney, ${ }^{129}$ J. Bendavid, ${ }^{129}$ M. Bianco, ${ }^{129}$ A. Bocci, ${ }^{129}$ T. Camporesi, ${ }^{129}$ M. Capeans Garrido, ${ }^{129}$ G. Cerminara, ${ }^{129}$ N. Chernyavskaya, ${ }^{129}$ S. S. Chhibra, ${ }^{129}$ M. Cipriani, ${ }^{129}$ L. Cristella, ${ }^{129}$ D. d'Enterria, ${ }^{129}$ A. Dabrowski, ${ }^{129}$ A. David, ${ }^{129}$ A. De Roeck, ${ }^{129}$ M. M. Defranchis, ${ }^{129}$ M. Deile, ${ }^{129}$ M. Dobson, ${ }^{129}$ M. Dünser, ${ }^{129}$ N. Dupont, ${ }^{129}$ A. Elliott-Peisert, ${ }^{129}$ N. Emriskova, ${ }^{129}$ F. Fallavollita, ${ }^{129, \text { mmm }}$ D. Fasanella, ${ }^{129}$ A. Florent, ${ }^{129}$ G. Franzoni, ${ }^{129}$ W. Funk, ${ }^{129}$ S. Giani, ${ }^{129}$ D. Gigi, ${ }^{129}$ K. Gill, ${ }^{129}$ F. Glege, ${ }^{129}$ L. Gouskos, ${ }^{129}$ M. Haranko, ${ }^{129}$ J. Hegeman, ${ }^{129}$ V. Innocente, ${ }^{129}$ T. James, ${ }^{129}$ P. Janot, ${ }^{129}$ J. Kaspar, ${ }^{129}$ J. Kieseler, ${ }^{129}$ M. Komm, ${ }^{129}$ N. Kratochwil, ${ }^{129}$ C. Lange, ${ }^{129}$ S. Laurila, ${ }^{129}$ P. Lecoq, ${ }^{129}$ A. Lintuluoto, ${ }^{129}$ K. Long, ${ }^{129}$ C. Lourenço, ${ }^{129}$ B. Maier, ${ }^{129}$ L. Malgeri, ${ }^{129}$ S. Mallios, ${ }^{129}$ M. Mannelli, ${ }^{129}$ A. C. Marini, ${ }^{129}$ F. Meijers, ${ }^{129}$ S. Mersi, ${ }^{129}$ E. Meschi, ${ }^{129}$ F. Moortgat, ${ }^{129}$ M. Mulders, ${ }^{129}$ S. Orfanelli, ${ }^{129}$ L. Orsini, ${ }^{129}$ F. Pantaleo, ${ }^{129}$ L. Pape, ${ }^{129}$ E. Perez, ${ }^{129}$ M. Peruzzi, ${ }^{129}$ A. Petrilli, ${ }^{129}$ G. Petrucciani, ${ }^{129}$ A. Pfeiffer, ${ }^{129}$ M. Pierini, ${ }^{129}$ D. Piparo, ${ }^{129}$ M. Pitt,,${ }^{129}$ H. Qu, ${ }^{129}$ T. Quast, ${ }^{129}$ D. Rabady, ${ }^{129}$ A. Racz, ${ }^{129}$ G. Reales Gutiérrez, ${ }^{129}$ M. Rieger, ${ }^{129}$ M. Rovere, ${ }^{129}$ H. Sakulin, ${ }^{129}$ J. Salfeld-Nebgen, ${ }^{129}$ S. Scarfi, ${ }^{129}$ C. Schäfer, ${ }^{129}$ C. Schwick, ${ }^{129}$ M. Selvaggi, ${ }^{129}$ A. Sharma, ${ }^{129}$ P. Silva, ${ }^{129}$ W. Snoeys, ${ }^{129}$ P. Sphicas, ${ }^{129, n n n}$ S. Summers, ${ }^{129}$ K. Tatar, ${ }^{129}$ V. R. Tavolaro, ${ }^{129}$ D. Treille, ${ }^{129}$ P. Tropea, ${ }^{129}$ A. Tsirou, ${ }^{129}$ G. P. Van Onsem, ${ }^{129}$ J. Wanczyk, ${ }^{129,0 o o}$ K. A. Wozniak, ${ }^{129}$ W. D. Zeuner, ${ }^{129}$ L. Caminada, ${ }^{130, p p p}$ A. Ebrahimi, ${ }^{130}$ W. Erdmann, ${ }^{130}$ R. Horisberger, ${ }^{130}$ Q. Ingram, ${ }^{130}$ H. C. Kaestli, ${ }^{130}$ D. Kotlinski, ${ }^{130}$ U. Langenegger, ${ }^{130}$ M. Missiroli, ${ }^{130, p p p}$ L. Noehte, ${ }^{130, p p p}$ T. Rohe, ${ }^{130}$ K. Androsoo, ${ }^{131,000}$ M. Backhaus, ${ }^{131}$ P. Berger, ${ }^{131}$ A. Calandri, ${ }^{131}$ A. De Cosa, ${ }^{131}$ G. Dissertori, ${ }^{131}$ M. Dittmar, ${ }^{131}$
M. Donegà ${ }^{131}$ C. Dorfer, ${ }^{131}$ F. Eble, ${ }^{131}$ K. Gedia, ${ }^{131}$ F. Glessgen, ${ }^{131}$ T. A. Gómez Espinosa, ${ }^{131}$ C. Grab, ${ }^{131}$ D. Hits, ${ }^{131}$ W. Lustermann,,131 A.-M. Lyon, ${ }^{131}$ R. A. Manzoni, ${ }^{131}$ L. Marchese, ${ }^{131}$ C. Martin Perez, ${ }^{131}$ M. T. Meinhard, ${ }^{131}$ F. Nessi-Tedaldi, ${ }^{131}$ J. Niedziela, ${ }^{131}$ F. Pauss, ${ }^{131}$ V. Perovic, ${ }^{131}$ S. Pigazzini, ${ }^{131}$ M. G. Ratti, ${ }^{131}$ M. Reichmann, ${ }^{131}$ C. Reissel, ${ }^{131}$ T. Reitenspiess, ${ }^{131}$ B. Ristic, ${ }^{131}$ D. Ruini, ${ }^{131}$ D. A. Sanz Becerra, ${ }^{131}$ V. Stampf, ${ }^{131}$ J. Steggemann, ${ }^{131,0 o o}$ R. Wallny, ${ }^{131}$ D. H. Zhu, ${ }^{131}$ C. Amsler,,${ }^{132,999}$ P. Bärtschi, ${ }^{132}$ C. Botta, ${ }^{132}$ D. Brzhechko, ${ }^{132}$ M. F. Canelli, ${ }^{132}$ K. Cormier, ${ }^{132}$ A. De Wit, ${ }^{132}$ R. Del Burgo, ${ }^{132}$ J. K. Heikkila, ${ }^{132}$ M. Huwiler, ${ }^{132}$ W. Jin, ${ }^{132}$ A. Jofrehei, ${ }^{132}$ B. Kilminster, ${ }^{132}$ S. Leontsinis, ${ }^{132}$ S. P. Liechti, ${ }^{132}$ A. Macchiolo, ${ }^{132}$ P. Meiring, ${ }^{132}$ V. M. Mikuni, ${ }^{132}$ U. Molinatti, ${ }^{132}$ I. Neutelings, ${ }^{132}$ A. Reimers, ${ }^{132}$ P. Robmann, ${ }^{132}$ S. Sanchez Cruz, ${ }^{132}$ K. Schweiger, ${ }^{132}$ Y. Takahashi, ${ }^{132}$ C. Adloff, ${ }^{133, \text { rrm }}$ C. M. Kuo, ${ }^{133}$ W. Lin, ${ }^{133}$ A. Roy, ${ }^{133}$ T. Sarkar, ${ }^{133, n n}$ S. S. Yu, ${ }^{133}$ L. Ceard, ${ }^{134}$ Y. Chao, ${ }^{134}$ K. F. Chen, ${ }^{134}$ P. H. Chen,${ }^{134}$ W.-S. Hou, ${ }^{134}$ Y. y. Li, ${ }^{134}$ R.-S. Lu, ${ }^{134}$ E. Paganis, ${ }^{134}$ A. Psallidas, ${ }^{134}$ A. Steen, ${ }^{134}$ H. y. Wu, ${ }^{134}$ E. Yazgan, ${ }^{134}$ P. r. Yu, ${ }^{134}$ B. Asavapibhop, ${ }^{135}$ C. Asawatangtrakuldee, ${ }^{135}$ N. Srimanobhas, ${ }^{135}$ F. Boran, ${ }^{136}$ S. Damarseckin, ${ }^{136, \text { sss }}$ Z. S. Demiroglu, ${ }^{136}$ F. Dolek,,${ }^{136}$ I. Dumanoglu, ${ }^{136, \text { ttt }}$ E. Eskut, ${ }^{136}$ Y. Guler, ${ }^{136, u u u}$ E. Gurpinar Guler, ${ }^{136, \text { uuu }}$ C. Isik, ${ }^{136}$ O. Kara, ${ }^{136}$ A. Kayis Topaksu, ${ }^{136}$ U. Kiminsu, ${ }^{136}$ G. Onengut, ${ }^{136}$ K. Ozdemir,,${ }^{136, \text { vvv }}$ A. Polatoz, ${ }^{136}$ A. E. Simsek, ${ }^{136}$ B. Tali, ${ }^{136, w w w}$ U. G. Tok, ${ }^{136}$ S. Turkcapar, ${ }^{136}$ I. S. Zorbakir, ${ }^{136}$ C. Zorbilmez, ${ }^{136}$ B. Isildak, ${ }^{137, \text { xxx }}$ G. Karapinar, ${ }^{1377, \text { yyy }}$ K. Ocalan, ${ }^{137, \text { zzz }}$ M. Yalvac, ${ }^{137, \text { aaaa }}$ B. Akgun, ${ }^{138}$ I. O. Atakisi,,138 E. Gülmez, ${ }^{138}$ M. Kaya, ${ }^{138, b b b b}$ O. Kaya, ${ }^{138, c c c c}{ }^{13}$ Ö. Özçelik, ${ }^{138}$ S. Tekten, ${ }^{138, \text { dddd }}$ E. A. Yetkin, ${ }^{138, \text { eeee }}$ A. Cakir, ${ }^{139}$ K. Cankocak, ${ }^{139, t t t}$ Y. Komurcu, ${ }^{139}$ S. Sen, ${ }^{139, \text { ffff }}$ S. Cerci, ${ }^{140, \text { www }}$ I. Hos, ${ }^{140, g g g g}$ B. Kaynak, ${ }^{140}$ S. Ozkorucuklu, ${ }^{140}$ D. Sunar Cerci, ${ }^{140, w w w}$ B. Grynyov, ${ }^{141}$ L. Levchuk, ${ }^{142}$ D. Anthony, ${ }^{143}$ E. Bhal, ${ }^{143}$ S. Bologna, ${ }^{143}$ J. J. Brooke, ${ }^{143}$ A. Bundock, ${ }^{143}$ E. Clement, ${ }^{143}$ D. Cussans, ${ }^{143}$ H. Flacher, ${ }^{143}$ J. Goldstein, ${ }^{143}$ G. P. Heath, ${ }^{143}$ H. F. Heath, ${ }^{143}$ L. Kreczko, ${ }^{143}$ B. Krikler, ${ }^{143}$ S. Paramesvaran, ${ }^{143}$ S. Seif El Nasr-Storey, ${ }^{143}$ V. J. Smith, ${ }^{143}$ N. Stylianou, ${ }^{143, \text { hhhh }}$ K. Walkingshaw Pass, ${ }^{143}$ R. White, ${ }^{143}$ K. W. Bell, ${ }^{144}$ A. Belyaev, ${ }^{144, \text { iiii }}$ C. Brew, ${ }^{144}$ R. M. Brown, ${ }^{144}$ D. J. A. Cockerill,,${ }^{144}$ C. Cooke, ${ }^{144}$ K. V. Ellis, ${ }^{144}$ K. Harder, ${ }^{144}$ S. Harper, ${ }^{144}$ M. 1. Holmberg,,${ }^{144, j i j j}$ J. Linacre, ${ }^{144}$ K. Manolopoulos, ${ }^{144}$ D. M. Newbold, ${ }^{144}$ E. Olaiya, ${ }^{144}$ D. Petyt, ${ }^{144}$ T. Reis, ${ }^{144}$ T. Schuh, ${ }^{144}$ C. H. Shepherd-Themistocleous, ${ }^{144}$ I. R. Tomalin, ${ }^{144}$ T. Williams, ${ }^{144}$ R. Bainbridge, ${ }^{145}$ P. Bloch, ${ }^{145}$ S. Bonomally, ${ }^{145}$ J. Borg, ${ }^{145}$ S. Breeze, ${ }^{145}$ O. Buchmuller, ${ }^{145}$ V. Cepaitis, ${ }^{145}$ G. S. Chahal, ${ }^{145, k k k k}$ D. Colling, ${ }^{145}$ P. Dauncey, ${ }^{145}$ G. Davies, ${ }^{145}$ M. Della Negra, ${ }^{145}$ S. Fayer, ${ }^{145}$ G. Fedi, ${ }^{145}$ G. Hall, ${ }^{145}$ M. H. Hassanshahi, ${ }^{145}$ G. Iles, ${ }^{145}$ J. Langford, ${ }^{145}$ L. Lyons, ${ }^{145}$ A.-M. Magnan, ${ }^{145}$ S. Malik, ${ }^{145}$ A. Martelli, ${ }^{145}$ D. G. Monk, ${ }^{145}$ J. Nash,,${ }^{145,111}$ M. Pesaresi, ${ }^{145}$ D. M. Raymond, ${ }^{145}$ A. Richards, ${ }^{145}$ A. Rose, ${ }^{145}$ E. Scott, ${ }^{145}$ C. Seez, ${ }^{145}$ A. Shtipliyski, ${ }^{145}$ A. Tapper, ${ }^{145}$ K. Uchida, ${ }^{145}$ T. Virdee,,${ }^{145, w}$ M. Vojinovic, ${ }^{145}$ N. Wardle, ${ }^{145}$ S. N. Webb, ${ }^{145}$ D. Winterbottom, ${ }^{145}$ K. Coldham, ${ }^{146}$ J. E. Cole,,${ }^{146}$ A. Khan, ${ }^{146}$ P. Kyberd, ${ }^{146}$ I. D. Reid, ${ }^{146}$ L. Teodorescu, ${ }^{146}$ S. Zahid,,${ }^{146}$ S. Abdullin, ${ }^{147}$ A. Brinkerhoff, ${ }^{147}$ B. Caraway, ${ }^{147}$ J. Dittmann, ${ }^{147}$ K. Hatakeyama, ${ }^{147}$ A. R. Kanuganti, ${ }^{147}$ B. McMaster, ${ }^{147}$ N. Pastika, ${ }^{147}$ M. Saunders, ${ }^{147}$ S. Sawant, ${ }^{147}$ C. Sutantawibul, ${ }^{147}$ J. Wilson, ${ }^{147}$ R. Bartek, ${ }^{148}$ A. Dominguez,,${ }^{148}$ R. Uniyal, ${ }^{148}$ A. M. Vargas Hernandez, ${ }^{148}$ A. Buccilli, ${ }^{149}$ S. I. Cooper, ${ }^{149}$ D. Di Croce, ${ }^{149}$ S. V. Gleyzer, ${ }^{149}$ C. Henderson, ${ }^{149}$ C. U. Perez, ${ }^{149}$ P. Rumerio, ${ }^{149, m m m m}$ C. West, ${ }^{149}$ A. Akpinar, ${ }^{150}$ A. Albert, ${ }^{150}$ D. Arcaro, ${ }^{150}$ C. Cosby ${ }^{150}$ Z. Demiragli, ${ }^{150}$ E. Fontanesi, ${ }^{150}$ D. Gastler, ${ }^{150}$ S. May, ${ }^{150}$ J. Rohlf, ${ }^{150}$ K. Salyer, ${ }^{150}$ D. Sperka, ${ }^{150}$ D. Spitzbart, ${ }^{150}$ I. Suarez, ${ }^{150}$ A. Tsatsos, ${ }^{150}$ S. Yuan, ${ }^{150}$ D. Zou, ${ }^{150}$ G. Benelli, ${ }^{151}$ B. Burkle, ${ }^{151}$ X. Coubez, ${ }^{151, x}$ D. Cutts, ${ }^{151}$ M. Hadley, ${ }^{151}$ U. Heintz, ${ }^{151}$ J. M. Hogan,,${ }^{151, n n n n}$ T. KWON,,${ }^{151}$ G. Landsberg, ${ }^{151}$ K. T. Lau, ${ }^{151}$ D. Li, ${ }^{151}$ M. Lukasik, ${ }^{151}$ J. Luo, ${ }^{151}$ M. Narain, ${ }^{151}$ N. Pervan, ${ }^{151}$ S. Sagir, ${ }^{151,0000}$ F. Simpson, ${ }^{151}$ E. Usai, ${ }^{151}$ W. Y. Wong, ${ }^{151}$ X. Yan, ${ }^{151}$ D. Yu, ${ }^{151}$ W. Zhang, ${ }^{151}$ J. Bonilla, ${ }^{152}$ C. Brainerd, ${ }^{152}$ R. Breedon, ${ }^{152}$ M. Calderon De La Barca Sanchez, ${ }^{152}$ M. Chertok, ${ }^{152}$ J. Conway, ${ }^{152}$ P. T. Cox, ${ }^{152}$ R. Erbacher, ${ }^{152}$ G. Haza, ${ }^{152}$ F. Jensen,,${ }^{152}$ O. Kukral,,152 R. Lander,,152 M. Mulhearn, ${ }^{152}$ D. Pellett, ${ }^{152}$ B. Regnery, ${ }^{152}$ D. Taylor, ${ }^{152}$ Y. Yao, ${ }^{152}$ F. Zhang, ${ }^{152}$ M. Bachtis, ${ }^{153}$ R. Cousins,,${ }^{153}$ A. Datta, ${ }^{153}$ D. Hamilton, ${ }^{153}$ J. Hauser, ${ }^{153}$ M. Ignatenko, ${ }^{153}$ M. A. Iqbal, ${ }^{153}$ T. Lam, ${ }^{153}$ W. A. Nash, ${ }^{153}$ S. Regnard, ${ }^{153}$ D. Saltzberg, ${ }^{153}$ B. Stone, ${ }^{153}$ V. Valuev, ${ }^{153}$ K. Burt, ${ }^{154}$ Y. Chen, ${ }^{154}$ R. Clare, ${ }^{154}$ J. W. Gary, ${ }^{154}$ M. Gordon, ${ }^{154}$ G. Hanson, ${ }^{154}$ G. Karapostoli,,154 O. R. Long, ${ }^{154}$ N. Manganelli, ${ }^{154}$ M. Olmedo Negrete, ${ }^{154}$ W. Si, ${ }^{154}$ S. Wimpenny, ${ }^{154}$ Y. Zhang, ${ }^{154}$ J. G. Branson, ${ }^{155}$ P. Chang, ${ }^{155}$ S. Cittolin, ${ }^{155}$ S. Cooperstein, ${ }^{155}$ N. Deelen, ${ }^{155}$ D. Diaz, ${ }^{155}$ J. Duarte, ${ }^{155}$ R. Gerosa, ${ }^{155}$ L. Giannini, ${ }^{155}$ D. Gilbert, ${ }^{155}$ J. Guiang, ${ }^{155}$ R. Kansal, ${ }^{155}$ V. Krutelyov, ${ }^{155}$ R. Lee, ${ }^{155}$ J. Letts, ${ }^{155}$ M. Masciovecchio, ${ }^{155}$ M. Pieri, ${ }^{155}$ B. V. Sathia Narayanan, ${ }^{155}$ V. Sharma, ${ }^{155}$ M. Tadel, ${ }^{155}$ A. Vartak, ${ }^{155}$ F. Würthwein, ${ }^{155}$ Y. Xiang, ${ }^{155}$ A. Yagil,,${ }^{155}$ N. Amin, ${ }^{156}$ C. Campagnari, ${ }^{156}$ M. Citron, ${ }^{156}$ A. Dorsett, ${ }^{156}$ V. Dutta, ${ }^{156}$ J. Incandela, ${ }^{156}$ M. Kilpatrick, ${ }^{156}$ J. Kim, ${ }^{156}$ B. Marsh, ${ }^{156}$ H. Mei, ${ }^{156}$ M. Oshiro, ${ }^{156}$ M. Quinnan, ${ }^{156}$ J. Richman, ${ }^{156}$ U. Sarica, ${ }^{156}$ F. Setti, ${ }^{156}$ J. Sheplock, ${ }^{156}$ D. Stuart, ${ }^{156}$ S. Wang, ${ }^{156}$ A. Bornheim, ${ }^{157}$ O. Cerri, ${ }^{157}$ I. Dutta, ${ }^{157}$ J. M. Lawhorn, ${ }^{157}$ N. Lu, ${ }^{157}$ J. Mao,,${ }^{157}$ H. B. Newman, ${ }^{157}$ T. Q. Nguyen, ${ }^{157}$ M. Spiropulu, ${ }^{157}$ J. R. Vlimant, ${ }^{157}$ C. Wang, ${ }^{157}$ S. Xie, ${ }^{157}$ Z. Zhang, ${ }^{157}$ R. Y. Zhu, ${ }^{157}$ J. Alison, ${ }^{158}$ S. An, ${ }^{158}$ M. B. Andrews, ${ }^{158}$ P. Bryant, ${ }^{158}$ T. Ferguson, ${ }^{158}$ A. Harilal, ${ }^{158}$ C. Liu, ${ }^{158}$ T. Mudholkar, ${ }^{158}$
M. Paulini, ${ }^{158}$ A. Sanchez, ${ }^{158}$ W. Terrill,,${ }^{158}$ J. P. Cumalat, ${ }^{159}$ W. T. Ford, ${ }^{159}$ A. Hassani, ${ }^{159}$ E. MacDonald, ${ }^{159}$ R. Patel,,${ }^{159}$ A. Perloff, ${ }^{159}$ C. Savard, ${ }^{159}$ K. Stenson, ${ }^{159}$ K. A. Ulmer, ${ }^{159}$ S. R. Wagner, ${ }^{159}$ J. Alexander, ${ }^{160}$ S. Bright-thonney, ${ }^{160}$ Y. Cheng, ${ }^{160}$ D. J. Cranshaw, ${ }^{160}$ S. Hogan, ${ }^{160}$ J. Monroy, ${ }^{160}$ J. R. Patterson, ${ }^{160}$ D. Quach, ${ }^{160}$ J. Reichert, ${ }^{160}$ M. Reid, ${ }^{160}$ A. Ryd, ${ }^{160}$ W. Sun, ${ }^{160}$ J. Thom, ${ }^{160}$ P. Wittich,,${ }^{160}$ R. Zou, ${ }^{160}$ M. Albrow, ${ }^{161}$ M. Alyari, ${ }^{161}$ G. Apollinari, ${ }^{161}$ A. Apresyan, ${ }^{161}$ A. Apyan, ${ }^{161}$ S. Banerjee, ${ }^{161}$ L. A. T. Bauerdick, ${ }^{161}$ D. Berry, ${ }^{161}$ J. Berryhill, ${ }^{161}$ P. C. Bhat, ${ }^{161}$ K. Burkett, ${ }^{161}$ J. N. Butler, ${ }^{161}$ A. Canepa, ${ }^{161}$ G. B. Cerati, ${ }^{161}$ H. W. K. Cheung, ${ }^{161}$ F. Chlebana, ${ }^{161}$ M. Cremonesi, ${ }^{161}$ K. F. Di Petrillo, ${ }^{161}$ V. D. Elvira, ${ }^{161}$ Y. Feng, ${ }^{161}$ J. Freeman, ${ }^{161}$ Z. Gecse, ${ }^{161}$ L. Gray, ${ }^{161}$ D. Green, ${ }^{161}$ S. Grünendahl, ${ }^{161}$ O. Gutsche, ${ }^{161}$ R. M. Harris, ${ }^{161}$ R. Heller, ${ }^{161}$ T. C. Herwig, ${ }^{161}$ J. Hirschauer, ${ }^{161}$ B. Jayatilaka, ${ }^{161}$ S. Jindariani, ${ }^{161}$ M. Johnson, ${ }^{161}$ U. Joshi, ${ }^{161}$ T. Klijnsma, ${ }^{161}$ B. Klima, ${ }^{161}$ K. H. M. Kwok, ${ }^{161}$ S. Lammel, ${ }^{161}$ D. Lincoln, ${ }^{161}$ R. Lipton, ${ }^{161}$ T. Liu, ${ }^{161}$ C. Madrid, ${ }^{161}$ K. Maeshima, ${ }^{161}$ C. Mantilla, ${ }^{161}$ D. Mason, ${ }^{161}$ P. McBride, ${ }^{161}$ P. Merkel, ${ }^{161}$ S. Mrenna, ${ }^{161}$ S. Nahn, ${ }^{161}$ J. Ngadiuba, ${ }^{161}$ V. O'Dell, ${ }^{161}$ V. Papadimitriou, ${ }^{161}$ K. Pedro, ${ }^{161}$ C. Pena, ${ }^{161, i i i}$ O. Prokofyev, ${ }^{161}$ F. Ravera, ${ }^{161}$ A. Reinsvold Hall, ${ }^{161}$ L. Ristori, ${ }^{161}$ E. Sexton-Kennedy, ${ }^{161}$ N. Smith,,${ }^{161}$ A. Soha, ${ }^{161}$ W. J. Spalding, ${ }^{161}$ L. Spiegel, ${ }^{161}$ S. Stoynev, ${ }^{161}$ J. Strait, ${ }^{161}$ L. Taylor, ${ }^{161}$ S. Tkaczyk, ${ }^{161}$ N. V. Tran, ${ }^{161}$ L. Uplegger, ${ }^{161}$ E. W. Vaandering, ${ }^{161}$ H. A. Weber, ${ }^{161}$ D. Acosta, ${ }^{162}$ P. Avery, ${ }^{162}$ D. Bourilkov, ${ }^{162}$ L. Cadamuro, ${ }^{162}$ V. Cherepanov, ${ }^{162}$ F. Errico, ${ }^{162}$ R. D. Field, ${ }^{162}$ D. Guerrero, ${ }^{162}$ B. M. Joshi, ${ }^{162}$ M. Kim, ${ }^{162}$ E. Koenig, ${ }^{162}$ J. Konigsberg, ${ }^{162}$ A. Korytov, ${ }^{162}$ K. H. Lo, ${ }^{162}$ K. Matchev, ${ }^{162}$ N. Menendez, ${ }^{162}$ G. Mitselmakher, ${ }^{162}$ A. Muthirakalayil Madhu, ${ }^{162}$ N. Rawal, ${ }^{162}$ D. Rosenzweig, ${ }^{162}$ S. Rosenzweig, ${ }^{162}$ J. Rotter, ${ }^{162}$ K. Shi, ${ }^{162}$ J. Sturdy, ${ }^{162}$ J. Wang, ${ }^{162}$ E. Yigitbasi, ${ }^{162}$ X. Zuo, ${ }^{162}$ T. Adams, ${ }^{163}$ A. Askew, ${ }^{163}$ R. Habibullah, ${ }^{163}$ V. Hagopian, ${ }^{163}$ K. F. Johnson, ${ }^{163}$ R. Khurana, ${ }^{163}$ T. Kolberg, ${ }^{163}$ G. Martinez, ${ }^{163}$ H. Prosper, ${ }^{163}$ C. Schiber, ${ }^{163}$ O. Viazlo, ${ }^{163}$ R. Yohay, ${ }^{163}$ J. Zhang, ${ }^{163}$ M. M. Baarmand, ${ }^{164}$ S. Butalla, ${ }^{164}$ T. Elkafrawy, ${ }^{164, \text { pppp }}$ M. Hohlmann, ${ }^{164}$ R. Kumar Verma, ${ }^{164}$ D. Noonan, ${ }^{164}$ M. Rahmani, ${ }^{164}$ F. Yumiceva, ${ }^{164}$ M. R. Adams, ${ }^{165}$ H. Becerril Gonzalez, ${ }^{165}$ R. Cavanaugh, ${ }^{165}$ X. Chen, ${ }^{165}$ S. Dittmer, ${ }^{165}$ O. Evdokimov, ${ }^{165}$ C. E. Gerber, ${ }^{165}$ D. A. Hangal, ${ }^{165}$ D. J. Hofman, ${ }^{165}$ A. H. Merrit, ${ }^{165}$ C. Mills, ${ }^{165}$ G. Oh, ${ }^{165}$ T. Roy, ${ }^{165}$ S. Rudrabhatla, ${ }^{165}$ M. B. Tonjes, ${ }^{165}$ N. Varelas, ${ }^{165}$ J. Viinikainen, ${ }^{165}$ X. Wang, ${ }^{165}$ Z. Wu, ${ }^{165}$ Z. Ye, ${ }^{165}$ M. Alhusseini, ${ }^{166}$ K. Dilsiz, ${ }^{166, q 999}$ R. P. Gandrajula, ${ }^{166}$ O. K. Köseyan, ${ }^{166}$ J.-P. Merlo, ${ }^{166}$ A. Mestvirishvili, ${ }^{166, \text { rrrt }}$ J. Nachtman, ${ }^{166}$ H. Ogul, ${ }^{166, \text { ssss }}$ Y. Onel, ${ }^{166}$ A. Penzo, ${ }^{166}$ C. Snyder, ${ }^{166}$ E. Tiras, ${ }^{166, \text { tttt }}$ O. Amram, ${ }^{167}$ B. Blumenfeld, ${ }^{167}$ L. Corcodilos, ${ }^{167}$ J. Davis, ${ }^{167}$ M. Eminizer, ${ }^{167}$ A. V. Gritsan, ${ }^{167}$ S. Kyriacou, ${ }^{167}$ P. Maksimovic, ${ }^{167}$ J. Roskes, ${ }^{167}$ M. Swartz, ${ }^{167}$ T. Á. Vámi, ${ }^{167}$ A. Abreu, ${ }^{168}$ J. Anguiano, ${ }^{168}$ C. Baldenegro Barrera, ${ }^{168}$ P. Baringer, ${ }^{168}$ A. Bean, ${ }^{168}$ A. Bylinkin ${ }^{168}$ Z. Flowers, ${ }^{168}$ T. Isidori, ${ }^{168}$ S. Khalil,,${ }^{168}$ J. King, ${ }^{168}$ G. Krintiras, ${ }^{168}$ A. Kropivnitskaya, ${ }^{168}$ M. Lazarovits, ${ }^{168}$ C. Lindsey, ${ }^{168}$ J. Marquez, ${ }^{168}$ N. Minafra, ${ }^{168}$ M. Murray, ${ }^{168}$ M. Nickel, ${ }^{168}$ C. Rogan, ${ }^{168}$ C. Royon, ${ }^{168}$ R. Salvatico, ${ }^{168}$ S. Sanders, ${ }^{168}$ E. Schmitz, ${ }^{168}$ C. Smith, ${ }^{168}$ J. D. Tapia Takaki, ${ }^{168}$ Q. Wang, ${ }^{168}$ Z. Warner, ${ }^{168}$ J. Williams, ${ }^{168}$ G. Wilson, ${ }^{168}$ S. Duric, ${ }^{169}$ A. Ivanov, ${ }^{169}$ K. Kaadze, ${ }^{169}$ D. Kim, ${ }^{169}$ Y. Maravin, ${ }^{169}$ T. Mitchell, ${ }^{169}$ A. Modak, ${ }^{169}$ K. Nam, ${ }^{169}$ F. Rebassoo, ${ }^{170}$ D. Wright, ${ }^{170}$ E. Adams, ${ }^{171}$
A. Baden, ${ }^{171}$ O. Baron, ${ }^{171}$ A. Belloni, ${ }^{171}$ S. C. Eno, ${ }^{171}$ N. J. Hadley, ${ }^{171}$ S. Jabeen, ${ }^{171}$ R. G. Kellogg, ${ }^{171}$ T. Koeth, ${ }^{171}$ A. C. Mignerey, ${ }^{171}$ S. Nabili, ${ }^{171}$ C. Palmer, ${ }^{171}$ M. Seidel, ${ }^{171}$ A. Skuja, ${ }^{171}$ L. Wang, ${ }^{171}$ K. Wong, ${ }^{171}$ D. Abercrombie, ${ }^{172}$ G. Andreassi,,172 R. Bi,,172 S. Brandt, ${ }^{172}$ W. Busza, ${ }^{172}$ I. A. Cali, ${ }^{172}$ Y. Chen, ${ }^{172}$ M. D'Alfonso, ${ }^{172}$ J. Eysermans, ${ }^{172}$ C. Freer, ${ }^{172}$ G. Gomez Ceballos, ${ }^{172}$ M. Goncharov, ${ }^{172}$ P. Harris, ${ }^{172}$ M. Hu, ${ }^{172}$ M. Klute, ${ }^{172}$ D. Kovalskyi, ${ }^{172}$ J. Krupa, ${ }^{172}$ Y.-J. Lee,,${ }^{172}$ C. Mironov, ${ }^{172}$ C. Paus, ${ }^{172}$ D. Rankin, ${ }^{172}$ C. Roland, ${ }^{172}$ G. Roland, ${ }^{172}$ Z. Shi, ${ }^{172}$ G. S. F. Stephans, ${ }^{172}$ J. Wang, ${ }^{172}$ Z. Wang, ${ }^{172}$ B. Wyslouch,,${ }^{172}$ R. M. Chatterjee, ${ }^{173}$ A. Evans, ${ }^{173}$ P. Hansen, ${ }^{173}$ J. Hiltbrand, ${ }^{173}$ Sh. Jain, ${ }^{173}$ M. Krohn, ${ }^{173}$ Y. Kubota, ${ }^{173}$ J. Mans, ${ }^{173}$ M. Revering, ${ }^{, 173}$ R. Rusack, ${ }^{173}$ R. Saradhy, ${ }^{173}$ N. Schroeder,,${ }^{173}$ N. Strobbe, ${ }^{173}$ M. A. Wadud, ${ }^{173}$ K. Bloom, ${ }^{174}$ M. Bryson, ${ }^{174}$ S. Chauhan, ${ }^{174}$ D. R. Claes, ${ }^{174}$ C. Fangmeier, ${ }^{174}$ L. Finco, ${ }^{174}$ F. Golf, ${ }^{174}$ C. Joo, ${ }^{174}$ I. Kravchenko, ${ }^{174}$ M. Musich, ${ }^{174}$ I. Reed, ${ }^{174}$ J. E. Siado, ${ }^{174}$ G. R. Snow, ${ }^{174, a}$ W. Tabb, ${ }^{174}$ F. Yan, ${ }^{174}$ A. G. Zecchinelli, ${ }^{174}$ G. Agarwal ${ }^{175}$ H. Bandyopadhyay, ${ }^{175}$ L. Hay, ${ }^{175}$ I. Iashvili, ${ }^{175}$ A. Kharchilava, ${ }^{175}$ C. McLean, ${ }^{175}$ D. Nguyen, ${ }^{175}$ J. Pekkanen, ${ }^{175}$ S. Rappoccio, ${ }^{175}$ A. Williams, ${ }^{175}$ G. Alverson, ${ }^{176}$ E. Barberis, ${ }^{176}$ Y. Haddad, ${ }^{176}$ A. Hortiangtham, ${ }^{176}$ J. Li, ${ }^{176}$ G. Madigan, ${ }^{176}$ B. Marzocchi, ${ }^{176}$ D. M. Morse, ${ }^{176}$ V. Nguyen, ${ }^{176}$ T. Orimoto, ${ }^{176}$ A. Parker, ${ }^{176}$ L. Skinnari,,${ }^{176}$ A. Tishelman-Charny, ${ }^{176}$ T. Wamorkar, ${ }^{176}$ B. Wang, ${ }^{176}$ A. Wisecarver, ${ }^{176}$ D. Wood, ${ }^{176}$ S. Bhattacharya, ${ }^{177}$ J. Bueghly, ${ }^{177}$ Z. Chen, ${ }^{177}$ A. Gilbert, ${ }^{177}$ T. Gunter, ${ }^{177}$ K. A. Hahn,,${ }^{177}$ Y. Liu,,${ }^{177}$ N. Odell, ${ }^{177}$ M. H. Schmitt, ${ }^{177}$ M. Velasco, ${ }^{177}$ R. Band,,${ }^{178}$ R. Bucci, ${ }^{178}$ A. Das, ${ }^{178}$ N. Dev, ${ }^{178}$ R. Goldouzian,,${ }^{178}$ M. Hildreth, ${ }^{178}$ K. Hurtado Anampa, ${ }^{178}$ C. Jessop,,${ }^{178}$ K. Lannon, ${ }^{178}$ J. Lawrence,,${ }^{178}$ N. Loukas, ${ }^{178}$ D. Lutton, ${ }^{178}$ N. Marinelli, ${ }^{178}$ I. Mcalister,,${ }^{178}$ T. McCauley, ${ }^{178}$ C. Mcgrady, ${ }^{178}$ K. Mohrman, ${ }^{178}$ Y. Musienko, ${ }^{178, \text { aaa }}$ R. Ruchti,,${ }^{178}$ P. Siddireddy, ${ }^{178}$ A. Townsend, ${ }^{178}$ M. Wayne, ${ }^{178}$ A. Wightman, ${ }^{178}$ M. Zarucki, ${ }^{178}$ L. Zygala, ${ }^{178}$ B. Bylsma, ${ }^{179}$ B. Cardwell,,${ }^{179}$ L.S. Durkin, ${ }^{179}$ B. Francis, ${ }^{179}$ C. Hill, ${ }^{179}$ M. Nunez Ornelas, ${ }^{179}$ K. Wei, ${ }^{179}$ B. L. Winer, ${ }^{179}$ B. R. Yates, ${ }^{179}$ F. M. Addesa, ${ }^{180}$ B. Bonham, ${ }^{180}$ P. Das, ${ }^{180}$ G. Dezoort, ${ }^{180}$ P. Elmer, ${ }^{180}$ A. Frankenthal,,${ }^{180}$
B. Greenberg, ${ }^{180}$ N. Haubrich, ${ }^{180}$ S. Higginbotham, ${ }^{180}$ A. Kalogeropoulos, ${ }^{180}$ G. Kopp, ${ }^{180}$ S. Kwan, ${ }^{180}$ D. Lange, ${ }^{180}$ D. Marlow, ${ }^{180}$ K. Mei, ${ }^{180}$ I. Ojalvo, ${ }^{180}$ J. Olsen, ${ }^{180}$ D. Stickland, ${ }^{180}$ C. Tully, ${ }^{180}$ S. Malik, ${ }^{181}$ S. Norberg, ${ }^{181}$ A. S. Bakshi, ${ }^{182}$ V. E. Barnes, ${ }^{182}$ R. Chawla, ${ }^{182}$ S. Das, ${ }^{182}$ L. Gutay, ${ }^{182}$ M. Jones, ${ }^{182}$ A. W. Jung, ${ }^{182}$ S. Karmarkar, ${ }^{182}$ D. Kondratyev, ${ }^{182}$ M. Liu, ${ }^{182}$ G. Negro, ${ }^{182}$ N. Neumeister, ${ }^{182}$ G. Paspalaki, ${ }^{182}$ S. Piperov, ${ }^{182}$ A. Purohit, ${ }^{182}$ J. F. Schulte, ${ }^{182}$ M. Stojanovic, ${ }^{182, s}$ J. Thieman, ${ }^{182}$ F. Wang, ${ }^{182}$ R. Xiao, ${ }^{182}$ W. Xie, ${ }^{182}$ J. Dolen, ${ }^{183}$ N. Parashar, ${ }^{183}$ A. Baty ${ }^{184}$ M. Decaro, ${ }^{184}$ S. Dildick, ${ }^{184}$ K. M. Ecklund, ${ }^{184}$ S. Freed, ${ }^{184}$ P. Gardner, ${ }^{184}$ F. J. M. Geurts, ${ }^{184}$ A. Kumar, ${ }^{184}$ W. Li, ${ }^{184}$ B. P. Padley, ${ }^{184}$ R. Redjimi, ${ }^{184}$ W. Shi, ${ }^{184}$ A. G. Stahl Leiton, ${ }^{184}$ S. Yang, ${ }^{184}$ L. Zhang, ${ }^{184}$ Y. Zhang, ${ }^{184}$ A. Bodek, ${ }^{185}$ P. de Barbaro, ${ }^{185}$ R. Demina, ${ }^{185}$ J. L. Dulemba, ${ }^{185}$ C. Fallon, ${ }^{185}$ T. Ferbel, ${ }^{185}$ M. Galanti, ${ }^{185}$ A. Garcia-Bellido, ${ }^{185}$ O. Hindrichs, ${ }^{185}$ A. Khukhunaishvili, ${ }^{185}$ E. Ranken, ${ }^{185}$ R. Taus, ${ }^{185}$ B. Chiarito, ${ }^{186}$ J. P. Chou, ${ }^{186}$ A. Gandrakota, ${ }^{186}$ Y. Gershtein, ${ }^{186}$ E. Halkiadakis, ${ }^{186}$ A. Hart, ${ }^{186}$ M. Heindl, ${ }^{186}$ O. Karacheban, ${ }^{186, a a}$ I. Laflotte, ${ }^{186}$ A. Lath, ${ }^{186}$ R. Montalvo, ${ }^{186}$ K. Nash, ${ }^{186}$ M. Osherson, ${ }^{186}$ S. Salur, ${ }^{186}$ S. Schnetzer, ${ }^{186}$ S. Somalwar, ${ }^{186}$ R. Stone, ${ }^{186}$ S. A. Thayil, ${ }^{186}$ S. Thomas, ${ }^{186}$ H. Wang, ${ }^{186}$ H. Acharya, ${ }^{187}$ A. G. Delannoy, ${ }^{187}$ S. Fiorendi, ${ }^{187}$ S. Spanier, ${ }^{187}$ O. Bouhali, ${ }^{188, u u u}$ M. Dalchenko, ${ }^{188}$ A. Delgado, ${ }^{188}$ R. Eusebi, ${ }^{188}$ J. Gilmore, ${ }^{188}$ T. Huang, ${ }^{188}$ T. Kamon, ${ }^{188, v v v v}$ H. Kim, ${ }^{188}$ S. Luo, ${ }^{188}$ S. Malhotra, ${ }^{188}$ R. Mueller, ${ }^{188}$ D. Overton, ${ }^{188}$ D. Rathjens, ${ }^{188}$ A. Safonov, ${ }^{188}$ N. Akchurin, ${ }^{189}$ J. Damgov, ${ }^{189}$ V. Hegde, ${ }^{189}$ S. Kunori, ${ }^{189}$ K. Lamichhane, ${ }^{189}$ S. W. Lee, ${ }^{189}$ T. Mengke, ${ }^{189}$ S. Muthumuni, ${ }^{189}$ T. Peltola, ${ }^{189}$ I. Volobouev, ${ }^{189}$ Z. Wang, ${ }^{189}$ A. Whitbeck, ${ }^{189}$ E. Appelt, ${ }^{190}$ S. Greene, ${ }^{190}$ A. Gurrola, ${ }^{190}$ W. Johns, ${ }^{190}$ A. Melo, ${ }^{190}$ H. Ni, ${ }^{190}$ K. Padeken, ${ }^{190}$ F. Romeo, ${ }^{190}$ P. Sheldon, ${ }^{190}$ S. Tuo, ${ }^{190}$ J. Velkovska, ${ }^{190}$ M. W. Arenton, ${ }^{191}$ B. Cox, ${ }^{191}$ G. Cummings, ${ }^{191}$ J. Hakala, ${ }^{191}$ R. Hirosky, ${ }^{191}$ M. Joyce, ${ }^{191}$ A. Ledovskoy, ${ }^{191}$ A. Li, ${ }^{191}$ C. Neu, ${ }^{191}$ C. E. Perez Lara, ${ }^{191}$ B. Tannenwald, ${ }^{191}$ S. White, ${ }^{191}$ E. Wolfe, ${ }^{191}$ N. Poudyal, ${ }^{192}$ K. Black, ${ }^{193}$ T. Bose, ${ }^{193}$ C. Caillol, ${ }^{193}$ S. Dasu, ${ }^{193}$ I. De Bruyn, ${ }^{193}$ P. Everaerts, ${ }^{193}$ F. Fienga, ${ }^{193}$ C. Galloni, ${ }^{193}$ H. He, ${ }^{193}$ M. Herndon, ${ }^{193}$ A. Hervé ${ }^{193}$ U. Hussain, ${ }^{193}$ A. Lanaro, ${ }^{193}$ A. Loeliger, ${ }^{193}$ R. Loveless, ${ }^{193}$ J. Madhusudanan Sreekala, ${ }^{193}$ A. Mallampalli, ${ }^{193}$ A. Mohammadi, ${ }^{193}$ D. Pinna, ${ }^{193}$ A. Savin, ${ }^{193}$ V. Shang, ${ }^{193}$ V. Sharma, ${ }^{193}$ W. H. Smith, ${ }^{193}$ D. Teague, ${ }^{193}$ S. Trembath-Reichert, ${ }^{193}$ and W. Vetens ${ }^{193}$

(CMS Collaboration)

${ }^{1}$ Yerevan Physics Institute, Yerevan, Armenia
${ }^{2}$ Institut für Hochenergiephysik, Wien, Austria
${ }^{3}$ Institute for Nuclear Problems, Minsk, Belarus
${ }^{4}$ Universiteit Antwerpen, Antwerpen, Belgium
${ }^{5}$ Vrije Universiteit Brussel, Brussel, Belgium
${ }^{6}$ Université Libre de Bruxelles, Bruxelles, Belgium
${ }^{7}$ Ghent University, Ghent, Belgium
${ }^{8}$ Université Catholique de Louvain, Louvain-la-Neuve, Belgium
${ }^{9}$ Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
${ }^{10}$ Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
${ }^{11}{ }^{11}$ Universidade Estadual Paulista, São Paulo, Brazil
${ }^{11 \mathrm{~b}}$ Universidade Federal do ABC, São Paulo, Brazil
${ }^{12}$ Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
${ }^{13}$ University of Sofia, Sofia, Bulgaria
${ }^{14}$ Beihang University, Beijing, China
${ }^{15}$ Department of Physics, Tsinghua University, Beijing, China
${ }^{16}$ Institute of High Energy Physics, Beijing, China
${ }^{17}$ State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
${ }^{18}$ Sun Yat-Sen University, Guangzhou, China
${ }^{19}$ Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE)—Fudan University, Shanghai, China
${ }^{20}$ Zhejiang University, Hangzhou, China
${ }^{21}$ Universidad de Los Andes, Bogota, Colombia
${ }^{22}$ Universidad de Antioquia, Medellin, Colombia
${ }^{23}$ University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
${ }^{24}$ University of Split, Faculty of Science, Split, Croatia
${ }^{25}$ Institute Rudjer Boskovic, Zagreb, Croatia
${ }^{26}$ University of Cyprus, Nicosia, Cyprus
${ }^{27}$ Charles University, Prague, Czech Republic
${ }^{28}$ Escuela Politecnica Nacional, Quito, Ecuador

[^1][^2][^3]${ }^{188}$ Texas A\&M University, College Station, Texas, USA
${ }^{189}$ Texas Tech University, Lubbock, Texas, USA
${ }^{190}$ Vanderbilt University, Nashville, Tennessee, USA
${ }^{191}$ University of Virginia, Charlottesville, Virginia, USA
${ }^{192}$ Wayne State University, Detroit, Michigan, USA
${ }^{193}$ University of Wisconsin-Madison, Madison, WI, Wisconsin, USA

${ }^{\mathrm{a}}$ Deceased.
${ }^{\mathrm{b}}$ Also at TU Wien.
${ }^{c}$ Also at Institute of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.
${ }^{\mathrm{d}}$ Also at Université Libre de Bruxelles, Bruxelles, Belgium.
${ }^{\mathrm{e}}$ Also at Universidade Estadual de Campinas, Campinas, Brazil.
${ }^{\mathrm{f}}$ Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
${ }^{\mathrm{g}}$ Also at The University of the State of Amazonas.
${ }^{\mathrm{h}}$ Also at University of Chinese Academy of Sciences.
${ }^{i}$ Also at Department of Physics, Tsinghua University, Beijing, China.
${ }^{\mathrm{j}}$ Also at UFMS.
${ }^{k}$ Also at The University of Iowa, Iowa City, Iowa, USA.
${ }^{1}$ Also at Nanjing Normal University Department of Physics.
${ }^{m}$ Also at University of Chinese Academy of Sciences.
${ }^{n}$ Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC 'Kurchatov Institute', Moscow, Russia.
${ }^{\circ}$ Also at Joint Institute for Nuclear Research, Dubna, Russia.
${ }^{\mathrm{p}}$ Also at Cairo University, Cairo, Egypt.
${ }^{q}$ Also at Helwan University, Cairo, Egypt.
${ }^{r}$ Also at Zewail City of Science and Technology, Zewail, Egypt.
${ }^{\text {s }}$ Also at Purdue University, West Lafayette, Indiana, USA.
${ }^{\text {t}}$ Also at Université de Haute Alsace, Mulhouse, France.
${ }^{\text {u }}$ Also at Tbilisi State University, Tbilisi, Georgia.
${ }^{v}$ Also at Erzincan Binali Yildirim University, Erzincan, Turkey.
${ }^{w}$ Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
${ }^{x}$ Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
${ }^{y}$ Also at University of Hamburg, Hamburg, Germany.
${ }^{z}$ Also at Department of Physics, Isfahan University of Technology, Isfahan, Iran.
${ }^{\text {aa }}$ Also at Brandenburg University of Technology, Cottbus, Germany.
${ }^{\text {bb }}$ Also at Forschungszentrum Jülich.
${ }^{\text {cc }}$ Also at Physics Department, Faculty of Science, Assiut University.
${ }^{\mathrm{dd}}$ Also at Karoly Robert Campus, MATE Institute of Technology.
${ }^{\text {ee }}$ Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.
${ }^{\text {ff }}$ Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
${ }^{g g}$ Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
${ }^{\text {hh }}$ Also at Wigner Research Centre for Physics, Budapest, Hungary.
${ }^{\text {ii }}$ Also at IIT Bhubaneswar, Bhubaneswar, India.
${ }^{\mathrm{jj}}$ Also at Institute of Physics, Bhubaneswar, India.
${ }^{\text {kk }}$ Also at G.H.G. Khalsa College, Punjab, India.
${ }^{11}$ Also at Shoolini University, Solan, India.
${ }^{\mathrm{mm}}$ Also at University of Hyderabad, Hyderabad, India.
${ }^{n n}$ Also at University of Visva-Bharati, Santiniketan, India.
${ }^{\circ 0}$ Also at Indian Institute of Technology (IIT), Mumbai, India.
${ }^{\mathrm{pp}}$ Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany.
${ }^{\text {qq }}$ Also at Sharif University of Technology, Tehran, Iran.
${ }^{\text {rr }}$ Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran.
${ }^{\text {ss }}$ Also at INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy.
${ }^{\text {tt Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development. }}$
${ }^{\text {un }}$ Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia.
${ }^{\mathrm{vv}}$ Also at Università di Napoli 'Federico II'.
${ }^{w w}$ Also at Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali.
${ }^{x x}$ Also at Riga Technical University, Riga, Latvia.
${ }^{\text {yy }}$ Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.

[^4]
[^0]: *Full author list given at the end of the article.
 Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP ${ }^{3}$.

[^1]: ${ }^{29}$ Universidad San Francisco de Quito, Quito, Ecuador
 ${ }^{30}$ Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
 ${ }^{31}$ Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
 ${ }^{32}$ National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
 ${ }^{33}$ Department of Physics, University of Helsinki, Helsinki, Finland
 ${ }^{34}$ Helsinki Institute of Physics, Helsinki, Finland
 ${ }^{35}$ Lappeenranta University of Technology, Lappeenranta, Finland
 ${ }^{36}$ IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
 ${ }^{37}$ Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
 ${ }^{38}$ Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
 ${ }^{39}$ Institut de Physique des 2 Infinis de Lyon (IP2I), Villeurbanne, France
 ${ }^{40}$ Georgian Technical University, Tbilisi, Georgia
 ${ }^{41}$ RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
 ${ }^{42}$ RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
 ${ }^{43}$ RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
 ${ }^{44}$ Deutsches Elektronen-Synchrotron, Hamburg, Germany
 ${ }^{45}$ University of Hamburg, Hamburg, Germany
 ${ }^{46}$ Karlsruher Institut fuer Technologie, Karlsruhe, Germany
 ${ }^{47}$ Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
 ${ }^{48}$ National and Kapodistrian University of Athens, Athens, Greece
 ${ }^{49}$ National Technical University of Athens, Athens, Greece
 ${ }^{50}$ University of Ioánnina, Ioánnina, Greece
 ${ }^{51}$ MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
 ${ }^{52}$ Wigner Research Centre for Physics, Budapest, Hungary
 ${ }^{53}$ Institute of Nuclear Research ATOMKI, Debrecen, Hungary
 ${ }^{54}$ Institute of Physics, University of Debrecen, Debrecen, Hungary
 ${ }_{55}^{55}$ Karoly Robert Campus, MATE Institute of Technology
 ${ }^{56}$ Indian Institute of Science (IISc), Bangalore, India
 ${ }^{57}$ National Institute of Science Education and Research, HBNI, Bhubaneswar, India
 ${ }^{58}$ Panjab University, Chandigarh, India
 ${ }^{59}$ University of Delhi, Delhi, India
 ${ }^{60}$ Saha Institute of Nuclear Physics, HBNI, Kolkata, India
 ${ }^{61}$ Indian Institute of Technology Madras, Madras, India
 ${ }^{62}$ Bhabha Atomic Research Centre, Mumbai, India
 ${ }^{63}$ Tata Institute of Fundamental Research-A, Mumbai, India
 ${ }^{64}$ Tata Institute of Fundamental Research-B, Mumbai, India
 ${ }^{65}$ Indian Institute of Science Education and Research (IISER), Pune, India
 ${ }^{66}$ Department of Physics, Isfahan University of Technology, Isfahan, Iran
 ${ }^{67}$ Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
 ${ }^{68}$ University College Dublin, Dublin, Ireland
 ${ }^{69 \mathrm{a}}$ INFN Sezione di Bari, Bari, Italy
 ${ }^{69 \mathrm{~b}}$ Università di Bari, Bari, Italy
 ${ }^{69 \mathrm{c}}$ Politecnico di Bari, Bari, Italy
 ${ }^{70}{ }^{\text {a }}$ INFN Sezione di Bologna, Bologna, Italy
 ${ }^{70 \mathrm{~b}}$ Università di Bologna, Bologna, Italy
 ${ }^{71 \mathrm{a}}$ INFN Sezione di Catania, Catania, Italy
 ${ }^{71 \mathrm{~b}}$ Università di Catania, Catania, Italy
 ${ }^{72 \mathrm{a}}$ INFN Sezione di Firenze, Firenze, Italy
 ${ }^{72 b}$ Università di Firenze, Firenze, Italy
 ${ }^{73}$ INFN Laboratori Nazionali di Frascati, Frascati, Italy
 ${ }^{74 a}$ INFN Sezione di Genova, Genova, Italy
 ${ }^{74 \mathrm{~b}}$ Università di Genova, Genova, Italy
 ${ }^{75 \mathrm{a}}$ INFN Sezione di Milano-Bicocca, Milano, Italy
 ${ }^{75 b}$ Università di Milano-Bicocca, Milano, Italy
 ${ }^{76 a}$ INFN Sezione di Napoli, Napoli, Italy
 ${ }^{76 \mathrm{~b}}$ Università di Napoli 'Federico II', Napoli, Italy
 ${ }^{76 \mathrm{c}}$ Università della Basilicata, Potenza, Italy
 ${ }^{76 \mathrm{~d}}$ Università G. Marconi, Roma, Italy
 ${ }^{77 \mathrm{a}}$ INFN Sezione di Padova, Padova, Italy
 ${ }^{77 \mathrm{~b}}$ Università di Padova, Padova, Italy

[^2]: ${ }^{77 \mathrm{c}}$ Università di Trento, Trento, Italy
 ${ }^{78 a}$ INFN Sezione di Pavia, Pavia, Italy
 ${ }^{78 \mathrm{~b}}$ Università di Pavia, Pavia, Italy
 ${ }^{79 \mathrm{a}}$ INFN Sezione di Perugia, Perugia, Italy
 ${ }^{79 \mathrm{~b}}$ Università di Perugia, Perugia, Italy
 ${ }^{80 \mathrm{a}}$ INFN Sezione di Pisa, Pisa Italy
 ${ }^{80 b}$ Università di Pisa, Pisa Italy
 ${ }^{80 c}$ Scuola Normale Superiore di Pisa, Siena, Italy
 ${ }^{80 \mathrm{~d}}$ Università di Siena, Siena, Italy
 ${ }^{81 a}$ INFN Sezione di Roma, Rome, Italy
 ${ }^{81 \mathrm{~b}}$ Sapienza Università di Roma, Rome, Italy
 ${ }^{82 \mathrm{a}}$ INFN Sezione di Torino, Torino, Italy
 ${ }^{82 \mathrm{~b}}$ Università di Torino, Torino, Italy
 ${ }^{82 \mathrm{c}}$ Università del Piemonte Orientale, Novara, Italy
 ${ }^{83 a}$ INFN Sezione di Trieste, Trieste, Italy
 ${ }^{83 b}$ Università di Trieste, Trieste, Italy
 ${ }^{84}$ Kyungpook National University, Daegu, Korea
 ${ }^{85}$ Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
 ${ }^{86}$ Hanyang University, Seoul, Korea
 ${ }^{87}$ Korea University, Seoul, Korea
 ${ }^{88}$ Kyung Hee University, Department of Physics, Seoul, Republic of Korea
 ${ }^{89}$ Sejong University, Seoul, Korea
 ${ }^{90}$ Seoul National University, Seoul, Korea
 ${ }^{91}$ University of Seoul, Seoul, Korea
 ${ }^{92}$ Yonsei University, Department of Physics, Seoul, Korea
 ${ }^{93}$ Sungkyunkwan University, Suwon, Korea
 ${ }^{94}$ College of Engineering and Technology, American University of the Middle East (AUM), Egaila, Kuwait
 ${ }^{95}$ Riga Technical University, Riga, Latvia ${ }^{96}$ Vilnius University, Vilnius, Lithuania
 ${ }^{97}$ National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
 ${ }^{98}$ Universidad de Sonora (UNISON), Hermosillo, Mexico
 ${ }^{99}$ Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
 ${ }^{100}$ Universidad Iberoamericana, Mexico City, Mexico
 ${ }^{101}$ Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
 ${ }^{102}$ University of Montenegro, Podgorica, Montenegro
 ${ }^{103}$ University of Auckland, Auckland, New Zealand
 ${ }^{104}$ University of Canterbury, Christchurch, New Zealand
 ${ }^{105}$ National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
 ${ }^{106}$ AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
 ${ }^{107}$ National Centre for Nuclear Research, Swierk, Poland
 ${ }^{108}$ Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
 ${ }^{109}$ Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
 ${ }^{110}$ Joint Institute for Nuclear Research, Dubna, Russia
 ${ }^{111}$ Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
 ${ }^{112}$ Institute for Nuclear Research, Moscow, Russia
 ${ }^{113}$ Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC 'Kurchatov Institute', Moscow, Russia
 ${ }^{114}$ Moscow Institute of Physics and Technology, Moscow, Russia
 ${ }^{115}$ National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
 ${ }^{116}$ P.N. Lebedev Physical Institute, Moscow, Russia
 ${ }^{117}$ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
 ${ }^{118}$ Novosibirsk State University (NSU), Novosibirsk, Russia
 ${ }^{119}$ Institute for High Energy Physics of National Research Centre 'Kurchatov Institute', Protvino, Russia
 ${ }^{120}$ National Research Tomsk Polytechnic University, Tomsk, Russia
 ${ }^{121}$ Tomsk State University, Tomsk, Russia
 ${ }^{122}$ University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Belgrade, Serbia
 ${ }^{123}$ Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
 ${ }^{124}$ Universidad Autónoma de Madrid, Madrid, Spain
 ${ }^{125}$ Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain
 ${ }^{126}$ Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
 ${ }^{127}$ University of Colombo, Colombo, Sri Lanka

[^3]: ${ }^{128}$ University of Ruhuna, Department of Physics, Matara, Sri Lanka
 ${ }^{129}$ CERN, European Organization for Nuclear Research, Geneva, Switzerland
 ${ }^{130}$ Paul Scherrer Institut, Villigen, Switzerland
 ${ }^{131}$ ETH Zurich—Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
 ${ }^{132}$ Universität Zürich, Zurich, Switzerland
 ${ }^{133}$ National Central University, Chung-Li, Taiwan
 ${ }^{134}$ National Taiwan University (NTU), Taipei, Taiwan
 ${ }^{135}$ Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
 ${ }^{136}$ Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
 ${ }^{137}$ Middle East Technical University, Physics Department, Ankara, Turkey
 ${ }^{138}$ Bogazici University, Istanbul, Turkey
 ${ }^{139}$ Istanbul Technical University, Istanbul, Turkey
 ${ }^{140}$ Istanbul University, Istanbul, Turkey
 ${ }^{141}$ Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
 ${ }^{142}$ National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
 ${ }^{143}$ University of Bristol, Bristol, United Kingdom
 ${ }^{144}$ Rutherford Appleton Laboratory, Didcot, United Kingdom
 ${ }^{145}$ Imperial College, London, United Kingdom
 ${ }^{146}$ Brunel University, Uxbridge, United Kingdom
 ${ }^{147}$ Baylor University, Waco, Texas, USA
 ${ }^{148}$ Catholic University of America, Washington, D.C., USA
 ${ }^{149}$ The University of Alabama, Tuscaloosa, Alabama, USA
 ${ }^{150}$ Boston University, Boston, Massachusetts, USA
 ${ }^{151}$ Brown University, Providence, Rhode Island, USA
 ${ }^{152}$ University of California, Davis, Davis, California, USA
 ${ }^{153}$ University of California, Los Angeles, California, USA
 ${ }^{155}$ University of California, Riverside, Riverside, California, USA
 ${ }^{155}$ University of California, San Diego, La Jolla, California, USA
 ${ }^{156}$ University of California, Santa Barbara-Department of Physics, Santa Barbara, California, USA
 ${ }^{157}$ California Institute of Technology, Pasadena, California, USA
 ${ }^{158}$ Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
 ${ }^{159}$ University of Colorado Boulder, Boulder, Colorado, USA
 ${ }^{160}$ Cornell University, Ithaca, New York, USA
 ${ }^{161}$ Fermi National Accelerator Laboratory, Batavia, Illinois, USA
 ${ }_{162}$ University of Florida, Gainesville, Florida, USA
 ${ }^{163}$ Florida State University, Tallahassee, Florida, USA
 ${ }^{164}$ Florida Institute of Technology, Melbourne, Florida, USA
 ${ }^{165}$ University of Illinois at Chicago (UIC), Chicago, Illinois, USA
 ${ }^{166}$ The University of Iowa, Iowa City, Iowa, USA
 ${ }^{167}$ Johns Hopkins University, Baltimore, Maryland, USA
 ${ }^{168}$ The University of Kansas, Lawrence, Kansas, USA
 ${ }^{169}$ Kansas State University, Manhattan, Kansas, USA
 ${ }^{170}$ Lawrence Livermore National Laboratory, Livermore, California, USA
 ${ }^{171}$ University of Maryland, College Park, Maryland, USA
 ${ }^{172}$ Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
 ${ }^{173}$ University of Minnesota, Minneapolis, Minnesota, USA
 ${ }^{174}$ University of Nebraska-Lincoln, Lincoln, Nebraska, USA
 ${ }^{175}$ State University of New York at Buffalo, Buffalo, New York, USA
 ${ }^{176}$ Northeastern University, Boston, Massachusetts, USA
 ${ }^{177}$ Northwestern University, Evanston, Illinois, USA
 ${ }^{178}$ University of Notre Dame, Notre Dame, Indiana, USA
 ${ }^{179}$ The Ohio State University, Columbus, Ohio, USA
 ${ }^{180}$ Princeton University, Princeton, New Jersey, USA
 ${ }^{181}$ University of Puerto Rico, Mayaguez, Puerto Rico, USA
 ${ }^{182}$ Purdue University, West Lafayette, Indiana, USA
 ${ }^{183}$ Purdue University Northwest, Hammond, Indiana, USA
 ${ }^{184}$ Rice University, Houston, Texas, USA
 ${ }^{185}$ University of Rochester, Rochester, New York, USA
 ${ }^{186}$ Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
 ${ }^{187}$ University of Tennessee, Knoxville, Tennessee, USA

[^4]: ${ }^{\text {zz }}$ Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
 ${ }^{\text {aaa }}$ Also at Institute for Nuclear Research, Moscow, Russia.
 ${ }^{b b b}$ Also at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia.
 ${ }^{c c c}$ Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan.
 ${ }^{\text {dad }}$ Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
 ${ }^{\text {eee }}$ Also at University of Florida, Gainesville, Florida, USA.
 ${ }^{\text {fff }}$ Also at Imperial College, London, United Kingdom.
 ${ }^{g g g}$ Also at Moscow Institute of Physics and Technology, Moscow, Russia.
 hhh Also at P.N. Lebedev Physical Institute, Moscow, Russia.
 ${ }_{i i i}$ Also at California Institute of Technology, Pasadena, California, USA.
 ${ }^{\text {iji }}$ Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.
 ${ }^{k k k}$ Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
 ${ }^{111}$ Also at Trincomalee Campus, Eastern University, Sri Lanka.
 ${ }^{\mathrm{mmm}}$ Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy.
 ${ }^{\mathrm{nnn}}$ Also at National and Kapodistrian University of Athens, Athens, Greece.
 ${ }^{000}$ Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland.
 ${ }^{p p p}$ Also at Universität Zürich, Zurich, Switzerland.
 ${ }^{\text {qq9 }}$ Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria.
 ${ }^{\text {rrr }}$ Also at Laboratoire d'Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France.
 ${ }^{\text {sss }}$ Also at Şırnak University.
 ${ }^{\text {ttt }}$ Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey.
 ${ }^{\text {uuu }}$ Also at Konya Technical University.
 ${ }^{v v v}$ Also at Piri Reis University, Istanbul, Turkey.
 ${ }^{w w w}$ Also at Adiyaman University, Adiyaman, Turkey.
 ${ }^{x x x}$ Also at Ozyegin University, Istanbul, Turkey.
 ${ }^{\text {yyy }}$ Also at Izmir Institute of Technology, Izmir, Turkey.
 ${ }^{\text {zzz }}$ Also at Necmettin Erbakan University, Konya, Turkey.
 ${ }^{\text {aaaa }}$ Also at Bozok Universitetesi Rektörlügü, Yozgat, Turkey
 ${ }^{\text {bbbb }}$ Also at Marmara University, Istanbul, Turkey.
 ${ }^{\text {cccc }}$ Also at Milli Savunma University.
 ${ }^{\text {dddd }}$ Also at Kafkas University, Kars, Turkey.
 ${ }^{\text {eeee }}$ Also at Istanbul Bilgi University, Istanbul, Turkey.
 ${ }^{\text {fffff }}$ Also at Hacettepe University, Ankara, Turkey.
 ${ }^{\text {ggg\% }}$ Also at Istanbul University-Cerrahpasa, Faculty of Engineering.
 ${ }^{\text {hhhh }}$ Also at Vrije Universiteit Brussel, Brussel, Belgium.
 ${ }^{\text {iiii }}$ Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
 ${ }^{\text {ijij }}$ Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
 ${ }^{\text {kkkk }}$ Also at IPPP Durham University.
 ${ }^{1111}$ Also at Monash University, Faculty of Science, Clayton, Australia.
 ${ }^{\mathrm{mmmm}}$ Also at Università di Torino.
 ${ }^{n n n n}$ Also at Bethel University, St. Paul, Minneapolis, USA.
 ${ }^{\text {oooo Also at Karamanoğlu Mehmetbey University, Karaman, Turkey. }}$
 ${ }^{\text {pppp }}$ Also at Ain Shams University, Cairo, Egypt.
 ${ }^{\text {q999 }}$ Also at Bingol University, Bingol, Turkey.
 ${ }^{\text {rrre }}$ Also at Georgian Technical University, Tbilisi, Georgia.
 ${ }^{\text {ssss }}$ Also at Sinop University, Sinop, Turkey.
 ${ }^{\text {ttt }}$ Also at Erciyes University.
 ${ }^{\text {uuuu }}$ Also at Texas A\&M University at Qatar, Doha, Qatar.
 ${ }^{v v v v}$ Also at Kyungpook National University, Daegu, Korea.

