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Abstract

Glycolysis, one of the leading metabolic pathways, involves many
different periodic oscillations emerging at positive steady states of
the biochemical models describing this essential process. One of
the models employing the molecular diffusion of intermediates is
the Higgins biochemical model to explain sustained oscillations. In
this paper, we investigate the center-focus problem for the minimal
Higgins model for general values of the model parameters with the
help of computational algebra. We demonstrate that the model
always has a stable focus point by finding a general form of the first
Lyapunov number. Then, varying two of the model parameters, we
obtain the first three coefficients of the period function for the stable
focus point of the model and prove that the singular point is actually
a bi-weak monodromic equilibrium point of type [1, 2]. Additionally,
we prove that there are two (small) intervals for a chosen parameter
a > 0 for which one critical period bifurcates from this singular
point after small perturbations.

1 Introduction

The need to understand periodic biological processes such as the circadian

clock has led researchers to seek the chemical basis of oscillations in bio-

chemical systems. One of these systems is glycolysis, which is essential for

vital activities and involves the anaerobic conversion of sugar to various

metabolites, including pyruvate and ATP. During glycolysis, the addition

of glucose to an extract containing the primary metabolites triggers cyclic

or periodic behaviors in the concentrations of these metabolites. In the

context of the theory of the dynamical systems, the models based on bio-

chemistry represent a given number of biochemical species interacting in

biochemical reactions where variables of the dynamical system are concen-

trations and parameters are the rates of concentrations according to the

model. These models commonly incorporate chemical reactions such as

enzyme production of genes, RNA interference, and other vital processes

occurring in living organisms evolving in time [3, 4, 8, 14,24].

These behaviors can undergo mathematical analysis by studying their

corresponding dynamical systems. A central problem in the field of dy-

namical systems is the center-focus problem, which was first introduced in

the early 20th century by Poincaré and Andronov [18], and later studied
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extensively by other mathematicians and scientists [2, 5, 15,21].

Essentially, the biochemical reaction models correspond to systems of

ordinary differential equations (ODEs) with a nonlinear vector field, often

described by rational functions. Note that efficient algorithms of computer

algebra systems which enable a qualitative analysis of systems of ODEs

are limited to polynomial systems. As a result, it is necessary to expand

the corresponding vector field to the Taylor series up to some finite degree

polynomials. The linear part of the polynomial vector field plays a crucial

role in this analysis. If the eigenvalues of the corresponding linearized

system are pure imaginary, the singular point is either a center (each orbit

around the origin is an oval) or a focus (each orbit spirals away from or

towards the singularity). One of the most basic indicators in distinguishing

between a center and a focus are Lyapunov coefficients. If all Lyapunov

coefficients are zero, the singular point is a center; otherwise, the singular

point is a focus. If the first nonzero Lyapunov coefficient is negative, the

singular point is a stable focus (each orbit spirals towards the singular

point).

Although the problem of distinguishing between the center and the

focus, the so-called center-focus problem or shortly center problem, has

been considered in many studies, it is completely solved only for some

low-order polynomial systems. For the quadratic systems, the solution is

in [7]; for systems in the form of a linear center perturbed by homogeneous

cubic terms the solution can be found in [15, 16]; for some linear centers

perturbed with fifth order homogeneous polynomials see [5]. For higher-

order polynomial systems, the solution was found only for some special

families, mostly for Lotka-Volterra systems (e.g., [2, 26]).

The crucial information in studying the center problem can be obtained

by considering the so-called return map (after choosing a ray from the sin-

gular point). Next, for both a center and a focus, isochronicity can be

defined, which, roughly speaking, means that the revolution time (accord-

ing to the chosen ray) is independent of the amplitude (or starting point in

the case of a focus). The isochronicity can be determined by analyzing the

coefficients of the so-called period function. More details about the return

map and period function are given in section 2.3. The stationary points



566

of the period function determine the so-called critical periods. In simpler

cases, the period function and the critical periods can be treated by in-

troducing the polar coordinates. Oliveria et al. presented an approach for

identifying critical periods that uses the Lie bracket. They also define four

categories of singular points according to the structure of the return map

and the period function: (i) isochronous center, (ii) center with weakness

of a finite order, (iii) isochronous weak focus of a finite order and (iv) the

remaining case, when both the center and isochronicity properties are not

kept at the same time. The former case is called a bi-weak monodromic

equilibrium point of order [k, l], where k (and l) refer to the structure

of the return and period maps, respectively (see [17] for more details).

The bifurcations of critical periods at the singular point for all values of

the bifurcation parameter can be studied via the coefficients of the period

function [21]. This problem was considered for the first time in [6]. The

properties of the period function are essential for studying sub-harmonic

oscillations and linearization. Chicone et al. studied multiple Hopf bifur-

cations in quadratic systems by using Bautin’s method [1, 6] in 1989. In

1993, Rousseau et al. showed that at most three local critical periods bi-

furcate from a weak center in a vector field with homogeneous nonlinearity

of the third degree [23]. The parameter conditions for the existence of an

isochronous center or a weak center and period coefficients were obtained

by Zhang et al. in 2000 using an inductive algorithm [25]. The bifurcations

of the period function of a center perturbed by cubic homogeneous poly-

nomials are studied by Romanovski et al. using computational algebra in

2003 [20]. Weak centers and local bifurcations of critical periods are inves-

tigated for a class of rational differential systems with a cubic polynomial

as its numerator in 2013 [12].

The upper bounds on the number of critical periods of several families

of cubic systems are obtained by moving a relevant ideal to a subalgebra

generated by invariants of a group of linear transformations by Fercec et

al. in 2015 [9]. For a quartic, [13] and quintic [22] polynomial system, it is

shown that, at most, two critical periods can bifurcate from any nonlinear

center.

Small amplitude limit cycles and the local bifurcations of critical pe-
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riods for a quartic Kolmogorov system at the positive equilibrium are

investigated, and the maximum number of small amplitude limit cycles

bifurcating is obtained to be seven [10].

The goal of this paper is to consider the nature of the singular point and

the bifurcations of critical periods in the minimal Higgins model, which is

associated with glycolysis. After moving the origin of the minimal Higgins

model to the singular point and expanding the corresponding vector field

to the Taylor series up to the fifth-degree polynomial, the minimal Higgins

model will be transformed into a system of the form

dx

dt
= αx− βy + P (x, y)

dy

dt
= βx+ αy +Q(x, y)

(1)

The rest of the paper is organized as follows. In section 2, we present

the minimal Higgins model and its model components. In subsection 2.1,

we give the normal form of the minimal Higgins model near the singular

point. Next, we study the center-focus problem for the minimal Higgins

model. In subsection 2.2, we calculate the first focus quantity. In sub-

section 2.3, we calculate the period constants according to two remaining

parameters and give some results about the critical periods of the minimal

Higgins system. In section 3, we give some conclusions.

2 The minimal Higgins model

The Higgins model, which was the first to demonstrate the general vari-

eties of reaction pathways required for a chemical mechanism to exhibit

oscillatory behavior and describe glycolytic self-oscillations, was proposed

by J. Higgins in 1964 [11]. The Higgins model presents a chemical model

that describes glycolysis as three essential enzymatic steps, which are the

conversion of intracellular glucose to glucose 6-phosphate, the conversion

of fructose 6-phosphate(F6P) to fructose 1,6 bisphosphate(FBP), and the

breakdown of fructose 1,6 bisphosphate. The Higgins model was originally

proposed as the following six reactions, where E1 and E2 represent the

enzymes and GA3P represents glyceraldehyde 3-phosphate.
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GLU
k1*−−→ F6P

F6P+ E1*
k2*−−→ E1* – F6P

E1* – F6P
k3*−−→ E1* + FBP

FBP+ E1
+ k±4*−−−→ E1*

FBP+ E2
k5*−−→ E2 – FBP

E2 – FBP
k6*−−→ E2 +GA3P

In 1996, Queeney et al. formulated these equations to derive the laws

of motion for the six-reaction model and, applying steady-state approxi-

mations to the equations, obtained the following minimal two-dimensional

model with suitable positive parameter changes where A is the amount of

glucose, and k1, k2, k3, k4 are reaction rates [19].

dx

dt
= k2xy −

k3x

1 + k4x
dy

dt
= k1A− k2xy

(2)

Queeney et al. performed linear stability analysis and obtained the

bifurcation points by solving the characteristic equation of the minimal

Higgins model. We present a detailed study of the period function and the

focus quantities for system (2).

2.1 Normal form of system (2)

We compute singular point of system (2) and obtain T (Ak1B , Bk2 ), where

B = k3 − Ak1k4 > 0. Then, we move the singular point T to the origin

and system (2) becomes

dx

dt
=

ABk1k4x

k3 + k4Bx
+
Ak1k2
B

y + k2xy +
k4B

2x2

k3 + k4Bx
,

dy

dt
= −Bx− Ak1k2

B
y − k2xy.

(3)

Since the right-hand sides of the equations in system (3) involve ra-

tional terms, we expand system (3) in the Taylor series before computing

the period constants. To this end, we obtain the following Taylor series

expansions of system (3):
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dx

dt
=
ABk1k4
k3

x+
Ak1k2
B

y + k2xy +
∑
j≥2

(−1)jBj+1kj−1
4

kj3
xj

dy

dt
= −Bx− Ak1k2

B
y − k2xy.

(4)

It is easy to see that the convergence radius of the power series in dx
dt equals

k3/(k4B).

System (4) has the Jacobian matrix at the origin

J =

[
ABk1k4
k3

Ak1k2
B

−B −Ak1k2
B

]
(5)

having the trace

Tr(J) =
Ak1(B

2k4 − k2k3)

Bk3
,

and the determinant

Det(J) =
Ak1k2B

k3
.

For system (4), the necessary and sufficient condition for only pure imag-

inary eigenvalues of J are that the determinant Det(J) > 0 and the trace

Tr(J) = 0. Since Ak1 > 0, Tr(J) = 0 if and only if

B2 =
k2k3
k4

.

To assure Det(J) > 0, we must choose the positive square root

B =

√
k2k3
k4

(6)

and in turn, from B = k3 −Ak1k4 we get

A =
k3 −B

k1k4
(7)
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and as A > 0, we have k3 > B, whence we additionally get the condition

k2 < k3k4. (8)

Then, recalling that the eigenvalues must be pure imaginary, the real-

Jordan canonical form of system (4) can be obtained by a standard proce-

dure, i.e., firstly finding a complex eigenvector (the other is just a complex

conjugate) and then taking the real part as the first and the imaginary

part as the second column vector of the transforming matrix. Introduce

the notation (for the purpose of more compact expressions)

a =

√√
k3k4
k2

− 1. (9)

Obviously, a is strictly positive by (8). Further, by combining (6), (7) and

(9) we represent A in terms of a as

A =
a2(1 + a2)k2

k1k24
. (10)

The matrix

M =

[
−a2 a

1 + a2 0

]
enables that M−1JM is in the canonical form, i.e.

M−1JM =

[
0 −β
β 0

]

where, by finally using (6), (9) and (10)

β =
√
Det(J) =

√
ABk1k2
k3

=
ak2
k4

.

To transform system (4) into the real canonical form, we define the
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following transformation.

M

[
X

Y

]
=

[
−a2X + aY

(1 + a2)X

]
=

[
MX

MY

]

Substituting MX and MY to x and y in system (4), replacing X, Y by x

and y, respectively, multiplying by M−1 and dividing by β, i.e. rescaling

the time, we obtain the system

ẋ = −y + ak4x
2 − k4xy

ẏ = x− k4
1 + a2

x2 +
(1− a2)k4
a(1 + a2)

xy +
k4

1 + a2
y2

+
ak24

(a2 + 1)2
(ax− y)3

1

1− ak4(ax− y)/(a2 + 1)
.

(11)

From (11) we see that the parameter variety (under condition (6)) is

two-dimensional: all parameters depend only on k4 and the a; in other

words, they depend only on k4 and the ratio k3/k2 since (a2+1)2 = k4
k3
k2
.

However, to obtain system (11), we divide the vector field by β = ak2
k4

, so

k2 disappeared by time rescaling.

2.2 Focus quantities of system (11)

We compute the first focus quantity of system (11). By denoting ẋ =

f1(x, y), ẏ = f2(x, y) we compute the first focus quantity. Being in the

canonical form, the Lyapunov function reads ψ(x, y) = x2 + y2 + .... From

the classical identity dψ
dx f1(x, y) +

dψ
dy f2(x, y) = g1(x

2 + y2)2 + g2(x
2 +

y2)3 + ... and comparison of the coefficients at monomials, we obtain the

first Lyapunov coefficient as

g1 = 1/4(A11A20 + 3B03 −B02B11 − 2A20B20 −B11B20 +B21)

where Aij =
∂f1

i!j!∂xi∂yj and Bij =
∂f2

i!j!∂xi∂yj . Inserting the actual values of

Aij , Bij for system (11), we finally get the first focal quantity in the very

closed form
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g1 = −a(2 + a2)k24
4(1 + a2)

.

The g1 is clearly negative since a > 0. A parameter condition that makes

the linearized eigenvalues of the system pure imaginary and, at the same

time, makes the value of g1 zero, does not exist for this system. Therefore,

we conclude that the singularity point of the Minimal Higgins system is

always a stable focus.

As an example, we consider the parameter values k4 = 2, a = 1. In

this case, system (11) has a stable focus at (0, 0) with the eigenvalues ±i
and the first Lyapunov coefficient g1 = − 3

2 , as illustrated in Fig. 1.

Figure 1. Spiraling trajectories towards a stable focus of system (11)
with parameter values k4 = 2 and a = 1. The two initial
points are (0.005, 0.001) and the origin.
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2.3 Period functions of a stable focus and bifurcations

of critical periods of system (11)

To study the period functions of system (11), we move to polar coordinates

x = r cos θ, y = r sin θ using the abbreviation c = cos θ, s = sin θ, and

applying the Taylor series expansion around r = 0. So, the system (11)

becomes

dr

dt
= r2(α0 + α1r + . . .)

dθ

dt
= 1 + β1r + β2r

2 + β3r
3 + . . .

(12)

where

α0 =
k4(a

2(1 + a2)c3 + a3c2s+ (1− a2)cs2 + as3)

a(1 + a2)
,

α1 =
ak24(ac− s)3s

(1 + a2)2
,

β1 = − 2k4
1 + a2

c3 +
(1− 2a2 − a4)k4

a(1 + a2)
c2s− k4cs

2,

β2 =
ak24(ac− s)3c

(1 + a2)2
,

β3 =
a2k34(ac− s)4c

(1 + a2)3
,

are homogeneous trigonometric polynomials in θ. Elimination of time in

system (12) yields

dr

dθ
=

∞∑
k=2

Rk(θ)r
k, (13)

where Rk(θ) are such functions of θ that (the analytic solution exists by

the Implicit Function Theorem)

r(θ) = ρ+

∞∑
j=2

Vj(θ)ρ
j = ρ(1 +

∞∑
j=2

Vj(θ)ρ
j−1) =: ρV (θ) (14)

is solution of (13) satisfying the initial condition r(0) = ρ for some ρ close

enough to zero.

For computing the coefficients of the period function, we have to inte-
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grate coefficients at powers of ρ in the series(
dθ

dt

)−1

=
(
1 + β1r + β2r

2 + β3r
3 + . . .

)−1

= (1 + β1ρ(1 + V2ρ+ V3ρ
2 + . . .) + β2ρ

2(1 + V2ρ+ V3ρ
2)

+ β3ρ
2(1 + V2ρ+ V3ρ

2 + . . .)2 + . . .)−1

= 1− β1ρ+ (β2
1 − β2 − β1V2)ρ

2

+ (−β3
1 + 2β1β2 − β3 + 2(β2

1 − β2)V2 − β1V3)ρ
3 + . . . ,

Now, to determine at least T2 and T3, which are the coefficients of the

period function we have to compute V2 and V3 as is evident from

T0 =
1

2π

∫ 2π

0

dθ = 1

T1 = − 1

2π

∫ 2π

0

β1 dθ

T2 =
1

2π

∫ 2π

0

β2
1 − β2 − β1V2 dθ

T3 =
1

2π

∫ 2π

0

−β3
1 + 2β1β2 − β3 + 2(β2

1 − β2)V2 − β1V3 dθ.

(15)

Thus, we compute V2 and V3. Substituting (14) into (12) in place of r

and computing

0 =
dr

dθ
· dθ
dt

− dr

dt
= ρ2(

dV2(θ)

dθ
+
dV3(θ)

dθ
ρ+ . . .)

(1 + β1ρV (θ) + β2ρ
2V (θ)2 + . . .)

− ρ2V (θ)2(α0 + α1ρV (θ) + α2ρ
2V (θ)2 + . . .)

(16)

dividing by ρ2 and abbreviating Vj := Vj(θ), j = 2, 3, we obtain the

identity

0 = (
dV2

dθ
+

dV3

dθ
ρ+ . . .)(1 + β1ρ(1 + V2ρ+ . . .) + β2ρ

2(1 + V2ρ+ . . .)2 + . . .)

− (1 + V2ρ+ . . .)2(α0 + α1ρ(1 + V2ρ+ . . .) + α2ρ
2(1 + V2ρ+ . . .)2 + . . .)

= −α0 +
dV2

dθ
+ ρ(−α1 − 2α0V 2 + β1

dV2

dθ
+

dV3

dθ
) + . . .
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holding true for all ρ close enough to 0. For ρ = 0 we get

dV2
dθ

= α0

and by extracting the coefficient at ρ we see that

dV3
dθ

= −β1
dV2
dθ

+ 2α0V2 + α1 = α1 − β1α0 + 2α0V2.

By initial condition in (14), we have V2(0) = V3(0) = 0, so we successively

get

V2 =

∫ θ

0

α0 dθ

=
k4

(1 + a2)
(p0 + p1 cos θ + q1 sin θ + p3 cos 3θ + q3 sin 3θ)

with

p0 = (2 + a2)/3, p1 = −(3 + a2)/4, p3 = (1− a2)/12,

q1 =
1 + 2a2 + 3a4

4a
, q3 =

−1 + 2a2 + a4

12a

and

V3 =

∫ θ

0

α1 − β1α0 + 2α0V2 dθ. (17)

Figure 2. Graph of T2 · 24a2(a2+1)

k2
4

(dashed line) and T3 · 72a2(a2+1)2

k3
4

(solid line) near a∗ ≈ 1.0567262175781924344.
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Note that all terms that we have to integrate for V3 are either homoge-

neous trigonometric polynomials or linear functions in θ so the integration

is possible, however long, as well as the obtained expressions. Using Wol-

fram Mathematica we obtain

V3 = u0 + u1θ +

6∑
n=1

(vn cosnθ + wn sinnθ) (18)

where

u0 =

(
115a8 + 298a6 + 422a4 + 257a2 − 2

)
k24

288a2 (a2 + 1)2
, u1 =

a3k24
8 (a2 + 1)

,

v1 = −
(
a2 + 2

) (
a2 + 3

)
k24

6 (a2 + 1)2
, w1 =

(
a2 + 2

) (
3a4 + 2a2 + 1

)
k24

6a (a2 + 1)2
,

v2 = −
(
57a8 + 99a6 + 116a4 + 3a2 + 1

)
k24

192a2 (a2 + 1)2
, w2 = −

(
11a6 + 51a4 + 15a2 + 11

)
k24

96a (a2 + 1)2
,

v3 =
(1− a2)

(
a2 + 2

)
k24

18 (a2 + 1)2
, w3 =

(
a2 + 2

) (
a4 + 2a2 − 1

)
k24

18a (a2 + 1)2
,

v4 = −
(
9a8 + 26a6 − 6a4 + 3a2 − 2

)
k24

96a2 (a2 + 1)2
, w4 = −

(
11a6 − a4 + 8a2 − 8

)
k24

96a (a2 + 1)2
,

v5 = 0, w5 = 0,

v6 = −
5
(
a8 + 3a6 + 4a4 − 5a2 + 1

)
k24

576a2 (a2 + 1)2
, w6 = −

5
(
a6 + a4 − 3a2 + 1

)
k24

288a (a2 + 1)2
.

(19)

Finally, we compute the period constants (15) using the actual param-

eters of our family of systems (11) in normal form. We obtain the following

(recall (9)) results:

T0 = 1

T1 = 0

T2 =

(
4a6 + a4 − 7a2 + 1

)
k24

24a2 (a2 + 1)

T3 =

(
5a8 + 12a6 − 7a4 − 26a2 + 4

)
k34

72a2 (1 + a2)
2 .

(20)

As already mentioned in the introduction in [17], the authors consider

four types of singular points relating to the return map and period map.

From subsections 2.2 and 2.3, it is evident that the origin of system (11) is
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a bi-weak monodromic equilibrium point of type [1, 2]. Below is the main

bifurcational result concerning this singular point of (11).

Figure 3. Graph of T2 · 24a2(a2+1)

k2
4

(dashed line) and T3 · 72a2(a2+1)2

k3
4

(solid line) near a∗ ≈ 0.384479856571409680884645.

Definition 1. Any value r > 0 (r < r∗) for which T ′(r) = 0 is called a

critical period.

When we consider bifurcations of critical periods, we are interested in

an upper bound of the number of critical periods in a small neighborhood

of the singular point. It is the so-called problem of bifurcations of critical

periods considered for the first time in [6].

Theorem 1. Let a∗ be a solution of T2 = 0 near point a = 0.3845 and

let a∗ be a solution of T2 = 0 near a = 1.0567. Let I1 = [a∗, a∗ + ϵ) and

I2 = [a∗, a∗ + ϵ). If in system (11) a ∈ I1 ∪ I2, then one critical period

bifurcates from the origin after small perturbations.

Proof. From Figs. 2 and 3 one can see that a∗ and a
∗ are (the only positive)

zeroes of T2. For system (11), the above results reveal that one critical

period bifurcates from the origin after small perturbations, if a ∈ [a∗, a∗+ϵ)

then clearly T2 > 0 (and is arbitrary small) while T3 < 0 (see Fig. 2). One

can choose such a that |T2| ≪ |T3|. This means that one critical period

bifurcates from the singular point.

Similar, if a ∈ [a∗, a∗ + ϵ) then clearly T2 < 0 (and is arbitrary small)

while T3 > 0 (see Fig. 3). Again, one can choose such a that |T2| ≪ |T3|
which means that one critical period bifurcates from the singular point.
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3 Conclusion

The study of the bifurcations of the critical periods of the dynamical mod-

els has been one of the central aspects in the investigation of the glycolysis

process since it allows one to determine stable regimes. In this work, we

examined the center-focus problem for the minimal Higgins model. We

showed that the model exhibits only a stable oscillatory regime given by a

stable focus point. We presented the first three period constants and the

first Lyapunov coefficient for the stable focus singularity. We showed also

some results for the system with fixed parameters.
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