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Abstract
Proton-rich nuclei are synthesized via photodisintegration and reverse reactions. To examine this mechanism and reproduce 
the observed p-nucleus abundances, it is crucial to know the reaction rates and thereby the reaction cross sections of many 
isotopes. Given that the number of experiments on the reactions in astrophysical energy regions is very rare, the reaction 
cross sections are determined by theoretical methods whose accuracy should be tested. In this study, given that 121 Sb is a 
stable seed isotope located in the region of medium-mass p-nuclei, we investigated the cross sections and reaction rates 
of the 121Sb(�,�)125 I reaction using the TALYS computer code with 432 different combinations of input parameters (OMP, 
LDM, and SFM). The optimal model combinations were determined using the threshold logic unit method. The theoretical 
reaction cross-sectional results were compared with the experimental results reported in the literature. The reaction rates 
were determined using the two input parameter sets most compatible with the measurements, and they were compared with 
the reaction rate databases: STARLIB and REACLIB.

Keywords Cross section · Astrophysical S-factor · Astrophysical reaction rate · p-process nucleosynthesis · Threshold logic 
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1 Introduction

Most iron-heavy nuclei in nuclear charts are produced by 
neutron capture reactions in various astrophysical environ-
ments. Approximately 30 stable nuclei exist in the proton-
rich region of the stability valley in the chart, which are 
referred to as p nuclei.-Specifically, p-nuclei are synthesized 
by a nuclear reaction mechanism termed as the astrophysical 
p-process [1]. The production of p-nuclei is initiated by the 
photodisintegration reactions of seed nuclei formed via neu-
tron capture reactions [2]. As the neutron separation energy 
increases after sequential neutron emissions, the ( �,� ) and 
( �,p) reactions begin to compete with the ( �,n) reactions, 
and the p-process reaction path deviates toward the lower 
mass region [3, 4].

The ( �,� ) and ( �,� ) reactions are important due to the 
abundance of medium and heavy p-nuclei, where experi-
mental studies are limited. Specifically, p-process nucleo-
synthesis has been modeled using an expanded nuclear 
reaction network, where information on the reaction rates 
of thousands of neutrons, protons, and �-induced reactions, 
as well as of their reverse reactions, is required [5, 6]. The 
corresponding astrophysical reaction rates obtained from the 
reaction cross sections are necessary inputs for the reaction 
network [7]. Unfortunately, experimental data on the charged 
particle-induced reactions of nuclei heavier than iron are 
rare. A limited number of proton capture reaction ( [8–12] 
and cited in Ref. [13]) and �-capture reaction ( [14–17] and 
cited in Ref. [18]) cross sections have been measured. There-
fore, process studies rely mostly on theoretical cross sec-
tions from Hauser–Feshbach statistical models to estimate 
reaction rates. The overall reliability of Hauser–Feshbach 
predictions in p-process simulations has been discussed [19], 
and given that the variations in results can lead to signifi-
cant changes in p-process abundance calculations, statistical 
models should be tested by comparing them with experi-
mental results.
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As 121 Sb is a stable seed isotope in the region of medium-
mass p-nuclei, the investigation of 121 Sb is important for 
astrophysical reaction rate predictions and extend the experi-
mental database required for an improved understanding of 
p-isotope production. Given the experimental difficulties 
in photodisintegration reactions, the reliability of statisti-
cal model predictions is limited to testing the reverse alpha 
capture reaction process. The ( �,� ) reaction cross sections 
of this isotope were experimentally measured [18] to expand 
the experimental database and test the theoretical models. 
However, these measurements did not cover the astrophysi-
cal energy range (Gamow window). Therefore, a detailed 
theoretical study should be conducted to reasonably predict 
the cross sections of astrophysical energies. Hence, differ-
ent models of optical potential, level density, and strength 
function should be considered. All these models affect the 
theoretical cross-sectional calculations, especially in the 
low-energy region, where the optical �+nucleus potential 
is likely to introduce the largest deviations in the charged 
particle reactions [20–23]. In this study, 121Sb(�,�)125 I reac-
tion cross-sections and astrophysical S-factor values were 
calculated for 432 different combinations of eight optical 
potentials, six level densities, and nine strength function 
models and compared with the experimental results. The 
optimal model combinations were determined using thresh-
old logic unit method [24]. The reaction rates were deter-
mined using the most compatible input parameter sets for the 
measurements. The obtained reaction rates were compared 
with those in existing reaction rate databases [25, 26]. This 
study can be applied not only in nuclear astrophysics but also 
in other fields where knowledge of reaction cross sections is 
required, such as medical physics and nuclear technology.

2  Method and calculation

2.1  Thermonuclear reaction rate

Thermonuclear reactions play important roles in the nucleo-
synthesis of these elements. The average reaction rate per 
pair of particles was derived from [27].

where � is the reaction cross section, E is the energy, T is the 
temperature, � is the reduced mass, and k is the Boltzmann 
constant. Given that the cross section changes dramatically 
at low energies (astrophysical energy range), extrapolation 
of the experimental results to low energies is unreliable. 
The cross section can be given based on the astrophysical 
S-factor, S(E), which smoothly changes with energy [27],
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where S(E) includes all nuclear effects and � denotes the 
Sommerfeld parameter, which is given as follows:

In this case, the reaction rate can be expressed as follows:

where b denotes barrier penetration.

Given that the S-factor changes more slowly in the astro-
physical energy region, it would be better to investigate the 
model calculation of S-factors with a combination of input 
parameters that are most compatible with the experimental 
results.

2.2  Inputs for the model calculation

121Sb(�,�)125 I reaction cross sections were predicted using the 
TALYS 1.96 computer code [28] which uses Hauser–Fesh-
bach statistical model calculations. Optical model potentials 
(OMP), level density models (LDM), and strength function 
models (SFM) play important roles in theoretical cross-
sectional calculations. Detailed information on the models 
can be found in the relevant literature. To investigate the 
sensitivities of these parameters to the reaction cross sec-
tions, they are calculated for combinations of eight OMP, six 
LDM, and nine SFM, as listed in Tables 1, 2, and 3 .

OMP serve as a major input parameter in the calcula-
tion of the cross section in the astrophysical energy range. 
The OMP used in these calculations are denoted as OMP-1 
through OMP-8. They consist of the normal alpha poten-
tial by Watanabe [29], the work of McFadden and Satchler 
[30], contributions from Demetriou et al. [31], Avrigeanu 
et al. [32]—which is the default selection of the code—along 
with the research of Nolte et al. [33] and another study by 
Avrigeanu et al. [34].

Three macroscopic and three phenomenological density 
models were used for the calculations. Phenomenologi-
cal LDM include the constant temperature + Fermi gas 
model [35], back-shifted Fermi gas model [36, 37], and 
generalized superfluid model [38, 39], labeled as LDM-1 
through LDM-3. Two macroscopic LDM were selected 
using the Skyrme force from Goriely’s (LDM-4) [40] and 
Hilaire’s (LDM-5) [41] tables. The third macroscopic 

(2)�(E) =
1

E
exp (−2��)S(E)

(3)� =
Z1Z2e

2

ℏv
.

(4)

⟨�v⟩ =
�

8

��

�1∕2
1

(kT)3∕2

∞

∫
0

S(E) exp
�
−

E

kT
−

b

E1∕2

�
dE

(5)b = (2�)1∕2 �e2Z1Z2∕ℏ



Investigation of the 121Sb(α,γ)125I reaction cross‑section calculations at astrophysical e…

1 3

Page 3 of 8   168 

LDM used the Gogny force from Hilaire’s combinatorial 
tables (LDM-6) [42]. The default option for the code was 
the constant temperature Fermi gas model (LDM-1) [35].

Nine different SFM are selected for the calculations, 
labeled SFM-1 through SFM-9, as listed in Table 3. The 

default option of the SFM is the Brink–Axel Lorentzian 
model (SFM-2) [45, 46].

In astrophysical environments, the reactions that occur 
within the astrophysical energy range are important. Con-
sequently, calculations were performed in increments of 0.1 
MeV, spanning from 6.00 to 14.5 MeV. This range encap-
sulates the astrophysical energy range known as the Gamow 
window, an overlapping region of the Maxwell–Boltzmann 
distribution and Coulomb barrier terms present in Eq. (4). 
Specifically, the Gamow window extends from 6.15 MeV to 
8.68 MeV at a temperature of 3.0 GK for the 121Sb(�,�)125 I 
reaction [54].

2.3  Threshold logic unit method

The threshold logic unit (TLU) method was utilized to 
identify the most suitable input parameter sets from 432 
combinations of eight OMP, six LDM, and nine SFM for 
the radiative alpha capture reaction of the 121 Sb isotope. 
The TLU method is fundamentally based on the concept 
of binary threshold functions. In this approach, each input 
is multiplied by a corresponding weight, and the sum of 
these weighted inputs is then compared with a predefined 
threshold value, as depicted in Eq. (7) [24]. If the sum sur-
passes the threshold, then the TLU generates an output of 1; 
otherwise, the output is 0.

In this study, the input values ( Xi ) were determined by 
comparing the TALYS results with experimental values 
within twice their uncertainties:

where �Ei and �Ti denote the experimental and TALYS 
results, respectively, and Δ�Ei denotes the experimental 
uncertainty at energy i.

The obtained binary input values were compared with 
the threshold � , and the best model combinations BMC were 
determined as follows:

In this context, the weight factors ( �i ) are designated as one, 
given that the weights of the cross sections remain uniform 
across all energy levels. The variable n denotes the number 
of energies at which the experiments were conducted. The 
threshold � was chosen as the count of experimental ener-
gies where the TALYS outcomes aligned within twice their 
uncertainties with the experimental values. This implies 
that Xi is one; if not, Xi is zero. The 121Sb(�,�)125 I reaction 
cross sections were gauged at nine distinct energy levels; 

(6)Xi =

{
1 if �Ei − 2Δ�Ei ≤ �Ti ≤ �Ei + 2Δ�Ei
0 otherwise

(7)BMC =

⎧
⎪⎨⎪⎩

1 if
n∑
i=1

(�iXi) ≥ �

0 otherwise

Table 1  Optical model potentials (OMP), which are available in the 
TALYS code. The default options for OMP is the Avrigeanu et  al. 
(2014) (OMP-6)

Model no. Optical model potential

OMP-1 Normal alpha potential [29]
OMP-2 McFadden and Satchler [30]
OMP-3 Demetriou et al. [31] (Table 1)
OMP-4 Demetriou et al. [31] (Table 2)
OMP-5 Demetriou et al. [31] (dispersive model)
OMP-6 Avrigeanu et al. [32]
OMP-7 Nolte et al. [33]
OMP-8 Avrigeanu et al. [34]

Table 2  Level density models (LDM), which are available in the 
TALYS code. The default options for LDM is constant temperature + 
Fermi gas model (LDM-1)

Model no. Level density model

LDM-1 Constant temperature + Fermi gas model [35]
LDM-2 Back-shifted Fermi gas model [36, 37]
LDM-3 Generalized superfluid model [38, 39]
LDM-4 Microscopic level densities (Skyrme force) [40]

from Goriely’s tables
LDM-5 Microscopic level densities (Skyrme force) [41]

from Hilaire’s combinatorial tables
LDM-6 Microscopic LD (temp. dependent HFB, Gogny force)

from Hilaire’s combinatorial tables (2014) [42]

Table 3  Gamma-ray strength function models (SFM) which are avail-
able in the TALYS code. The default options for SFM is the Brink–
Axel Lorentzian model (SFM-2)

Model no Strength function model

SFM-1 Kopecky–Uhl generalized Lorentzian [43, 44]
SFM-2 Brink–Axel Lorentzian [45, 46]
SFM-3 Hartree–Fock BCS tables [47]
SFM-4 Hartree–Fock–Bogoliubov tables [48]
SFM-5 Goriely’s hybrid model [49]
SFM-6 Goriely T-dependent HFB [50]
SFM-7 T-dependent RMF [51]
SFM-8 Gogny D1M HFB+QRPA [52]
SFM-9 Simplified Modified Lorentzian (SMLO) [53]
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consequently, n was set as nine, and the TLU method was 
employed for three threshold values, � = 7, 8, and 9. The 
reaction rates were computed from the TALYS results using 
the most fitting combinations of models that were congruous 
with the experimental values at all nine energy levels, i.e., 
a threshold of nine.

3  Results and discussion

The theoretical outcomes for the 121Sb(�,�)125 I reaction 
cross section and astrophysical S-factor were computed 
using 432 combinations of eight OMP, six LDM, and nine 
SFM. These results were then compared with the experi-
mental values acquired at nine energy levels. The model 
parameters are denoted as MP − ijk , where i, j, and k rep-
resent OMP − i , LDM − j , and SFM − k , respectively, as 
listed in Tables 1, 2, and 3. In the study deploying the TLU 
method, 12 combinations are identified as compatible with 
the experimental outcomes at seven out of the twelve ener-
gies, as depicted in Fig. 1. Notably, a dramatic decrease 
in cross-sectional values predicted by the potential model 
labeled as 8 [34] is observed between 9 and 9.5 MeV. The 
significant depths illustrated in Figs. 1 and 2 could poten-
tially be due to a numerical issue within the code.

The application of the TLU method identified only two 
combinations that aligned with the experimental results 
across all nine energy values. These two optimal matches 

(MP-338 and MP-432) were selected to calculate the reac-
tion rates. The cross sections computed with the combina-
tions of MP-338 and MP-432 produced consistent results, 
ranging between 0.76 and 1.20 times at all the experimental 
energy values.

The cross-sectional calculations conducted with identical 
OMP and LDM produced highly similar results across dif-
ferent SFM values, making them challenging to differentiate 
on the graphs. For instance, the cross-sectional results for 
MP-635 and MP-638 in Fig. 2 are very similar, although 
their differences become more pronounced in the astrophysi-
cal energy region.

The cross sections for the 123Sb(�,n)126 I and 121Sb(�,n)124 I 
reactions were also calculated using the top two combina-
tions: MP-338 and MP-432. This was done to ascertain 
whether the results aligned acceptably with the measure-
ments cited in the existing literature. The predicted values 
were found to be in agreement with the measurements of 
these reactions, as per Korkulu’s research [18], which is 
demonstrated in Fig. 3.

Given the challenge in measuring the reaction cross 
section at lower energies and absence of experimental 
data within the Gamow window energy region, the theo-
retical results were compared with available experimental 
data at higher energies. For the combinations MP-338 and 
MP-432, which provided the closest theoretical outcomes 
to the experimental data, the reaction cross section and rate 
values are detailed in Tables 4 and 5, respectively. Further-
more, the average reaction rates for these two combinations 

Fig. 1  (Color online) 121Sb(�
,�)125 I S factors obtained by 
TALYS using the best 12 
combinations selected. The 
first digit in the legend denotes 
the optical model number, 
the second digit denotes the 
level density model number, 
and the third digit denotes 
the strength function model 
number (Table 1, 2, and 3 ). 
The Gamow window at 3 GK is 
indicated on the plot
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are computed and graphed with respect to temperature, as 
depicted in Fig. 4.

4   Conclusion

The cross section and reaction rates of the 121Sb(�,�)125 I reac-
tion, which plays a significant role in the p-process pathway 
of heavy nuclei responsible for the synthesis of proton-rich 
isotopes, were explored in this study. Although the radiative 
capture 121Sb(�,�)125 I reaction measurement does not offer 
complete information about the reverse photodisintegration 
reaction, it serves as a robust method to verify the reliabil-
ity of the statistical model approach. Based on the result-
ant statistical model parameters, predictions of the cross 
section for the photofragmentation process can be directly 
derived within the scope of the Hauser–Feshbach model. 
This reaction was experimentally measured [18] to expand 
the available experimental database. However, as this experi-
ment was conducted above the astrophysical energy range, 
the measured reaction cross sections must be extrapolated 
toward lower energies with high precision. The extrapola-
tion of the determined astrophysical S-factor will yield more 
accurate results as it exhibits slower changes at lower ener-
gies when compared to the cross section.

A computer code utilizing the statistical Hauser–Fesh-
bach approach was employed to identify theoretical results 
most compatible with the experimental data. The reaction 

Fig. 2  (Color online) Cross sec-
tions of 121Sb(�,�)125 I obtained 
through TALYS using the top 
12 selected combinations. The 
annotations align with those 
described in Fig. 1

Table 4  Cross sections calculated with MP-338 and MP-432, their 
average values, and experimental values, for 121Sb(�,�)125 I reaction

aRef. [18]

E
Lab.

MP-338 MP-432 AVERAGE Experimenta

(MeV) �b �b �b �b

6.00 3.10 × 10−5 6.39 × 10−6 1.87 × 10−5

6.50 3.96 × 10−4 9.26 × 10−5 2.45 × 10−4

7.00 3.68 × 10−3 9.86 × 10−4 2.33 × 10−3

7.50 2.50 × 10−2 6.67 × 10−3 1.58 × 10−2

8.00 1.46 × 10−1 4.64 × 10−2 9.61 × 10−2

8.50 2.20 × 10−1 1.09 × 10−1 1.65 × 10−1

9.00 3.02 × 10−1 2.05 × 10−1 2.53 × 10−1

9.50 6.00 × 10−1 5.00 × 10−1 5.50 × 10−1

10.0 1.29 1.25 1.27
10.06 1.40 1.37 1.39 1.48 ± 0.22
10.41 2.45 2.63 2.54 3.32 ± 0.43
10.50 2.80 3.06 2.93
10.97 5.64 6.69 6.17 5.77 ± 0.77
11.48 11.2 14.1 12.7 12.8 ± 1.3
11.98 20.9 27.3 24.1 24.4 ± 4.5
12.50 37.5 49.3 43.4
12.51 37.9 49.8 43.9 44.9 ± 4.6
13.00 60.8 79.2 70.0
13.05 63.6 82.8 73.2 70.9 ± 10.6
13.48 89.7 115 102 111 ± 11
13.99 125 157 141 147 ± 21
14.50 161 197 179
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cross sections were computed using the TALYS code for 432 
unique combinations of eight optical potentials, six level 
densities, and nine strength function models. The calcula-
tions that came closest to the experimental results were those 
obtained with the combinations of MP-338 and MP-432, 
determined via the TLU method. For nucleosynthesis 

networks, it is recommended to use the average reaction 
rate values that are most compatible with the experimental 
results.

The calculated average reaction rates were found to be 
compatible with STARLIB at lower temperatures (less than 
1.4 GK) and with REACLIB at higher temperatures. Given 

Fig. 3  (Color online) Cross sec-
tions of a 123Sb(�,n)126 I and b 121
Sb(�,n)124 I obtained by TALYS 
using the best two combinations 
(MP-338 and MP-432)

Fig. 4  (Color online) Reaction 
rates calculated with the cross 
sections using the most two 
compatible input parameter sets 
(MP-338 and MP-432) with 
the measurements. The average 
value of the two reaction rates 
for temperatures a between 1.0 
and 2.0 GK and b between 2.0 
and 3.0 GK
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the substantial variations in the cross-sectional calculations 
made with different input parameter models, comparing the 
experimental results with the TALYS results, which only use 
the default parameters, may lead to misleading interpreta-
tions. To improve the accuracy of theoretical cross-sectional 
calculations, it is crucial to conduct additional experimenta-
tion at astrophysical energies to thoroughly test the existing 
models.

The TLU method can discern the most suitable models 
for each parameter to predict reaction cross sections that 
closely align with experimental data. Although recent stud-
ies in this field have predominantly utilized Chi-square tests, 
the TLU offers a different and simpler approach for future 
research endeavors.
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