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A B S T R A C T

Fuzzy fractional differential has the strength to capture the senses of memory and uncertainty simultaneously
involved in dynamical systems. However, a solution for fuzzy fractional differential equations is not always
found regularly. This paper discusses a numerical solution approach for the fuzzy fractional differential
equation using power series approximation with a fuzzy fractional counterpart of Taylor’s theorem. Caputo’s
definition of the fractional derivative and generalized Hukuhara difference are used to describe the fuzzy
differential equation in this paper. Utilization of the generalized Hukuhara difference for the fuzzy valued
function ensures the uniqueness and boundedness of the fuzzy solution in parametric form.

. Introduction

The importance of the Power series is to analyse different complex functions and evaluate its solutions in various numerical methods. Solve the
nteger, fractional and nonlinear differential equations problems and determine the solution region. Consistently, the fuzzy set and fuzzy fractional
ifferential equations with Caputo fractional derivative operation [1] have been applied in this paper. This section discusses the background and
otivation of this study in detail.

.1. Fractional differential equations

Fractional differential equations (FDEs) consist of fractional derivatives having non-local characteristics. The non-local behaviour of the
ractional derivative can be interpreted through its memory-carrying ability in dynamical models. Thus, fractional differential equations have a wide
pectrum of application domains in today’s scientific and industrial fields. In the present century’s research contemporary, fractional differential is
egarded as a robust mathematical tool for modelling concerning non-local or non-Markovian real-world processes, such as viscoelasticity, signal
rocessing, and diffusion with long-range memory, control processing, fractional stochastic systems, and allometry in biology and ecology [2–16].
hough the application-based study of fractional calculus is present century contemporary, the root of the theoretical advancement of fractional
alculus was laid by the works of renowned mathematicians like Leibniz, Euler, and Liouville who encountered integrals and derivatives with
on-integer orders while working through a variety of mathematical problems, and these encounters are where the first clues of fractional calculus
ay be discovered. The beginning of more organized development, however, did not occur until the 19th century. Several kinds of fractional
erivatives are defined in the literature among which Riemann–Liouville and Caputo derivatives are the most widely used fractional derivatives.
ractional differential equations are solved using various numerical techniques [17–25] like the Trapezoidal method, Predictor–Corrector method,
pectral method, etc.
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1.2. Fuzzy set and its background

In crisp set theory, the basic concept is an element is either a member of the set or not a member of the set; i.e., 𝑥 ∈ 𝐴 or 𝑥 ∉ 𝐴. Although, in
the real world the membership of an element is not always crisp. The fuzzy set theory is considered the basis of the identification of belongingness
and non-belongingness. In 1965, Professor Lotfi A. Zadeh first introduced the Fuzzy set [26] concept, where every element of the set has a unique
membership value. The membership values denote the degree of belongness of the element in the set. After that, the fuzzy set has several extensions
over time. The fuzzy set can be represented in an interval called 𝛼−cut of a fuzzy set [27]. Singh, P. et al. [28] use 𝛼−cut method of the fuzzy set
to construct the Malaria model and solve. Bhattacharya, P. P. et al. [29] used Triangular Fuzzy Set (TFS) to analysis environmental pollution. The
fuzzy differential equation was solved using fuzzy Caputo’s differentiability by Akram, M. et al. [30]. Similarly, Ullah, A. et al. [31] applied fuzzy
Yang transform to solve second order differential equations.

Fuzzy sets used in numerous fields, like, Chakraborty, S. et al. [32] applied in health care west management system, Ghorui, N. et al. [33]
used in location selection for shopping malls and Choudhury, S. et al. [34] evaluated the risk factors opposed to COVID 19 using different MCDM
methodologies. To solve differential equations fuzzy sets play crucial roles. Mondal, S. P. et al. [35] used triangular fuzzy set to solve the second
order linear fuzzy differential equations. To solve the linear differential equations appalled intuitionistic fuzzy uncertainty by Mondal, S. P. et al.
[36] and check the existence & stability of the solution of the differential equation used fuzzy uncertain environment by Mondal. S. P. et al. [37].

1.3. Fuzzy differential equations

Zadeh, L. A. [26] innovated the philosophy of fuzziness in 1965, which put many intermediate grey scopes between the ‘‘belongs to’’ and
‘‘not belongs to’’ approach in the classical set theory. Chang and Zadeh [38] introduced the notion of fuzzy derivatives to describe differential
equations under fuzzy uncertainty. There are several proposed types of fuzzy derivatives, which are helpful in resolving practical engineering and
scientific problems. Buckley et al. [39] solve the fuzzy first order differential equation. Initial explanations of fuzzy mappings and the distinctions
between various fuzzy mapping approaches were provided by Dubois and Prade [40–42] in their consecutive works. Additionally, they talked
about the fuzzy differentiation of fuzzy valued functions. Differentiability and integrability characteristics were detailed by Kaleva, O. [43]. Puri
and Ralescu [44] extended the differentiability of the set-valued function introducing Hukuhara derivative for the fuzzy-valued functions. Their
works were followed by several consecutive investigations [43–45] on differential equations with fuzzy initial conditions and coefficients. The
use of Hukuhara derivatives has the limitation that fuzzy solutions eventually become unbounded. Strongly generalized-Hukuhara derivative
and generalized-Hukuhara differentiability notions were proposed in [46,47] and were demonstrated to be superior to the Hukuhara derivative.
However, the drawback of employing these derivatives is that the uniqueness of the solution is lost. The modified Hukuhara derivative (mth
derivative), recently introduced in [48] providing a unique and bounded fuzzy solution.

Tudu et al. [49] solve non-homogenous linear differential equations using fuzzy numbers. Keshavarz et al. [50] developed mathematical models
to solve the first and second order fuzzy differential equations and applied in Drug distribution in the Human body, Newton’s low of cooling,
harmonic oscillation problems, etc. The fuzzy differential equation also applied in biological model by Routaray et al. [51], tumor growth design
in the human body applying generalized Hukuhara derivative by Khaliq et al. [52] and COVID-19 prediction model by Padmapriya et al. [53].
Cazarez-Castro et al. [54] applied this fuzzy differential equation (FDE) in engineering field, Nadeem et al. [55] use the FDE to analyse the Heat
transformation process between two Plates and Qiu et al. [56] applied FDE in fuzzy numbers quotient space. The malaria model is developed and
solved using FDE by Singh et al. [28].

1.4. Fuzzy fractional differential equation

Suppose a memory concerned dynamical system is taken into a mathematical model under uncertain phenomena to deal with, the theory of
fuzzy fractional differential equation is one of the effective and essential mathematical tools in this concern. In that context, fractional differential
equation stands for memory-based dynamics through its non-local characteristic while fuzzy logic refers uncertainty in mathematical framework.
Agarwal et al. [57] first considered fractional differential equation under fuzzy uncertainty in which he used Riemann–Liouville definition for
fractional derivative. Following his footstep, the genre of fuzzy fractional differential equations was established in a last decade. In this context,
Hoa et al. [58] discussed fuzzy fractional differential equations in terms of Caputo fractional derivatives. For the uniqueness of the solution of
uncertain fractional differential equations, Lupulescu et al. [59] established generalized Hukuhara fractional differentiability under uncertainty. To
deal with manifestation of the solution, fuzzy Laplace transformation is very significant mathematical tool which was introduced by Allahviranloo
and Ahmadi [60]. Salahshour and Allahviranloo [61] used the notion of fuzzy Laplace transformation to solve fuzzy fractional differential equations.
Several more theoretical advancements [62–68] were done in this regard. However, explicit solutions for fuzzy fractional differential equations
cannot be derived in an easy manner. In those cases, numerical approaches do the job. In literature, we find a few innovative techniques to find
numerical solutions for the fuzzy fractional differential equations.

This paper exhibits a new approach to get the numerical solution by taking fuzzy fractional power series approximation due to fuzzy fractional
analogue of the Taylor’s theorem [69–71]. Here, the fuzzy fractional Taylor’s expansion [72,73] is done under fuzzy Caputo fractional derivative
[74]. The convergence of the fuzzy power series containing fraction terms is proved. Table 1 summarizes the contributions of this paper and the
related existing works.

1.5. Background of Fuzzy fractional power series

This section discussed the fuzzy power series (FPS) and its application. The fuzzy power series [1] representation shows the efficiency of the
representative and computational complexity of the model. This study deals with solutions of fuzzy fractional differential equations using fuzzy
Caputo fractional derivative operator [42] and fractional Taylor’s theorem [77]. Use the generalized Hukuhara derivative and the generalized
Hukuhara difference to represent the fuzzy power series solution in this study. This power series expansion use in enormous field, like, Shahidi, M.
et al. [78] use power series expansion to solve fuzzy differential equations, Alomari, A. K. et al. [79] solve the nonlinear Caputo fractional Volterra
integro-differential equations by power series and so on. Alaroud, M. et al. [80] and Alaroud, M. et al. [81] used FPS to solve fuzzy fractional
differential equations.
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Table 1
Comparison F of the numerical approaches to get solutions of the fuzzy fractional differential equations.

Year Name of the authors Type of problem Techniques

2020 Allaviranloo et al. [72] Fuzzy fractional differential equation Fuzzy generalized Taylor theorem
2021 Khakrangin et al. [75] Fuzzy fractional differential equation Haar wavelet
2022 Haq et al. [76] Fuzzy fractional differential equation Reliable method
2024 In this article Fuzzy fractional differential equation Fuzzy Fractional Taylor’s series under

Caputo derivative under generalized
Hukuhara difference

1.6. Taylor series exponential for differential equation

Background of the Taylor series exponential and its application in differential equations are discussed in this section. It is a sum of an infinite
series of a derivative of functions on a particular point. The Taylor series exponential is used to evaluate the solutions of differential equations.
Zhang, Z. et al. [82] used the Taylor series to solve the nonlinear differential equations and Jumarie, G. [83] applied the Taylor series to solve
PDE and nondifferentiable equations. Abad, A. et al. [84] applied the Taylor series integrator to find out the solution to differential equations and
Ren, Y. et al. [85] used the Taylor series to handle second kind differential equations.

1.7. Motivation and novelty of this study

The main purpose of this research is to solve the fuzzy factional differential equations using the fuzzy power series approximation, Taylor series
exponential and fuzzy Caputo fractional derivative. Here, we solve the fractional order differential equation and check the convergence of the series
solution. Lastly, examine the solution using numerical examples the draw the curve of the solution functions in 2D and 3D spaces. The result of
our study is explored elaborately and future extensions are discussed in the conclusion.

1.8. Structure of this study

This research, contains an introduction to the differential equation, factional differential equation and fuzzy factional differential equation with
their background in Section 1. In Section 2 discussed on preliminaries about fuzzy sets and its properties. The fuzzy fractional counterpart of
Taylor’s series approximation is introduced in Section 3. Section 4 contains the numerical illustration followed by result & discussion in Section 5.
Finally, the conclusion of this study is discussed in Section 6.

2. Preliminaries

In this present section, some preliminaries on the fuzzy set and logic are recapitulated. The Fuzzy sets [26] are the set of collections of objects
associated with membership values distinguished from crisp sets. Fuzzy numbers [86,87] are a special type of fuzzy set that satisfies some properties,
which are discussed in detail in this section. Also, 𝛼−cut of a fuzzy set is another representation that is also used in this study, discussed by Mukherjee
et al. [86].

Definition 1 (Fuzzy Set [88]). An ordered pair made up of a fuzzy set 𝜂̃ and its membership function 𝜇𝜂̃ (𝜒) is known as a fuzzy set. A set is referred
o as a discrete fuzzy set if it is created using a discrete universe and it is given as

{ 𝜇𝜂̃(𝜒1)
𝜒1

,
𝜇𝜂̃(𝜒2)
𝜒2

,
𝜇𝜂̃(𝜒3)
𝜒3

,…
}

. Set is referred to as a continuous

fuzzy set if it is created using a continuous universe. Another representation of fuzzy set 𝜂̃ is 𝜂̃ =
{(

𝜒1, 𝜇𝜂̃
(

𝜒1
))

,
(

𝜒2, 𝜇𝜂̃
(

𝜒2
))

,
(

𝜒3, 𝜇𝜂̃
(

𝜒3
))

,…
}

.

Definition 2 (Fuzzy Number [86]). Consider, R be a set of real numbers is a universal set of discourse. Then 𝐸̃ be a fuzzy set defined on R and
𝐸̃ = {𝜂̃∶𝑅 → [01]} be the collection of fuzzy numbers, satisfying the following properties

(a) Membership value of 𝜂̃ (i.e., 𝜇𝜂̃) should be 1 for at least one point.
(b) 𝛼−cut must be closed. The parametric form of 𝛼 𝜂̃ =

[

𝜂, 𝜂
]

where 𝜂 ≤ 𝜂.

(c) Support must be bounded.
(d) The set 𝐸̃ is convex fuzzy set, i.e., 𝜇𝐸̃

(

𝜆𝑡1 + (1 − 𝜆) 𝑡2
)

≥ min
{

𝜇𝐸̃
(

𝑡1
)

, 𝜇𝐸̃
(

𝑡2
)}

for all 𝑡1, 𝑡2 ∈ 𝐸̃ and 𝜆 ∈ [0, 1].

Definition 3 (Triangular Fuzzy Number (TFN) [86]). The triangular fuzzy number (𝜂̃) is denoted as triplet 𝜂̃ = (𝑝, 𝑞, 𝑟) where 𝑝, 𝑞, 𝑟 ∈ R with 𝑝 ≤ 𝑞 ≤ 𝑟
and its membership function

(

𝜇𝜂̃ (𝜒)
)

is given as

𝜇𝜂̃ (𝜒) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜒 − 𝑝
𝑞 − 𝑝

; 𝑝 < 𝜒 ≤ 𝑞

𝑟 − 𝜒
𝑟 − 𝑞

; 𝑞 < 𝜒 ≤ 𝑟

0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

The 𝛼−cut of 𝜂̃ is 𝛼 𝜂̃ = [𝑝 + (𝑞 − 𝑝) 𝛼, 𝑟 − (𝑟 − 𝑞)𝛼] where 0 ≤ 𝛼 ≤ 1.

Remarks 1. The geometric representation of Triangular Fuzzy Number (TFN) are presented in Fig. 1. The structural diagram of the membership
function

(

𝜇𝜂̃
)

of TFN 𝜂̃ = (𝑝, 𝑞, 𝑟) are presented. The 𝛼−cut, support and core of fuzzy number are shown [86].
3
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Fig. 1. Graphical representation of Triangular Fuzzy Number (TFN).

Definition 4 (Arithmetic Operation of TFNs [86]). Let 𝜂̃, 𝜉 ∈ 𝐸 are triangular fuzzy numbers and 𝑘 is scalar then the arithmetic operations between
𝜂̃ and 𝜉 for all 𝛼 ∈ (01], are as follows

𝛼 𝜂̃ ⊕ 𝛼𝜉 =
[

𝜂, 𝜂
]

⊕
[

𝜉, 𝜉
]

=
[

𝜂 + 𝜉, 𝜂 + 𝜉
]

(2)

𝑘 ⊗ 𝛼 𝜂̃ =

⎧

⎪

⎨

⎪

⎩

[

𝑘𝜂, 𝑘𝜂
]

𝑘 ≥ 0
[

𝑘𝜂, 𝑘𝜂
]

𝑘 < 0
(3)

where 𝛼 𝜂̃ and 𝛼𝜉 are 𝛼−cut of 𝜂̃ and 𝜉, respectively.

Definition 5 (Multiplication of TFNs [86]). Let 𝜂̃, 𝜉 ∈ 𝐸 are triangular fuzzy numbers, then

𝛼 𝜂̃ ⊗ 𝛼𝜉 =
[

𝜂, 𝜂
]

⊗
[

𝜉, 𝜉
]

=
[

min
{

𝜂𝜉, 𝜂𝜉, 𝜂𝜉, 𝜂𝜉
}

,max
{

𝜂𝜉, 𝜂𝜉, 𝜂𝜉, 𝜂𝜉
}]

(4)

If both 𝜂̃, 𝜉 ∈ 𝐸 are positive fuzzy numbers, then

𝛼 𝜂̃ ⊗ 𝛼𝜉 =
[

𝜂, 𝜂
]

⊗
[

𝜉, 𝜉
]

=
[

𝜂𝜉, 𝜂𝜉
]

(5)

Definition 6 (Generalized Hukuhara Difference [28,47]). Consider 𝜂̃ and 𝜉 are two fuzzy numbers and 𝛼 𝜂̃ =
[

𝜂, 𝜂
]

and 𝛼𝜉 =
[

𝜉, 𝜉
]

are the 𝛼−cut of

them, respectively. Then the fuzzy difference (i.e., Generalized Hukuhara difference) between 𝛼 𝜂̃ and 𝛼𝜉 is given as

𝛼 𝜂̃ ⊖ 𝛼𝜉 =
[

min
{

𝜂 − 𝜉, 𝜂 − 𝜉
}

,max
{

𝜂 − 𝜉, 𝜂 − 𝜉
}]

(6)

The Hausdorff distance between fuzzy numbers [89] is given, H∶𝐸 × 𝐸 → 𝑅+ ∪ 0 as

H
(𝛼 𝜂̃, 𝛼𝜉

)

= 𝑆𝑢𝑝 max
0≤𝛼≤1

{[

min
{

𝜂 − 𝜉, 𝜂 − 𝜉
}

,max
{

𝜂 − 𝜉, 𝜂 − 𝜉
}]}

(7)

Theorem 1. The metric space (𝐸,H) is complete, separable and locally compact [89–91] with following cases,

(1) H
(𝛼 𝜂̃, 𝛼𝜉

)

= H
(𝛼𝜉, 𝛼 𝜂̃

)

; ∀𝜂̃, 𝜉 ∈ 𝐸
(2) H

(

𝑘
(𝛼 𝜂̃, 𝛼𝜉

))

= |𝑘|H
(𝛼 𝜂̃, 𝛼𝜉

)

; ∀𝑘 ∈ 𝑅 and 𝜂̃, 𝜉 ∈ 𝐸.
(3) H

(𝛼 𝜂̃ ⊕ 𝛼𝜉, 𝛼𝜏 ⊕ 𝛼 𝜌̃
)

≤ H (𝛼 𝜂̃, 𝛼𝜏)⊕H
(𝛼𝜉, 𝛼 𝜌̃

)

; ∀𝜂̃, 𝜉, 𝜏, 𝜌̃ ∈ 𝐸.

Note 1: The properties of complete metric space are described by Avilés et al. [92], the separable metric spaces are described by Soileau, K. M. [93]
and compact & locally compact spaces are discussed by Dranishnikov, A. N. [94]. In Theorem 1, these concepts are extended in fuzzy environments.

3. Fuzzy fractional counterpart of Taylor’s series approximation

In this section, the fuzzy fractional differential equation is solved using fuzzy fractional Taylor’s series. Allahviranloo, T. et al. [72] applied fuzzy
generalized Taylor theorem to solve the fuzzy factional differential equation. Senol, M. et al. [95] use Taylor series convergence analysis for solving

partial differential equations (PDE). Also, Alaroud, M. et al. [80] utilize the fuzzy Caputo fractional derivative under the Taylor series approximation

4
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to solve the fuzzy fractional differential equations. Here, the fuzzy fractional Taylor’s expansion is done under fuzzy Caputo fractional derivative
[74]. The convergence of the fuzzy power series containing fraction terms is proved. This section consists the subsections as follows:

3.1. Fractional derivative of fuzzy valued functions

The fuzzy fractional derivative of fuzzy functions is described by Harir, A. et al. [96]. The fractional derivative under the fuzzy Caputo is
described by Allahviranloo, T. et al. [97] and Ain, Q. T. et al. [98]. The definitions and example of fractional derivative of fuzzy valued functions
are discussed as follows:

Definition 7. A fuzzy valued function in parametric form [98] is defined as

𝛼 𝑔̃
(

𝜉
)

=
[

min
{

𝑔
(

𝜉, 𝜉
)

, 𝑔
(

𝜉, 𝜉
)}

,max
{

𝑔
(

𝜉, 𝜉
)

, 𝑔
(

𝜉, 𝜉
)}]

(8)

There are several types of fuzzy fractional derivatives, like Differentiable Type Fuzzy Fractional Derivative (DTFFD), Caputo-Type Fuzzy
ractional Derivative with Generalized Differentiability (CTFFDGD), Jumarie Type Fuzzy Fractional Derivative (JTFFD), Yang-Type Fuzzy Fractional
erivative (YTFFD), Atangana–Baleanu–Caputo Type Fuzzy Fractional Derivative (ABC-TFFD) and Caputo Type Fuzzy Fractional Derivative

CTFFD). This study considered the Caputo Type Fuzzy Fractional Derivative (CTFFD) [23]. The Caputo factional derivative [24] is more useful for
his study based on initial condition, real world phenomena, physical interpretations, numerical simulations, smoother transitions, etc. The Caputo
actional derivatives discussed as follows:

efinition 8. The Caputo fractional derivative [97] of order 𝛽 ∈ (0, 1] of a fuzzy valued function 𝑔̃
(

𝜉
)

is denoted as 𝐷𝛽 𝑔̃
(

𝜉
)

and is given by

𝐷𝛽 𝑔̃
(

𝜉
)

= 1
𝛤 (𝑛 − 𝛽) ∫

𝜉

0

(

𝜉 ⊖ 𝜂̃
)𝑛−𝛽−1 𝑔̃𝑛 (𝜂̃) 𝑑𝜂̃ (9)

The parametric form or 𝛼−cut of Eq. (9) produces the following derivation:

𝐷𝛽 𝑔̃
(

𝜉
)

= 1
𝛤 (𝑛 − 𝛽) ∫

𝜉

0

(𝛼𝜉 ⊖ 𝛼 𝜂̃
)𝑛−𝛽−1 𝑔̃𝑛 (𝛼 𝜂̃) 𝑑𝜂̃ (10)

That is
[

min𝐷𝛽
{

𝑔
(

𝜉, 𝜉
)

, 𝑔
(

𝜉, 𝜉
)}

,max𝐷𝛽
{

𝑔
(

𝜉, 𝜉
)

, 𝑔
(

𝜉, 𝜉
)}]

=

[

1
𝛤 (𝑛 − 𝛽) ∫

𝜉

0
min((𝜉 − 𝜂)𝑛−𝛽−1,

(

𝜉 − 𝜂
)𝑛−𝛽−1

)𝑔𝑛𝑑𝜂, 1
𝛤 (𝑛 − 𝛽) ∫

𝜉

0
max((𝜉 − 𝜂)𝑛−𝛽−1,

(

𝜉 − 𝜂
)𝑛−𝛽−1

)𝑔𝑛𝑑𝜂

]

(11)

Using the interval arithmetic, we get the following equations:

𝐷𝛽
𝐶𝐿𝑔 = min𝐷𝛽

{

(

𝜉 − 𝜂
)𝑛−𝛽−1

,
(

𝜉 − 𝜂
)𝑛−𝛽−1

}

= 1
𝛤 (𝑛 − 𝛽) ∫

𝜉

0
min

{

(

𝜉 − 𝜂
)𝑛−𝛽−1

,
(

𝜉 − 𝜂
)𝑛−𝛽−1

}

𝑔𝑛𝑑𝜂 (12)

𝐷𝛽
𝐶𝑈𝑔 = max𝐷𝛽

{

(

𝜉 − 𝜂
)𝑛−𝛽−1

,
(

𝜉 − 𝜂
)𝑛−𝛽−1

}

= 1
𝛤 (𝑛 − 𝛽) ∫

𝜉

0
max

{

(

𝜉 − 𝜂
)𝑛−𝛽−1

,
(

𝜉 − 𝜂
)𝑛−𝛽−1

}

𝑔𝑛𝑑𝜂 (13)

In Eqs. (12) and (13), 𝐷𝛽
𝐶𝐿𝑔, 𝐷𝛽

𝐶𝑈𝑔 are fuzzy fractional Caputo lower and upper 𝛼 − 𝑐𝑢𝑡 derivatives respectively.

xample 1. Evaluate 𝐷𝛽 (𝜉𝑛
)

at 𝜉0 = 1̃ when 𝛽 ∈ (0, 1].

olution: Taking 𝛼−cut of the fuzzy fractional derivative 𝐷𝛽 (𝜉𝑛
)

of the fuzzy valued function 𝜉𝑛, we get

𝐷𝛽 (𝛼𝜉𝑛
)

=
[

𝐷𝛽𝜉𝑛, 𝐷𝛽𝜉
𝑛]

nd, the 𝛼−cut representation of the given condition is

𝛼𝜉0 = 𝛼 1̃ =
[

𝜉
0
, 𝜉0

]

= [0.5 + 0.5𝛼, 1.5 − 0.5𝛼]

Following the discussion as the consequence of Definition 8, we get
[

𝐷𝛽
(

𝜉𝑛
)

, 𝐷𝛽
(

𝜉
𝑛)]

=

[

min

{

𝑛!
𝛤 (𝑛 − 𝛽) ∫

𝜉

0

(

𝜉 − 𝜂
)𝑛−𝛽−1

𝑑𝜂, 𝑛!
𝛤 (𝑛 − 𝛽) ∫

𝜉

0

(

𝜉 − 𝜂
)𝑛−𝛽−1

𝑑𝜂

}

,

max

{

𝑛!
𝛤 (𝑛 − 𝛽) ∫

𝜉

0

(

𝜉 − 𝜂
)𝑛−𝛽−1

𝑑𝜂, 𝑛!
𝛤 (𝑛 − 𝛽) ∫

𝜉

0

(

𝜉 − 𝜂
)𝑛−𝛽−1

𝑑𝜂

}]

Here, fuzzy initial condition is positive, so above expression becomes as follows,

[

𝐷𝛽
(

𝜉𝑛
)

, 𝐷𝛽
(

𝜉
𝑛)]

=

⎡

⎢

⎢

⎢

⎢

𝑛!
𝛤 (𝑛 − 𝛽)

⎛

⎜

⎜

⎜

⎝

(

𝜉 − 𝜂
)𝑛−𝛽

𝑛 − 𝛽

⎞

⎟

⎟

⎟

⎠

𝜉

, 𝑛!
𝛤 (𝑛 − 𝛽)

⎛

⎜

⎜

⎜

⎝

(

𝜉 − 𝜂
)𝑛−𝛽

𝑛 − 𝛽

⎞

⎟

⎟

⎟

⎠

𝜉
⎤

⎥

⎥

⎥

⎥

⎣
0 0

⎦

5
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=

⎡

⎢

⎢

⎢

⎣

𝑛!
𝛤 (𝑛 − 𝛽)

(

𝜉
)𝑛−𝛽

𝑛 − 𝛽
, 𝑛!
𝛤 (𝑛 − 𝛽)

(

𝜉
)𝑛−𝛽

𝑛 − 𝛽

⎤

⎥

⎥

⎥

⎦

=
[

𝛤 (𝑛 + 1)
𝛤 (𝑛 − 𝛽 + 1)

(

𝜉
)𝑛−𝛽

,
𝛤 (𝑛 + 1)

𝛤 (𝑛 − 𝛽 + 1)

(

𝜉
)𝑛−𝛽

]

At 𝜉
0
= 0.5 + 0.5𝛼, the value of 𝐷𝛽

(

𝜉𝑛
0

)

evaluated as

𝐷𝛽
(

𝜉𝑛
0

)

=
𝛤 (𝑛 + 1)

𝛤 (𝑛 − 𝛽 + 1)
(0.5 + 0.5𝛼)𝑛−𝛽

and at 𝜉0 = 1.5 − 0.5𝛼, the value of 𝐷𝛽
(

𝜉
𝑛
0

)

evaluated as

𝐷𝛽
(

𝜉
𝑛
0

)

=
𝛤 (𝑛 + 1)

𝛤 (𝑛 − 𝛽 + 1)
(1.5 − 0.5𝛼)𝑛−𝛽

Thus, the fuzzy fractional derivative of 𝜉𝑛 in parametric form of at any arbitrary point,

𝐷𝛽 (𝛼𝜉𝑛
)

=
[

min
{

𝛤 (𝑛 + 1)
𝛤 (𝑛 − 𝛽 + 1)

(

𝜉
)𝑛−𝛽

,
𝛤 (𝑛 + 1)

𝛤 (𝑛 − 𝛽 + 1)

(

𝜉
)𝑛−𝛽

}

,max
{

𝛤 (𝑛 + 1)
𝛤 (𝑛 − 𝛽 + 1)

(

𝜉
)𝑛−𝛽

,
𝛤 (𝑛 + 1)

𝛤 (𝑛 − 𝛽 + 1)

(

𝜉
)𝑛−𝛽

}]

(14)

For validation of result, we put 𝛼 = 1 and 𝛽 = 1 both values of 𝐷𝛽
(

𝜉𝑛
)

and 𝐷𝛽
(

𝜉
𝑛)

coincide.

3.2. Fuzzy power series

In this section, we discussed about fuzzy power series and properties of this series. The fuzzy power series defined, various properties of power
series converge are described by Newman, W. G. [99]. And fuzzy power series applied in fuzzy differential equation to evaluate the solution. Shiri
et al. [100] solve the fuzzy factional differential equation using fuzzy power series. To solve the fuzzy Legendre differential equation, use the fuzzy
power series applied by Sabzi et al. [101]. The fuzzy power series and its properties are described as follows:

We consider a series,

𝜂̃
(

𝜉
)

=
∞
∑

𝑛=0
𝑎̃𝑛 ⊗

(

𝜉 ⊖ 𝜉0
)𝑛

= 𝑎̃𝑛 ⊕
{

𝑎̃1 ⊗
(

𝜉 ⊖ 𝜉0
)1
}

⊕
{

𝑎̃2 ⊗
(

𝜉 ⊖ 𝜉0
)2
}

⊕
{

𝑎̃3 ⊗
(

𝜉 ⊖ 𝜉0
)3
}

⊕⋯ (15)

Eq. (15) represent a fuzzy version of the power series about the fuzzy number 𝜉0, where 𝑎̃𝑛s are fuzzy coefficients of the power series. Taking
𝛼−cut on both sides of the above equation, we get

𝛼 𝜂̃
(

𝜉
)

= 𝛼 𝑎̃0 ⊕
{

𝛼 𝑎̃1 ⊗
(𝛼𝜉 ⊖ 𝛼𝜉0

)1
}

⊕
{

𝛼 𝑎̃2 ⊗
(𝛼𝜉 ⊖ 𝛼𝜉0

)2
}

⊕
{

𝛼 𝑎̃3 ⊗
(𝛼𝜉 ⊖ 𝛼𝜉0

)3
}

⊕⋯ (16)

The parametric counterpart of the above level cut representation is given as follows:
[

𝜂
(

𝜉, 𝜉
)

, 𝜂
(

𝜉, 𝜉
)]

=
[

min
{

𝑎0, 𝑎0
}

,max
{

𝑎0, 𝑎0
}]

⊕
{

[

min
{

𝑎1, 𝑎1
}

,max
{

𝑎1, 𝑎1
}]

⊗
[

min
{

(

𝜉 − 𝜉
0

)1
,
(

𝜉 − 𝜉0
)1

}

,max
{

(

𝜉 − 𝜉
0

)1
,
(

𝜉 − 𝜉0
)1

}]}

⊕
{

[

min
{

𝑎2, 𝑎2
}

,max
{

𝑎2, 𝑎2
}]

⊗
[

min
{

(

𝜉 − 𝜉
0

)2
,
(

𝜉 − 𝜉0
)2

}

,max
{

(

𝜉 − 𝜉
0

)2
,
(

𝜉 − 𝜉0
)2

}]}

⊕
{[

min
{

𝑎3, 𝑎3
}

,max
{

𝑎3, 𝑎3
}]

⊗
[

min
{

(

𝜉 − 𝜉
0

)3
,
(

𝜉 − 𝜉0
)3

}

,max
{

(

𝜉 − 𝜉
0

)3
,
(

𝜉 − 𝜉0
)3

}]}

⊕⋯ (17)

Eq. (17) can be put in standard form as follows:
[

𝜂
(

𝜉, 𝜉
)

, 𝜂
(

𝜉, 𝜉
)]

=
∑

𝑛=0

{

[

min
{

𝑎𝑛, 𝑎𝑛
}

,max
{

𝑎𝑛, 𝑎𝑛
}]

⊗
[

min
{(

𝜉 − 𝜉
0

)𝑛
,
(

𝜉 − 𝜉0
)𝑛}

,max
{(

𝜉 − 𝜉
0

)𝑛
,
(

𝜉 − 𝜉0
)𝑛}]}

(18)

That is,
[

𝜂
(

𝜉, 𝜉
)

, 𝜂
(

𝜉, 𝜉
)]

=
∑

𝑛=0

[

min
{

min
{

𝑎𝑛, 𝑎𝑛
}

min
{(

𝜉 − 𝜉
0

)𝑛
,
(

𝜉 − 𝜉0
)𝑛}

,

min
{

𝑎𝑛, 𝑎𝑛
}

max
{(

𝜉 − 𝜉
0

)𝑛
,
(

𝜉 − 𝜉0
)𝑛}

,

max
{

𝑎𝑛, 𝑎𝑛
}

min
{(

𝜉 − 𝜉
0

)𝑛
,
(

𝜉 − 𝜉0
)𝑛}

,

max
{

𝑎 , 𝑎
}

max
{(

𝜉 − 𝜉
)𝑛

,
(

𝜉 − 𝜉
)𝑛}}

,
𝑛 𝑛 0 0

6
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T

A

3

[

T
p

max
{

min
{

𝑎𝑛, 𝑎𝑛
}

min
{(

𝜉 − 𝜉
0

)𝑛
,
(

𝜉 − 𝜉0
)𝑛}

,

min
{

𝑎𝑛, 𝑎𝑛
}

max
{(

𝜉 − 𝜉
0

)𝑛
,
(

𝜉 − 𝜉0
)𝑛}

,

max
{

𝑎𝑛, 𝑎𝑛
}

min
{(

𝜉 − 𝜉
0

)𝑛
,
(

𝜉 − 𝜉0
)𝑛}

,

max
{

𝑎𝑛, 𝑎𝑛
}

max
{(

𝜉 − 𝜉
0

)𝑛
,
(

𝜉 − 𝜉0
)𝑛}}]

(19)

For sake of convenience, we are using following notations

𝑏𝑛 = min
{

𝑎𝑛, 𝑎𝑛
}

, 𝑏𝑛 = max
{

𝑎𝑛, 𝑎𝑛
}

,
(

𝜂 − 𝜂
0

)𝑛
= min

{(

𝜉 − 𝜉
0

)𝑛
,
(

𝜉 − 𝜉0
)𝑛}

, and
(

𝜂 − 𝜂0
)𝑛 = max

{(

𝜉 − 𝜉
0

)𝑛
,
(

𝜉 − 𝜉0
)𝑛}

.

hus, Eq. (19) is converted into the below mentioned equation:
[

𝜂
(

𝜉, 𝜉
)

, 𝜂
(

𝜉, 𝜉
)]

=
∑

𝑛=0

[

𝑏𝑛
(

𝜂 − 𝜂
0

)𝑛
, 𝑏𝑛

(

𝜂 − 𝜂0
)𝑛
]

(20)

When the fuzzy initial condition is positive, then we can use the notations, 𝜂
(

𝜉, 𝜉
)

= 𝜂
(

𝜉
)

, 𝜂
(

𝜉, 𝜉
)

= 𝜂
(

𝜉
)

and thus Eq. (20) will be converted as
follows:

[

𝜂
(

𝜉
)

, 𝜂
(

𝜉
)]

=
[

min
{

𝑎0 + 𝑎1
(

𝜉 − 𝜉
0

)1
+ 𝑎2

(

𝜉 − 𝜉
0

)2
+⋯ , 𝑎0 + 𝑎1

(

𝜉 − 𝜉0
)1

+ 𝑎2
(

𝜉 − 𝜉0
)2

+⋯
}

,

max
{

𝑎0 + 𝑎1
(

𝜉 − 𝜉
0

)1
+ 𝑎2

(

𝜉 − 𝜉
0

)2
+⋯ , 𝑎0 + 𝑎1

(

𝜉 − 𝜉0
)1

+ 𝑎2
(

𝜉 − 𝜉0
)2

+⋯
}]

(21)

Note 2: Fuzzy power series is convergent if lower bound and upper bound of the series are convergent simultaneously. The convergent of the fuzzy
power series describe and prove by Newman, W. G. [99].

3.3. Convergence of fuzzy power series in parametric form

This section is dealing with the convergency criteria of the fuzzy power series mentioned in the earlier subsection. Bataineh et al. [102] applied
fuzzy power series in parametric form to check converges of the series and solve the initial value problem.

Theorem 2. A series in Eq. (19) using Eq. (20) converges for any arbitrary point, when |

|

|

𝜂 − 𝜂
0
|

|

|

< 1 and |

|

𝜂 − 𝜂0|| < 1.

Proof. We consider Eq. (20) of the previous subsection that is
[

𝜂
(

𝜉, 𝜉
)

, 𝜂
(

𝜉, 𝜉
)]

=
[

𝑏𝑛
(

𝜂 − 𝜂
0

)𝑛
, 𝑏𝑛

(

𝜂 − 𝜂0
)𝑛
]

pplying root test and let 𝑙 = lim𝑛⟶∞

|

|

|

|

|

𝑏
1
𝑛
𝑛

|

|

|

|

|

, 𝑙 = lim𝑛⟶∞

|

|

|

|

|

𝑏
1
𝑛
𝑛

|

|

|

|

|

then Eq. (21) converges, when 𝑙 ||
|

𝜂 − 𝜂
0
|

|

|

< 1 and 𝑙 |
|

𝜂 − 𝜂0|| < 1, which gives
|

|

|

𝜂 − 𝜂
0
|

|

|

< 1

lim𝑛→∞(𝑏𝑛)
1
𝑛

, |
|

𝜂 − 𝜂0|| <
1

lim𝑛→∞(𝑎𝑛)
1
𝑛

. This proves the convergence of fuzzy power series.

.4. Fuzzy fractional power series in parametric form due to Taylor’s expansion

This section is dealing with the fuzzy fractional power series approximation due to Taylor’s expansion is introduced and proved. Sala et al.
103] applied Taylor series on nonlinear fuzzy power series model and Yang et al. [77] use Taylor series in fuzzy model for Robots.

heorem 3. If a fuzzy function 𝑔̃∶𝐸 → 𝐸 is 𝑛 times differentiable at 𝑥̃0 in sense of Caputo fractional derivative, then its fractional Taylor’s series in
arametric form is given as follows:

[

𝜂
(

𝜉, 𝜉
)

, 𝜂
(

𝜉, 𝜉
)]

=
[

min
{

𝜂
(

𝜉
0

)

, 𝜂
(

𝜉0
)}

,max
{

𝜂
(

𝜉
0

)

, 𝜂
(

𝜉0
)}]

⊕
{

𝛤 (2 − 𝛽)
𝛤 (2)

[

min
{

𝐷𝛽𝜂
(

𝜉
0

)

, 𝐷𝛽𝜂
(

𝜉0
)}

,max
{

𝐷𝛽𝜂
(

𝜉
0

)

, 𝐷𝛽𝜂
(

𝜉0
)}]

⊗
[

min
{

(

𝜉 − 𝜉
0

)1
,
(

𝜉 − 𝜉0
)1

}

,max
{

(

𝜉 − 𝜉
0

)1
,
(

𝜉 − 𝜉0
)1

}]}

⊕
{

𝛤 (3 − 𝛽)
𝛤 (3)

[

min
{

𝐷2𝛽𝜂
(

𝜉
0

)

, 𝐷2𝛽𝜂
(

𝜉0
)}

,max
{

𝐷2𝛽𝜂
(

𝜉
0

)

, 𝐷2𝛽𝜂
(

𝜉0
)}]

⊗
[

min
{

(

𝜉 − 𝜉
0

)2
,
(

𝜉 − 𝜉0
)2

}

,max
{

(

𝜉 − 𝜉
0

)2
,
(

𝜉 − 𝜉0
)2

}]}

⊕
{

𝛤 (4 − 𝛽)
𝛤 (4)

[

min
{

𝐷3𝛽𝜂
(

𝜉
0

)

, 𝐷3𝛽𝜂
(

𝜉0
)}

,max
{

𝐷3𝛽𝜂
(

𝜉
0

)

, 𝐷3𝛽𝜂
(

𝜉0
)}]

⊗
[

min
{

(

𝜉 − 𝜉
0

)3
,
(

𝜉 − 𝜉0
)3

}

,max
{

(

𝜉 − 𝜉
0

)3
,
(

𝜉 − 𝜉0
)3

}]}

⊕⋯
7
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P

Proof. We consider a series in parametric form as in Eq. (18),
[

𝜂
(

𝜉, 𝜉
)

, 𝜂
(

𝜉, 𝜉
)]

=
∑

𝑛=0

[

min
{

𝑎𝑛, 𝑎𝑛
}

,max
{

𝑎𝑛, 𝑎𝑛
}]

⊗
[

min
{(

𝜉 − 𝜉
0

)𝑛
,
(

𝜉 − 𝜉0
)𝑛}

,max
{(

𝜉 − 𝜉
0

)𝑛
,
(

𝜉 − 𝜉0
)𝑛}]

For finding the coefficient 𝑎0, 𝑎0, 𝑎1 and 𝑎1, we differentiate above equation in the sense of fuzzy fractional Caputo derivative of order 𝛽 and
put 𝜉 = 𝜉

0
. Then, we have the following result:

[

𝐷𝛽𝜂
(

𝜉, 𝜉
)

, 𝐷𝛽𝜂
(

𝜉, 𝜉
)]

= 𝐷𝛽 [min
{

𝑎0, 𝑎0
}

,max
{

𝑎0, 𝑎0
}]

⊕
{

𝐷𝛽 [min
{

𝑎1, 𝑎1
}

,max
{

𝑎1, 𝑎1
}]

⊗𝐷𝛽
[

min
{

(

𝜉 − 𝜉
0

)1
,
(

𝜉 − 𝜉0
)1

}

,max
{

(

𝜉 − 𝜉
0

)1
,
(

𝜉 − 𝜉0
)1

}]}

⊕
{

𝐷𝛽 [min
{

𝑎2, 𝑎2
}

,max
{

𝑎2, 𝑎2
}]

⊗𝐷𝛽
[

min
{

(

𝜉 − 𝜉
0

)2
,
(

𝜉 − 𝜉0
)2

}

,max
{

(

𝜉 − 𝜉
0

)2
,
(

𝜉 − 𝜉0
)2

}]}

⊕
{

𝐷𝛽 [min
{

𝑎3, 𝑎3
}

,max
{

𝑎3, 𝑎3
}]

⊗𝐷𝛽
[

min
{

(

𝜉 − 𝜉
0

)3
,
(

𝜉 − 𝜉0
)3

}

,max
{

(

𝜉 − 𝜉
0

)3
,
(

𝜉 − 𝜉0
)3

}]}

⊕⋯

Since, the value of 𝑛 − 1 < 𝛽 < 𝑛. So, whenever the value goes greater than 𝑛, we consider that term is 0, which gives,
[

𝑎0, 𝑎0
]

=
[

min
{

𝜂
(

𝜉
0

)

, 𝜂
(

𝜉0
)}

,max
{

𝜂
(

𝜉
0

)

, 𝜂
(

𝜉0
)}]

[

𝑎1, 𝑎1
]

=
𝛤 (2 − 𝛽)
𝛤 (2)

[

min
{

𝐷𝛽𝜂
(

𝜉
0

)

, 𝐷𝛽𝜂
(

𝜉0
)}

,max
{

𝐷𝛽𝜂
(

𝜉
0

)

, 𝐷𝛽𝜂
(

𝜉0
)}]

We differentiate Eq. (17) in expanded form of order 2𝛽, and put 𝑥 = 𝑥0, which produces
[

𝑎2, 𝑎2
]

=
𝛤 (3 − 𝛽)
𝛤 (3)

[

min
{

𝐷2𝛽𝜂
(

𝜉
0

)

, 𝐷2𝛽𝜂
(

𝜉0
)}

,max
{

𝐷2𝛽𝜂
(

𝜉
0

)

, 𝐷2𝛽𝜂
(

𝜉0
)}]

Continuing this process,
[

𝑎3, 𝑎3
]

=
𝛤 (4 − 𝛽)
𝛤 (4)

[

min
{

𝐷3𝛽𝜂
(

𝜉
0

)

, 𝐷3𝛽𝜂
(

𝜉0
)}

,max
{

𝐷3𝛽𝜂
(

𝜉
0

)

, 𝐷3𝛽𝜂
(

𝜉0
)}]

⋮ = ⋮
[

𝑎𝑛, 𝑎𝑛
]

=
𝛤 (𝑛 + 1 − 𝛽)
𝛤 (𝑛 + 1)

[

min
{

𝐷𝑛𝛽𝜂
(

𝜉
0

)

, 𝐷𝑛𝛽𝜂
(

𝜉0
)}

,max
{

𝐷𝑛𝛽𝜂
(

𝜉
0

)

, 𝐷𝑛𝛽𝜂
(

𝜉0
)}]

utting all values in Eq. (18),
[

𝜂
(

𝜉, 𝜉
)

, 𝜂
(

𝜉, 𝜉
)]

=
[

min
{

𝜂
(

𝜉
0

)

, 𝜂
(

𝜉0
)}

,max
{

𝜂
(

𝜉
0

)

, 𝜂
(

𝜉0
)}]

⊕
𝛤 (2 − 𝛽)
𝛤 (2)

[

min
{

𝐷𝛽𝜂
(

𝜉
0

)

, 𝐷𝛽𝜂
(

𝜉0
)}

,max
{

𝐷𝛽𝜂
(

𝜉
0

)

, 𝐷𝛽𝜂
(

𝜉0
)}]

⊗
[

min
{

(

𝜉 − 𝜉
0

)1
,
(

𝜉 − 𝜉0
)1

}

,max
{

(

𝜉 − 𝜉
0

)1
,
(

𝜉 − 𝜉0
)1

}]

⊕
𝛤 (3 − 𝛽)
𝛤 (3)

[

min
{

𝐷2𝛽𝜂
(

𝜉
0

)

, 𝐷2𝛽𝜂
(

𝜉0
)}

,max
{

𝐷2𝛽𝜂
(

𝜉
0

)

, 𝐷2𝛽𝜂
(

𝜉0
)}]

⊗
[

min
{

(

𝜉 − 𝜉
0

)2
,
(

𝜉 − 𝜉0
)2

}

,max
{

(

𝜉 − 𝜉
0

)2
,
(

𝜉 − 𝜉0
)2

}]

⊕
𝛤 (4 − 𝛽)
𝛤 (4)

[

min
{

𝐷3𝛽𝜂
(

𝜉
0

)

, 𝐷3𝛽𝜂
(

𝜉0
)}

,max
{

𝐷3𝛽𝜂
(

𝜉
0

)

, 𝐷3𝛽𝜂
(

𝜉0
)}]

⊗
[

min
{

(

𝜉 − 𝜉
0

)3
,
(

𝜉 − 𝜉0
)3

}

,max
{

(

𝜉 − 𝜉
0

)3
,
(

𝜉 − 𝜉0
)3

}]

⊕⋯

This is the required Fuzzy Fractional Taylor’s expansion.

3.5. Main problem

This section explains solution of the linear fuzzy fractional differential equation applying Fuzzy Fractional Taylor’s theorem. Here, we consider
a fuzzy factional differential equation and solve it using the above mentioned fuzzy fractional Taylor’s expansion and Caputo fractional derivative.

The linear fuzzy fractional differential equation as in below Eq. (22) is used to model growth or decay equations in more realistic way. This
Eq. (22) can also be considered to model fuzzy fractional inventory scenario and many other uses.

Consider a linear fuzzy fractional differential equation in general,
𝑑𝛽 𝜂̃
𝑑𝜉𝛽

= 𝐴̃ ⊗ 𝜂̃ ⊕ 𝐵̃; 𝜂̃
(

𝜉0
)

= 𝜂̃0 (22)

where, 𝐴̃ =
⎡

⎢

⎢

𝑎̃11 ⋯ 𝑎̃1𝑛
⋮ ⋱ ⋮

⎤

⎥

⎥

is 𝑛 × 𝑛 constant fuzzy matrix and 𝐵̃ =
⎡

⎢

⎢

𝑏̃1 𝑜𝑟 𝑏̃1(𝜂̃)
⋮

⎤

⎥

⎥

is 𝑛 × 1 either constant or function of 𝜂̃.

⎣𝑎̃𝑛1 ⋯ 𝑎̃𝑛𝑛⎦ ⎣𝑏̃𝑛 𝑜𝑟 𝑏̃𝑛(𝜂̃)⎦

8
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To solve Eq. (22) by taking 𝛼−cut on both sides of this equation, get
𝛼𝑑𝛽 𝜂̃
𝑑𝜉𝛽

= 𝛼𝐴̃ ⊗ 𝛼 𝜂̃ ⊕ 𝛼𝐵̃; 𝛼 𝜂̃
(𝛼𝜉0

)

= 𝛼 𝜂̃0 (23)

Writing parametric form of Eq. (23), using these notations, 𝛼𝐴̃ =
[

𝐴,𝐴
]

, 𝛼 𝜂̃ =
[

𝜂, 𝜂
]

, 𝛼𝐵̃ =
[

𝐵,𝐵
]

, 𝛼 𝜂̃0 =
[

𝜂
0
, 𝜂0

]

and 𝛼𝜉0 =
[

𝜉
0
, 𝜉0

]

.
Now, this Eq. (23) gets converted,

[

𝑑𝜂𝛽

𝑑𝜉𝛽
,
𝑑𝜂𝛽

𝑑𝜉
𝛽

]

=
[

𝐴,𝐴
]

⊗
[

𝜂, 𝜂
]

⊕
[

𝐵,𝐵
]

(24)

hich gives,
[

𝑑𝜂𝛽

𝑑𝜉𝛽
,
𝑑𝜂𝛽

𝑑𝜉
𝛽

]

=
[

min
{

𝐴𝜂,𝐴𝜂, 𝐴𝜂, 𝐴𝜂
}

,max
{

𝐴𝜂,𝐴𝜂, 𝐴𝜂, 𝐴𝜂
}]

⊕
[

𝐵,𝐵
]

[

𝑑𝜂𝛽

𝑑𝜉𝛽
,
𝑑𝜂𝛽

𝑑𝜉
𝛽

]

=
[

min
{

𝐴𝜂,𝐴𝜂, 𝐴𝜂, 𝐴𝜂
}

+ 𝐵,max
{

𝐴𝜂,𝐴𝜂, 𝐴𝜂, 𝐴𝜂
}

+ 𝐵
]

(25)

ow, we can apply fuzzy fractional Taylor’s theorem on Eq. (25).
First, coefficient value in parametric form as follows,

[

𝑎0, 𝑎0
]

=
[

min
{

𝐴𝜂
(

𝜉
0

)

, 𝐴𝜂
(

𝜉
0

)

, 𝐴𝜂
(

𝜉0
)

, 𝐴𝜂
(

𝜉0
)}

,max
{

𝐴𝜂
(

𝜉
0

)

, 𝐴𝜂
(

𝜉
0

)

, 𝐴𝜂
(

𝜉0
)

, 𝐴𝜂
(

𝜉0
)}]

⊕
[

𝐵,𝐵
]

[

𝑎1, 𝑎1
]

=
𝛤 (2 − 𝛽)
𝛤 (2)

[

min
{

𝐷𝛽𝐴𝜂
(

𝜉
0

)

, 𝐷𝛽𝐴𝜂
(

𝜉
0

)

, 𝐷𝛽𝐴𝜂
(

𝜉0
)

, 𝐷𝛽𝐴𝜂
(

𝜉0
)}

,

max
{

𝐷𝛽𝐴𝜂
(

𝜉
0

)

, 𝐷𝛽𝐴𝜂
(

𝜉
0

)

, 𝐷𝛽𝐴𝜂
(

𝜉0
)

, 𝐷𝛽𝐴𝜂
(

𝜉0
)}]

⊕
[

𝐷𝛽𝐵,𝐷𝛽𝐵
]

⋯

Now, put all values in Fuzzy Taylor’s theorem and obtain fuzzy solution. In next section, a numerical illustration is solved, based on proposed
echnique.

. Numerical illustration

This section discusses the introduced theory with numerical examples with its Tabular and graphical outputs. Here consider two numerical
xamples of fuzzy factional differential equations and evaluate their solution spaces. Also, analysis the numerical solution spaces with the pictorial
iagram in 2D and 3D spaces. The numerical examples are solved as follows:

xample 2. For doing such, we consider a fuzzy fractional differential equation as follows:

𝑑𝛽 𝜂̃
𝑑𝜉𝛽

= 2̃⊗ 𝜂̃ ⊕ 3̃⊗ 𝜉 (26)

Furthermore, the initial condition is given by 𝜂̃
(

0̃
)

= 0̃. We want to calculate 𝜂̃
(

0̃.2
)

.

Solution: For solving, we take 𝛼−cut on both sides of Eq. (26),
𝛼𝑑𝛽 𝜂̃
𝑑𝜉𝛽

= 𝛼 2̃⊗ 𝛼 𝜂̃ ⊕ 𝛼 3̃⊗ 𝛼𝜉 (27)

with 𝜉
(

0̃
)

= 0̃. The parametric form of Eq. (26) with initial condition provides, the following 𝛼 2̃ = [1 + 𝛼, 3 − 𝛼], 𝛼 3̃ = [2 + 𝛼, 4 − 𝛼], 𝛼 0̃ =
−1 + 𝛼, 1 − 𝛼] and 𝛼 0̃.2 = [0.1 + 0.1𝛼, 0.3 − 0.1𝛼]. Therefore, Eq. (27) will be of the form:

[

𝑑𝜂𝛽

𝑑𝜉𝛽
,
𝑑𝜂𝛽

𝑑𝜉
𝛽

]

= [1 + 𝛼, 3 − 𝛼]⊗
[

𝜂, 𝜂
]

⊕ [2 + 𝛼, 4 − 𝛼]⊗
[

𝜉, 𝜉
]

(28)

Putting 𝜉
0
= (𝛼 − 1) , 𝜉0 = (1 − 𝛼) , 𝜂

0
= (𝛼 − 1) , 𝜂0 = (1 − 𝛼) in Eq. (28), we have

[

𝑑𝜂𝛽

𝑑𝜉𝛽
,
𝑑𝜂𝛽

𝑑𝜉
𝛽

]

= [1 + 𝛼, 3 − 𝛼]⊗ [(𝛼 − 1) , (1 − 𝛼)]⊕ [2 + 𝛼, 4 − 𝛼]⊗ [(𝛼 − 1) , (1 − 𝛼)]

hat is,
[

𝑑𝜂𝛽

𝑑𝜉𝛽
, 𝑑𝜂

𝛽

𝑑𝜉
𝛽

]

=
[

−𝛼2 + 4𝛼 − 3, 𝛼2 − 4𝛼 + 3
]

⊕
[

−𝛼2 + 5𝛼 − 4, 𝛼2 − 5𝛼 + 4,
]

That is,
[

𝑑𝜂𝛽

𝑑𝜉𝛽
, 𝑑𝜂

𝛽

𝑑𝜉
𝛽

]

=
[

−2𝛼2 + 9𝛼 − 7, 2𝛼2 − 9𝛼 + 7
]

Now, differentiating Eq. (27) 2𝛽 times, we get
[

𝑑𝜂2𝛽

𝑑𝜉2𝛽
,
𝑑𝜂2𝛽

𝑑𝜉
2𝛽

]

=
(

[1 + 𝛼, 3 − 𝛼]⊗
[

−2𝛼2 + 9𝛼 − 7, 2𝛼2 − 9𝛼 + 7
])

⊕ [2 + 𝛼, 4 − 𝛼]⊗
[

(2 + 𝛼) 1
𝛤 (2 − 𝛽)

(𝛼 − 1)1−𝛽 , (4 − 𝛼) 1
𝛤 (2 − 𝛽)

(1 − 𝛼)1−𝛽
]

9
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Table 2
The value of lower 𝛼−cut of 𝜂 for different values of 𝛼 and 𝛽.

𝜶/𝜷 0 0.2 0.4 0.6 0.8 1

0 3.90000000000000 1.94560000000000 0.664800000000001 0.0287999999999992 0.221599999999999 8.88178419700125𝑒−16
0.2 3.56378047780319 1.75720728160335 0.578014193535812 0.0542703442121331 0.220117889453173 8.27234965843575𝑒−16
0.4 3.37822521150968 1.65323574300428 0.530118213779071 0.0683271023444086 0.219299931544614 7.93601050908146𝑒−16
0.6 3.34759270576507 1.63607153733644 0.522211276377890 0.0706476709428577 0.219164898458066 7.88048575286982𝑒−16
0.8 3.49902683775883 1.72092409913278 0.561299825387218 0.0591757628212081 0.219832444835834 8.15497662642671𝑒−16
1 3.90000000000000 1.94560000000000 0.664800000000001 0.0287999999999992 0.221599999999999 8.88178419700125𝑒−16

Table 3
The value of upper 𝛼−cut of 𝜂 for different values of 𝛼 and 𝛽.
𝜶∕𝜷 0 0.2 0.4 0.6 0.8 1

0 8.70000000000000 5.65760000000000 3.35280000000000 1.69920000000000 0.610400000000000 8.88178419700125𝑒−16
0.2 8.17165503654787 5.32428980591363 3.16391324475441 1.61005379525753 0.582239899610292 8.27234965843575 𝑒−16

0.4 7.88006818951522 5.14034016069988 3.05966905351915 1.56085514179457 0.566698699347668 7.93601050908146𝑒−16
0.6 7.83193139477368 5.10997271990294 3.04245983682247 1.55273315170000 0.564133070703262 7.88048575286982𝑒−16
0.8 8.06989931647816 5.26009648308108 3.12753491407806 1.59288483012577 0.576816451880862 8.15497662642671𝑒−16
1 8.70000000000000 5.65760000000000 3.35280000000000 1.69920000000000 0.610400000000000 8.88178419700125𝑒−16

That is,
[

𝑑𝜂2𝛽

𝑑𝜉2𝛽
,
𝑑𝜂2𝛽

𝑑𝜉
2𝛽

]

=
[

2𝛼3 − 15𝛼2 + 34𝛼 − 21,−2𝛼3 + 15𝛼2 − 34𝛼 + 21
]

⊕
[

(2 + 𝛼)2 1
𝛤 (2 − 𝛽)

(𝛼 − 1)1−𝛽 , (4 − 𝛼)2 1
𝛤 (2 − 𝛽)

(1 − 𝛼)1−𝛽
]

That is,
[

𝑑𝜂2𝛽

𝑑𝜉2𝛽
,
𝑑𝜂2𝛽

𝑑𝜉
2𝛽

]

=
[

2𝛼3 − 15𝛼2 + 34𝛼 − 21 + (2 + 𝛼)2 1
𝛤 (2 − 𝛽)

(𝛼 − 1)1−𝛽 ,−2𝛼3 + 15𝛼2

−34𝛼 + 21 + (4 − 𝛼)2 1
𝛤 (2 − 𝛽)

(1 − 𝛼)1−𝛽
]

Now we put these fractional derivatives
[

𝑑𝜂𝛽

𝑑𝜉𝛽
, 𝑑𝜂

𝛽

𝑑𝜉
𝛽

]

,
[

𝑑𝜂2𝛽

𝑑𝜉2𝛽
, 𝑑𝜂

2𝛽

𝑑𝜉
2𝛽

]

of different order in fuzzy fractional Taylor’s theorem in the earlier section.

[

𝜂
(

𝜉, 𝜉
)

, 𝜂
(

𝜉, 𝜉
)]

=
[

min
{

𝜂
(

𝜉
0

)

, 𝜂
(

𝜉0
)}

,max
{

𝜂
(

𝜉
0

)

, 𝜂
(

𝜉0
)}]

⊕
𝛤 (2 − 𝛽)
𝛤 (2)

[

min
{

𝐷𝛽𝜂
(

𝜉
0

)

, 𝐷𝛽𝜂
(

𝜉0
)}

,max
{

𝐷𝛽𝜂
(

𝜉
0

)

, 𝐷𝛽𝜂
(

𝜉0
)}]

⊗
[

min
{

(

𝜉 − 𝜉
0

)1
,
(

𝜉 − 𝜉0
)1

}

,max
{

(

𝜉 − 𝜉
0

)1
,
(

𝜉 − 𝜉0
)1

}]

⊕
𝛤 (3 − 𝛽)
𝛤 (3)

[

min
{

𝐷2𝛽𝜂
(

𝜉
0

)

, 𝐷2𝛽𝜂
(

𝜉0
)}

,max
{

𝐷2𝛽𝜂
(

𝜉
0

)

, 𝐷2𝛽𝜂
(

𝜉0
)}]

⊗
[

min
{

(

𝜉 − 𝜉
0

)2
,
(

𝜉 − 𝜉0
)2

}

,max
{

(

𝜉 − 𝜉
0

)2
,
(

𝜉 − 𝜉0
)2

}]

⊕
𝛤 (4 − 𝛽)
𝛤 (4)

[

min
{

𝐷3𝛽𝜂
(

𝜉
0

)

, 𝐷3𝛽𝜂
(

𝜉0
)}

,max
{

𝐷3𝛽𝜂
(

𝜉
0

)

, 𝐷3𝛽𝜂
(

𝜉0
)}]

⊗
[

min
{

(

𝜉 − 𝜉
0

)3
,
(

𝜉 − 𝜉0
)3

}

,max
{

(

𝜉 − 𝜉
0

)3
,
(

𝜉 − 𝜉0
)3

}]

⊕⋯

That is,
[

𝜂 (0.1) , 𝜂 (0.3)
]

= [𝛼 − 1, 1 − 𝛼]

⊕
𝛤 (2 − 𝛽)
𝛤 (2)

([

−2𝛼2 + 9𝛼 − 7, 2𝛼2 − 9𝛼 + 7
]

⊗ [0.9𝛼 − 0.7, 1.1 − 0.9𝛼]
)

⊕⋯

The approximate value of 𝛼 0̃.2 =
[

𝜂 (0.1) , 𝜂 (0.3)
]

are describe in below tables. Solution of 𝜂̃
(

0̃.2
)

are calculated using the MATLAB. The Table 2

escribe the lower 𝛼−cut of 𝜂 (i.e., 𝜂) for different values of 𝛼 and 𝛽 and Table 3 represent the upper 𝛼−cut of 𝜂 (i.e., 𝜂) for different values of 𝛼
nd 𝛽, respectively. The graphical representation of the solutions are shown in later.

emarks 2. Table 2 represented the value of lower 𝛼−cut of the solution of 𝜂
(

𝜉
)

at the point 𝜉 = 0̃.2 and the value of 𝛽 trends to 1. Similarly,
able 3 represented the value of upper 𝛼−cut of the solution of 𝜂

(

𝜉
)

at the point 𝜉 = 0̃.2 and the value of 𝛽 trends to 1.
10
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i

Fig. 2. The solution of 𝛼 𝜂̃
(

𝜉
)

in parametric form in 2D.

Fig. 3. The solution of 𝛼 𝜂̃
(

𝜉
)

in parametric form in 3D from 45◦ angle.

Remarks 3. The solution of Example 2 are calculated and the geometric representation are shown in Figs. 2–4. The Fig. 2 are pictured the 2D
diagram of 𝛼 𝜂̃

(

𝜉
)

value for the different values of 𝛼& 𝛽 (i.e., for 𝛼 ∈ [0, 1] & 𝛽 = 0, 0.2, 0.4, 0.6, 0.8 & 1). Similarly, Figs. 3 and 4 are representing
the 3D diagram of 𝛼 𝜂̃

(

𝜉
)

value from different angles for different values of 𝛼& 𝛽 with 𝛼, 𝛽 ∈ [0, 1] on 45◦ and 135◦, respectively. The curve at the
Figs. 2–4 represents the solution of fuzzy fractional differential equation in Eq. (26) for distinct 𝛼& 𝛽 at 𝜉 = 0̃.2.

Example 3. Consider another example of fuzzy fractional differential equation as follows:
𝑑𝛽 𝜂̃
𝑑𝜉𝛽

= 5̃⊗ 𝜂̃ ⊕ 6̃⊗ 𝜉 (29)

with initial conditions are 𝜂̃
(

0̃
)

= 0̃ and 𝜉 = 0̃. Find out the value of 𝜂̃
(

0̃.3
)

.

Solution: To solving Example 3, take the 𝛼−cut on both side of the Eq. (29), get
𝛼𝑑𝛽 𝜂̃
𝑑𝜉𝛽

= 𝛼 5̃⊗ 𝛼 𝜂̃ ⊕ 𝛼 6̃⊗ 𝛼𝜉 (30)

The 𝛼−cut of the given data, i.e., the parametric forms are follows 𝛼 5̃ = [4 + 𝛼, 6 − 𝛼], 𝛼 6̃ = [5 + 𝛼, 7 − 𝛼] and 𝛼 0̃ = [−1 + 𝛼, 1 − 𝛼]. The 𝛼−cut of 0̃.3
s 𝛼 0̃.3 = [0.2 + 0.1𝛼, 0.4 − 0.1𝛼]. Therefore, the Eq. (30) becomes

[

𝑑𝜂𝛽

𝑑𝜉𝛽
,
𝑑𝜂𝛽

𝑑𝜉
𝛽

]

= [4 + 𝛼, 6 − 𝛼]⊗
[

𝜂, 𝜂
]

⊕ [5 + 𝛼, 7 − 𝛼]⊗
[

𝜉, 𝜉
]

(31)

Substitute the value of 𝜉
0
= (𝛼 − 1), 𝜉0 = (1 − 𝛼), 𝜂

0
= (𝛼 − 1) and 𝜂0 = (1 − 𝛼) in Eq. (31), get

[

𝑑𝜂𝛽

𝛽 ,
𝑑𝜂𝛽

𝛽

]

= [4 + 𝛼, 6 − 𝛼]⊗ [𝛼 − 1, 1 − 𝛼]⊕ [5 + 𝛼, 7 − 𝛼]⊗ [𝛼 − 1, 1 − 𝛼]

𝑑𝜉 𝑑𝜉

11
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w

Fig. 4. The solution of 𝛼 𝜂̃
(

𝜉
)

in parametric form in 3D from 135◦ angle.

Table 4
The value of lower 𝛼−cut of 𝜂 for different values of 𝛼 and 𝛽.

𝜶/𝜷 0 0.2 0.4 0.6 0.8 1

0 6.80000000000000 3.43360000000000 1.15680000000000 −0.11680000000000 −0.47360000000000 −0.0000000000000009
0.2 6.26479341364589 3.14310633282196 1.03625500885809 −0.13623211605840 −0.45482659974019 −0.0000000000000008
0.4 5.96941972444398 2.98278658274437 0.96972776562862 −0.14695645308173 −0.44446579956511 −0.0000000000000008
0.6 5.92065777652399 2.95632009778102 0.95874507458940 −0.14872688688313 −0.44275538046884 −0.0000000000000008
0.8 6.16171619071813 3.08715918782363 1.01303884664790 −0.13997461215239 −0.45121096792057 −0.0000000000000008
1 6.80000000000000 3.43360000000000 1.15680000000000 −0.11680000000000 −0.47360000000000 −0.0000000000000009

Table 5
The value of lower 𝛼−cut of 𝜂 for different values of 𝛼 and 𝛽.
𝜶∕𝜷 0 0.2 0.4 0.6 0.8 1

0 16.60000000000000 11.08160000000000 6.74880000000000 3.51520000000000 1.29440000000000 0.00000000000000
0.2 15.52958682729180 10.37611537971050 6.32689253100332 3.30144672335765 1.21930639896078 0.00000000000000
0.4 14.93883944888800 9.98676741523632 6.09404717970015 3.18347901610101 1.17786319826045 0.00000000000000
0.6 14.84131555304800 9.92249166603962 6.05560776106291 3.16400424428558 1.17102152187537 0.00000000000000
0.8 15.32343238143630 10.24024374185740 6.24563596326765 3.26027926632373 1.20484387168230 0.00000000000000
1 16.60000000000000 11.08160000000000 6.74880000000000 3.51520000000000 1.29440000000000 0.00000000000000

That is,
[

𝑑𝜂𝛽

𝑑𝜉𝛽
,
𝑑𝜂𝛽

𝑑𝜉
𝛽

]

=
[

−𝛼2 + 7𝛼 − 6, 𝛼2 − 7𝛼 + 6
]

⊕
[

−𝛼2 + 8𝛼 − 7, 𝛼2 − 8𝛼 + 7
]

=
[

−2𝛼2 + 15𝛼 − 13, 2𝛼2 − 15𝛼 + 13
]

ow put the value of fractional derivative
[

𝑑𝜂𝛽

𝑑𝜉𝛽
, 𝑑𝜂

𝛽

𝑑𝜉
𝛽

]

in fuzzy factional Taylor’s theorem, get

[

𝜂 (0.2) , 𝜂 (0.4)
]

= [𝛼 − 1, 1 − 𝛼]

⊕
𝛤 (2 − 𝛽)
𝛤 (2)

([

−2𝛼2 + 15𝛼 − 13, 2𝛼2 − 15𝛼 + 13
]

⊗ [0.9𝛼 − 0.6, 1.2 − 0.9𝛼]
)

⊕⋯

= [𝛼 − 1, 1 − 𝛼]

⊕
𝛤 (2 − 𝛽)
𝛤 (2)

[

−1.8𝛼3 + 14.7𝛼2 − 20.7𝛼 + 7.8,−1.8𝛼3 + 15.9𝛼2 − 29.7𝛼 + 15.6
]

⊕⋯

Approximate value of the 𝛼 0̃.3 =
[

𝜂 (0.2) , 𝜂 (0.4)
]

are describe in below tables calculated by MATLAB to calculated 𝜂̃
(

0̃.2
)

from the fuzzy
fractional differential equation represent in Eq. (29). The Tables 4 and 5 represented the lower 𝛼−cut of 𝜂 (i.e., 𝜂) and the upper 𝛼−cut of 𝜂 (i.e., 𝜂)
or different values of 𝛼 and 𝛽, respectively. The graphical representation of the solutions are shown in later.

emarks 4. The value of lower 𝛼−cut of the solution of 𝜂
(

𝜉
)

at the point 𝜉 = 0̃.3 are represented in Table 4 for the value of 𝛽 trends to 1. Similar
ay, the value of upper 𝛼−cut of the solution of 𝜂

(

𝜉
)

at the point 𝜉 = 0̃.3 are shown in Table 5 for the value of 𝛽 trends to 1.
12
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v
i

Fig. 5. The solution of 𝛼 𝜂̃
(

𝜉
)

in parametric form in 2D.

Fig. 6. The solution of 𝛼 𝜂̃
(

𝜉
)

in parametric form in 3D from 45◦ angle.

Fig. 7. The solution of 𝛼 𝜂̃
(

𝜉
)

in parametric form in 3D from 135◦ angle.

Remarks 5. The Figs. 5–7 are shown the graphical structure of the solution of Example 3. The 2D diagram of 𝛼 𝜂̃
(

𝜉
)

value for the different values
of 𝛼& 𝛽 (i.e., for 𝛼 ∈ [0, 1] & 𝛽 = 0, 0.2, 0.4, 0.6, 0.8 & 1) are pictured at Fig. 5. The 3D diagram of 𝛼 𝜂̃

(

𝜉
)

value from different angles for different
alues of 𝛼& 𝛽 with 𝛼, 𝛽 ∈ [0, 1] are represented in Figs. 6 and 7 on 45◦ and 135◦, respectively. The solution of fuzzy fractional differential equation
n Eq. (29) are fitted in curve shown in Figs. 5–7 for distinct 𝛼& 𝛽 at 𝜉 = 0̃.3.
13
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5. Result & discussion

The Examples 2 & 3 are represent the fuzzy fractional differential equations and its solutions in fuzzy environment. The Figs. 2–4 & Figs. 5–7
are represents the graphical structure of solutions of Examples 1 & 2, respectively. From above Examples conclude that the dependent variable 𝜂̃
atisfies fuzzy solution in parametric form with the independent variables 𝛼 and 𝛽 which are more visualized in 3D diagrams. The rate of changes
f 𝜂̃ are represented in especially structural way on 3D pictures with the change of 𝛼− cuts and 𝛽 values, simultaneously.

This method has restriction as time increase, value of dependent goes to negative side. Therefore, proposed technique is useful for small time
nterval. The solution of fuzzy fractional differential equations is evaluated in fuzzy fractional power series with the help of Taylor’s expansion. In
his study, consider the Caputo fractional derivative of the differential equations. All the properties, examples and solutions with graphs are shown
n previous sections.

. Conclusion

The numerical solution of the differential equation enters in a picture, when explicit analytical solution cannot be obtained. In the other hand,
uzzy fractional differential references the influences of both the memory and uncertainty in a dynamical system. So, when analytical solution for
he fuzzy fractional differential equation cannot be obtained, numerical solution may be traced using the approach introduced in this paper. This
aper has introduced the fuzzy fractional power series with Taylor’s expansion and its convergence criteria. Also, the fuzzy fractional differential
quation is solved using that fuzzy fractional power series expansion. Thus, this paper has discussed a possible handful numerical method to deal
ith the complicated phenomenon where fractional differential equation is studied under fully fuzzy environment.

This study conducted on the fuzzy fractional differential equation and there is some of shortcomings in this research. This study conducted only
n fractional order. The whole analysis is based on Taylor’s expansion and does not consider other types of power series like the Laurent series,
ourier series, Laplace series, etc. On other hand, this study considered only Caputo type derivative.

.1. Future research scope

In this study solve the fuzzy fractional power series using Taylor’s expansion and examine its convergence criteria. This study may extend
urther in several branches in future. The proposed theory can be extended in future in the following directions:

(a) In this paper a single fuzzy fractional differential equation is taken into concern. In future, the system of fuzzy fractional differential equations
with strong motivations from real world modelling purposes can be considered in the framework of the proposed theory.

(b) The radius of convergence, circle of convergence and other interesting topics in integer order calculus can be revisited in future. This may
create a new genre to fuzzy fractional calculus in complex number systems also.

(c) Different fuzzy sets may be considered in future, like type-2 fuzzy set, intuitionistic fuzzy set or neutrosophic fuzzy set for dealing with
ambiguity. Also, the solution can apply multiple numerical examples.

(d) Several economic activities consist memory and vagueness and is tried to discuss in terms of fuzzy fractional differential equation. In those
cases, where obtaining explicit solution is a formidable task, the proposed technique in this paper can be used to deal economic problems.

cronym:
2D: Two Dimension
3D: Three Dimension
ABC-TFFD: Atangana–Baleanu–Caputo Type Fuzzy Fractional Derivative
CTFFD: Caputo Type Fuzzy Fractional Derivative
CTFFDGD: Caputo-Type Fuzzy Fractional Derivative with Generalized Differentiability
DTFFD: Differentiable Type Fuzzy Fractional Derivative
FDE: Fuzzy Differential Equation
FPS: Fuzzy Power Series
JTFFD: Jumarie Type Fuzzy Fractional Derivative
R: Set of Real Numbers
PDE: Partial Differential Equation
TFS: Triangular Fuzzy Set
YTFFD: Yang-Type Fuzzy Fractional Derivative
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