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● ● ● 
Abstract 
In this paper, we study one-sided matching problems (so-called roommate problems) with the 

outside option. In the classical roommate problems, remaining single is conceived as the outside option. 
However, there are many real life applications where this is not the case. We study roommate problems in 
which the outside option is defined as having no room. In this general framework, we discuss the 
generalization of so-called "Lone Wolf Theorem" which states that any agent who is single in one stable 
matching is single in all other stable matchings. In this study, we show that for the general model with outside 
option Lone Wolf Theorem still holds. 

Keywords: Roommate Problems, Individual Rationality, Outside Option, Capacity Constraint, Lone 
Wolf Theorem 

 

Dış Mekan Seçeneğinin Olduğu Tek Taraflı Eşleşme Problemlerinde 
Lone Wolf Teoremi 

Öz 
Bu makalede dış mekan seceneğinin olduğu tek taraflı eşleşme problemlerini (oda arkadaşı 

problemlerini) çalışıyoruz. Klasik oda arkadaşı problemlerinde yalnız kalmak dış mekan seçeneği olarak 
tasarlanmıştır. Ancak, durumun böyle olmadığı birçok uygulama vardır. Biz dış mekan seçeneğinin hiçbir 
odaya sahip olmamak olarak tanımlandığı oda arkadaşı problemlerini çalışıyoruz. Bu genel çerçevede "Lone 
Wolf Teoremi" olarak adlandırılan teoremin genelleştirilmesini ele alıyoruz. Bu teorem, durağan bir 
eşleşmede yalnız kalan bir kişinin diğer tüm durağan eşleşmelerde de yalnız kaldığını belirtir. Bu çalışmada, 
dış mekan seçeneğinin olduğu genel modelde Lone Wolf Teorem' in hala geçerli olduğunu gösteriyoruz.  

Anahtar Sözcükler: Ev Arkadaşı Problemleri, Bireysel Rasyonellik, Dış Mekan Seçeneği, Kapasite 
Kısıtı, Lone Wolf Teoremi 
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Lone Wolf Theorem for One-Sided Matching 
Problems with Outside Option1 

 
   

 

Introduction 
One-sided matching problems that are known as roommate problems 

were first introduced by Gale and Shapley (1962). For a matching stability is a 
fundamental property. Gale and Shapley (1962) showed that for some 
roommate problems there are no stable matchings. There are mainly three 
attemps to study roommate problems. The first one is finding necesary and 
sufficient conditions on the preferences for the existence of stable matchings, 
Tan (1991) and Chung (2000). The second one is directly analyzing the core for 
solvable domains where its existence is guarenteed ((Can and Klaus (2013), 
Klaus (2011), Klaus (2017)). Thirdly, the other attempt is finding other solution 
concepts rather than the core; such as maximum stable matchings (Tan (1990)), 
almost stable matchings (Abraham et al. (2006)), P-Stable matchings (Inarra et 
al. (2008)), stochastically stable matchings (Klaus et al. (2010)), absorbing 
matchings (Inarra et al. (2013)). 

The first condition for stability is individual rationality. In the classical 
roommate problems, a matching is individually rational if no agent prefers 
him/herself to its current mate. So, in the classical roommate problems, being 
single is seen as outside option. But for several cases, being single may not be 
an outside option. For instance, when allocating offices to professors the 
outside option is finding a job in a other university. Alternatively, when 
grouping students of size at most two for a project, being single is not the 
outside option it means that doing the project by him/herself. In a recent paper 
of Nizamogullari and Özkal-Sanver (2017), they study roommate problems 
with capacity where the outside option is introduced into the classical 
roommate problems and the number of rooms are limited. In roommate 
problems with capacity agents can either be matched as pairs or remain single 
or be matched with the outside option with limited number of rooms. In this 

                                                      
1  I thank İpek Özkal-Sanver for her valuable comments. 
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paper, we study roommate problems with outside option but capacity constraint 
is not binding. 

In many works for roommate problems as in many economic models, 
Bracing Lemma plays an important role as a consistency result. For instance, 
Toda (2006) proved Bracing Lemma for many-to-one matching problems. 
Klaus and Klijn (2010) showed Bracing Lemma for solvable roommate 
problems.2 To show this result researchers utilize the Lone Wolf Theorem 
which is the generalization of "Rural Hospital Theorem". The Lone Wolf 
Theorem states that any agent who is single in one stable matching is single in 
all other stable matchings. Gustfield and Irving show the Lone Wolf Theorem 
by using algorithm that is introduced in Irving (1985) for roommate problems. 
Klaus and Klijn (2010) give an another proof for this theorem by using bi-
choice graphs. İnal (2014) generalizes this result by giving a non-constructive 
proof. 

The aim of the paper is to analyse "The Lone Wolf Theorem" for 
roommate problems with outside option. 

 

1. The Formal Model and the Basic Axioms 
The formal model mostly follows Nizamogullari and Özkal-Sanver 

(2017). We write A for the universal set of agents. A society A is a nonempty 
and finite subset of A. Let n be the number of rooms, i.e., the capacity. We 
assume that all rooms are identical; furthermore we assume that |A|/2≤n≤|A|.3 

Let c₀ denote the outside option. Each agent i∈A has strict preferences 
over A and c₀; we denote 𝑃 for this preference profile. A (roommate) problem 
(with capacity) is a triple 𝑝=(A, 𝑃,n). Let PC  denote the set of all problems 
with capacity. 

A matching for a set of agents A is a function μ:A→ A∪{c₀} such that 
for all j,k∈A, μ(j)=k implies μ(k)=j. Note that μ(j)=j means that agent j stays in 
a room as a single; μ(j)=c₀ means that agent j is assigned to no room. For any 
agent i∈A, if μ(i)=j for some j∈A, then (i,j) is called a matched pair under μ.4 

Let M(A,c₀) denote the set of all matchings for A and M (A)⊆ M (A,c₀) 
denote the set of matchings for A in which μ⁻¹(c₀)=∅. 

                                                      
2  For a detailed analysis of Bracing Lemma for other economic models see Thomson 

(2015). 
3 where |A| denotes the number of the agents in A. 
4  Note that j can be i, in which case i is matched with himself/herself under μ. 



         Ankara Üniversitesi SBF Dergisi  73 (4) 

 

1172  

 

 

In the model with capacity, a matching is individually rational if no agent 
prefers the outside option to its current mate. Formally, a matching μ∈ M 
(A,c₀) is individually rational for a problem 𝑝=(A, 𝑃,n) if and only if for all 
i∈A, μ(i) 𝑃i c₀. Let I(𝑝)⊆M(A,c₀) denote the set of all such matchings. 

To simplfy the notation, we denote oA,μ  for the number of the rooms 
occupied by one or two agents all belonging to the set of agents in A. More 
formally, given any set of agents A and any matching μ∈M(A,c₀), the number 
of occupied rooms equals oA,μ=|{i∈A|μ(i)=i}|+((|{i∈A|μ(i)=j and j∈A/{i}}|)/2). 
Note that given any subset A′⊂A, we have oA,μ=oA′,μ+oA\A′,μ, only if ∪i∈A{μ(i)}=A′∪{c₀}. 

An agent blocks a matching if the agent prefers staying single to its 
current mate, and there is an available room. More formally, an agent i blocks a 
matching μ∈M(A,c₀) for a problem 𝑝=(A, 𝑃,n) if and only if i 𝑃i μ(i) and 
oA,μ<n. Let B(𝑝) ⊆M(A,c₀) denote the set of all such matchings. A matching 
μ∈M(A,c₀) is strong individually rational for 𝑝=(A, 𝑃,n) if and only if it is 
individually rational for 𝑝 and there is no agent i blocking μ∈M(A,c₀) for 𝑝. 
Let IB(𝑝)=(I(𝑝)∩B(𝑝))⊆M(A,c₀) denote the set of all such matchings. 

In a roommate problem with capacity, a pair of agents blocks a matching 
when both of them wish so and at least one of the following holds: 

(i) One of the blocking agents is single in the room, so that the other 
agent freely moves to this room. 

(ii) Both agents share their rooms, and either there is an available room 
occupied by nobody or their current mates approve the exchange of 
mates as they also benefit from. 

Formally, a pair of agents (i,j) with i≠j blocks a matching μ∈M(A,c₀) for 
a problem 𝑝=(A, 𝑃,n)  if and only if j 𝑃i μ(i) and i 𝑃j μ(j) and 

 either μ(i)=i or μ(j)=j or both 

 μ(i)≠i and μ(j)≠j and oA,μ<n 

 μ(i)≠i and μ(j)≠j and oA,μ=n; μ(j) 𝑃μ(i) i and μ(i) 𝑃μ(j) j. 

A matching μ∈M(A,c₀) is stable for 𝑝=(A, 𝑃,n) if and only if it is strong 
individually rational for 𝑝 and there is no pair (i,j) blocking μ∈M(A,c₀) for 𝑝. 
Let S(𝑝)⊆M(A,c₀) denote the set of all such matchings. 
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2. A Model with Outside Option 
Throughout this section, letting n=|A|, we assume that the capacity 

constraint is not binding. Let PSWO denote the set of all problems in this 
domain.5 

Our aim is to show "The Lone Wolf Theorem" for this domain. For the 
proof of the below theorem the non-constructive proof of İnal (2014) is adapted 
to the more general roommate problems with outside option. 

Theorem 2.1 (The Lone Wolf Thorem) For any problem 𝑝=(A, 𝑃,n) ∈ 
PSWO, for all μ, μ′∈S(𝑝) we have μ(i)∈{i,c₀} if and only if μ′(i)∈{i,c₀}. 

Proof. Let 𝑝=(A, 𝑃,n) ∈ PSWO  be a problem and μ,μ′∈S(𝑝) be two stable 
matchings for 𝑝. Suppose for a contradiction there is an agent i₁∈A with 
μ′(i₁)∈{i₁,c₀} but μ(i₁)∉{i₁,c₀}. Then there is an agent i₂∈A\{i₁,c₀} such that 
μ(i₁)=i₂. Now, we will prove the following claim. 

Claim: For each k∈ℤ⁺ there exists ik+1∈A\{c₀,i₁,i₂,...,ik} such that 

 ik+1=μ(ik) and μ(ik) 𝑃  μ′(ik) if k is odd 

  ik+1= μ′ (ik) and μ′(ik)  𝑃   μ(ik)  if k is even. 

Proof of the Claim: The proof is by induction on k. 

Let k=1. Since μ∈S(𝑝) we have μ∈IB(𝑝)=(I(𝑝)∩B(𝑝)) which implies                  
μ(i₁) 𝑃i₁ μ′(i₁). 

Let k=2. Since μ′∈S(𝑝) we have μ′(i₂) 𝑃i₂ μ(i₂) otherwise the pair (i₁,i₂) 
blocks the matching μ′ for 𝑝. Since μ∈S(𝑝) we have μ′(i₂)∉{c₀,i₂}. Also, since 𝑃i is strict μ′(i₂)≠i₁. So there is an agent i₃∈A\{c₀,i₁,i₂} with i₃=μ′(i₂) and μ′(i₂) 𝑃i₂ μ(i₂) 

Assume that for some k′∈ℤ⁺ and k∈ℤ⁺ with k≤k′, there exists 
ik+1∈A\{c₀,i₁,i₂,...,ik} such that 

 ik+1=μ(ik) and μ(ik) 𝑃  μ′(ik) if k is odd 

 ik+1= μ′ (ik) and μ′(ik)  𝑃  μ(ik)  if k is even. 

Now, show for k′+1. By induction assumption if k′ is odd there is 
ik′+1∈A\{c₀,i₁,i₂,...,ik′} with ik′+1=μ(ik′) and μ(ik′) 𝑃  μ′(ik′). Since μ′∈S(𝑝), we 
have μ′(ik′+1) 𝑃  μ(ik′+1), otherwise the pair (ik′,ik′+1) blocks the matching μ′. 
Since μ∈S(𝑝), we have μ′(ik′+1)∉{c₀,ik′+1}. Also since 𝑃i is strict, μ′(ik′+1)≠ik′. 

                                                      
5  Note that, on the domain of PSWO there is no restriction on the preferences of the 

agents. So, PSWO is a larger domain than the domain that is defined in Nizamogullari 
and Özkal-Sanver (2017) as PS, that is, PS ⊆ PSWO. 
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Since μ,μ′∈M(A,c₀), we have μ′(ik′+1)∉{i₁,i₂,...,ik′-1}. So there is an agent 
ik′+2∈A\{c₀,i₁,i₂,...,ik′+1} with ik′+2=μ′(ik′+1) and μ′(ik′+1) 𝑃  μ(ik′+1). Note that, if 
k′ is odd then k′+1 is even which proves induction hypothesis for k′+1 is even. 

Now, if k′ is even, then by induction assumption there is 
ik′+1∈A\{c₀,i₁,i₂,...,ik′} with ik′+1=μ′(ik′) and μ′(ik′) 𝑃  μ(ik′). Since μ∈S(𝑝)), we 
have μ(ik′+1} 𝑃  μ′(ik′+1), otherwise the pair (ik′,ik′+1) blocks the matching μ. 
Since μ′∈S(𝑝)), we have μ(ik′+1)∉{c₀,ik′+1}. Also since 𝑃i is strict, μ(ik′+1)≠ik′. 
Since μ,μ′∈M(A,c₀), we have μ(ik′+1)∉{i₁,i₂,...,ik′-1}. So, there is an agent 
ik′+2∈A\{c₀,i₁,i₂,...,ik′+1} with ik′+2=μ(ik′+1) and μ(ik′+1) 𝑃 μ′(ik′+1). Note that, if 
k′ is even then k′+1 is odd which proves the induction hypothesis for k′+1 is 
odd. 

Therefore, for each k∈ℤ⁺ there exists ik+1∈A\{c₀,i₁,i₂,...,ik}, but A is 
finite which gives a contradiction. 

Remark: The Lone Wolf Theorem is not true when capacity constraint is 
binding. To see that consider the following example: 

Example: Consider the problem 𝑝=(A, 𝑃,n) ∈PC where A={a,b,c,d}, 
n=2, and 𝑃 as follows: 

 𝑃a 𝑃b 𝑃c 𝑃d 

b a c c 

… … d a 

… … co b 

… … … co 

 

Consider the matchings μ={(a,b),(c,d)} and μ′={(a,b),(c),(d,c₀)}. It is 
obvious that μ,μ′∈I(𝑝). Now, we show that μ,μ′∈B(𝑝). Since oA,μ=n, the agent c 
can not block the matching μ for 𝑝 implying that μ∈B(𝑝). Similary, since 
oA,μ′=n, the agent d can not block the matching μ′ for 𝑝 implying that μ′∈B(𝑝). 
Also, there is no pair of agents that blocks μ for 𝑝. Since for the agent c we 
have c 𝑃c d, the pair c and d can not block the matching μ′ for 𝑝. Hence, 
μ,μ′∈S(𝑝). But μ and μ′ do not have the same set of agents that are single or are 
matched with the outside option. 

This example establishes that we can not show Bracing Lemma by using 
Lone Wolf Theorem on the domain of roommate problems with capacity. 
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Concluding Remarks 
The aim of the paper was to generalize the Lone Wolf Theorem to 

roommate problems with outside option. We consider one-sided matching 
problems with the outside option In this model, the Lone Wolf Theorem holds, 
that is any agent who is single or is matched with the outside option in one 
stable matching is again single or is matched with the outside option in all other 
stable matchings. Next, we consider the general domain with capacity 
constraint. For this general domain, due to the capacity constraint the Lone 
Wolf Theorem does not hold. As one can see that the stable matching μ′ in 
Example 2.1 is not fair we have to define some fairness axioms for the stable 
matchings. Our further study on the agenda is after defining these axioms, to 
study new solution concept and to analyse the Lone Wolf Theorem for this 
solution concept. 
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