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In this paper we identify weak foci and centers in the Maxwell–Bloch system, a three 
dimensional quadratic system whose three equilibria are all possible to be of center-
focus type. Applying irreducible decomposition and the isolation of real roots in 
computation of algebraic varieties of Lyapunov quantities on an approximated center 
manifold, we prove that at most 6 limit cycles arise from Hopf bifurcations and give 
conditions for exact number of limit cycles near each weak focus. Further, applying 
algorithms of computational commutative algebra we find Darboux polynomials and 
give some center manifolds in closed form globally, on which we identify equilibria 
to be centers or singular centers by integrability and time-reversibility on a center 
manifold. We prove that those centers are of at most second order.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The description of the interaction between laser light and a material sample composed of two-level 
atoms begins with Maxwell equations of the electric field and Schrödinger equations for the probability 
amplitudes of the atomic levels [10,16]. In 1985, coupling the Maxwell equations with the Bloch equation 
(a linear Schrödinger like equation describing the evolution of atoms resonantly coupled to the laser field), 
F.T. Arecchi [1] proposed the 3-dimensional quadratic differential system

⎧⎪⎨
⎪⎩

Ė = −k E + g P,

Ṗ = −γ⊥ P + g EΔ,

Δ̇ = −γ‖ (Δ − δ0) − 4g PE,

(1.1)
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called the Maxwell–Bloch system, where E is the coupling of the fundamental cavity mode, P is the collective 
atomic polarization, Δ represents the population inversion, k, γ⊥, γ‖ are the loss rates of field, polarization 
and population respectively, g is a coupling constant (g �= 0) and δ0 is the population inversion which would 
be established by the pump mechanism in the atomic medium, in the absence of coupling. As indicated 
in [1,15,17], the Maxwell–Bloch system describes Type I laser (He-Ne), Type II laser (Ruby and CO2) 
and Type III laser (far infrared) when γ⊥ ≈ γ‖ � k, when γ⊥ � γ‖ ≈ k and when Δ0 is large enough, 
respectively. Numerical simulations [1] show that Type I laser and Type II laser are both stable but Type III 
laser is unstable.

A few papers [15,23] were published to discuss this 3-dimensional system in mathematical aspect. In 1998 
Puta [23] considered the integrability in the special case that k = γ⊥ = γ‖ = 0. In 2010 Hacinliyan, Kusbeyzi 
and Aybar [15] indicated that the pair of equilibria which are C2-symmetric with respect to the Δ-axis are 
both of center-focus type and showed the rise of a stable limit cycle from a Hopf bifurcation, verifying 
that a pair of conjugate complex eigenvalues crosses the imaginary axis and varying the parameter g to 
obtain a negative first Lyapunov coefficient numerically. However, the work of [15] neither answers the order 
of weak foci nor identifies a center. Actually, it causes great complexity in computation to identify weak 
foci and centers for 3-dimensional systems [9,14,19–21]. Concerning weak foci, a natural idea is to compute 
Lyapunov quantities for the restriction of the 3-dimensional system to an approximated center manifold, 
but the approximation to the center manifold makes the complicated computation of algebraic varieties of 
Lyapunov quantities more difficult. Concerning centers, those criteria for centers in planar systems, seen 
in [22,24] for time-reversibility and integrability, are not effective on an approximated center manifold. 
In [20] such identifications for weak focus and center were completed for the generalized Lorenz system, 
a 3-dimensional system, by approximating a local center manifold and finding the closed form of a global 
center manifold respectively. However, system (1.1) is quite different because it is only for δ0 = (k+1)(γ⊥+1)
that system (1.1) can be transformed into the generalized Lorenz form.

In this paper we identify weak foci and centers for the Maxwell–Bloch system (1.1) qualitatively. With a 
time rescaling τ1 = gt, system (1.1) can be simplified as the following equivalent form

⎧⎪⎨
⎪⎩

ẋ1 = −a x1 + x2,

ẋ2 = −b x2 + x1x3,

ẋ3 = −c (x3 − δ0) − 4x1x2,

(1.2)

where x1, x2, x3 simply present E, P , Δ respectively and a = g−1k, b = g−1γ⊥, c = g−1γ‖, the ratios 
of the loss rates of field k, polarization γ⊥ and population γ‖ respectively to the coupling constant. The 
three equilibria E0 and E± are all possible to be of center-focus type. We prove that the system can 
totally produce at most 6 limit cycles from those weak foci. Applying irreducible decomposition and the 
isolation of real roots in computation of algebraic varieties of Lyapunov quantities on approximated center 
manifolds, we give conditions for exact number of limit cycles near each weak focus. Further, applying 
algorithms of computational commutative algebra, we find Darboux factors in polynomial form, which give 
some center manifolds in closed form globally. We identify equilibria to be centers or singular centers by 
proving integrability and time-reversibility on a center manifold. We prove that E± are both rough centers 
but E0 is a center of at most order two.

2. Weak foci

As known in [15], the authors give the qualitative properties of all equilibria for system (1.1). The reduced 
system (1.2) containing less parameters helps us in latter computation of center manifolds, normal forms and 
those determining quantities. Clearly, for c = 0 system (1.2) has a singular line {(x1, x2, x3)|x1 = 0, x2 = 0}. 
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For c �= 0, system (1.2) has exactly one equilibrium E0 : (0, 0, δ0) when ac(δ0 − ab) ≤ 0 but three equilibria 
E0, E+ : (x∗

1, x
∗
2, x

∗
3) and E− : (−x∗

1, −x∗
2, x

∗
3) where

x∗
1 =

√
c(δ0 − ab)

4a , x∗
2 = a

√
c(δ0 − ab)

4a , x∗
3 = ab

when ac(δ0 − ab) > 0.
The Jacobian matrix of system (1.2) at the equilibrium E0 is

J(E0) =

⎡
⎢⎣−a 1 0

δ0 −b 0
0 0 −c

⎤
⎥⎦ ,

which has eigenvalues −c and −1
2(a + b) ± 1

2
√

(a− b)2 + 4δ0. Then, E0 is a locally stable node or focus 
in the case that δ0 < ab, a + b > 0, c > 0. Notice that Type I laser (He-Ne) and Type II laser (Ruby 
and CO2) were illustrated in [1] for γ⊥ = γ‖ = 109, k = 107 and γ⊥ = 108, γ‖ = k = 2.5 respectively. 
We can check that the parameter conditions of Type I and II lasers satisfy that δ0 < ab, a + b > 0, c > 0
for δ0 is small. It implies that E0 is stable. For δ0 is large enough, corresponding to Type III laser (far 
infrared), system (1.2) has a positive eigenvalue −1

2(a + b) + 1
2
√

(a− b)2 + 4δ0 at E0, which implies that 
E0 is unstable. When δ0 = ab, system (1.2) at E0 has eigenvalues 0, −c and −(a + b). Notice that when 
b = −a, δ0 < −a2 there is a pair of purely imaginary conjugate eigenvalues, which implies that E0 is a 
nonhyperbolic equilibrium.

Note that system (1.2) is C2-symmetric with respect to the x3-axis, i.e., invariant under the transformation 
(x1, x2, x3) → (−x1, −x2, x3). Thus, it suffices to discuss equilibrium E+. Linearizing (1.2) at E+, we get 
the characteristic polynomial

Φ(λ) := λ3 + (a + b + c)λ2 + c(δ0 + a2)
a

λ + 2c(δ0 − ab).

According to the Routh–Hurwitz criterion [11], all eigenvalues have negative real parts if and only if

a + b + c > 0, c(δ0 + a2)
a

> 0, 2c(δ0 − ab) > 0, c(δ0 + a2)(a + b + c)
a

> 2c(δ0 − ab),

implying that E+ is a locally stable node or focus in the case that bc(δ0 +3a2) − δ0c(a − c) +a2c(a + c) < 0, 
c(δ0 − ab) > 0, 4c(δ0 + a2) > 0 and a > 0. Notice that

b = B(a, c, δ0) := δ0(a− c) − a2(a + c)
δ0 + 3a2 ,

there is a pair of purely imaginary conjugate eigenvalues, which implies that E+ is a non-hyperbolic equi-
librium. When parameters lie in the set

{(a, b, c, δ0) : b = B(a, c, δ0), a > 0, c(δ0 − ab) > 0, c(δ0 + a2) > 0}, (2.1)

the equilibrium E+ (i.e., E−, in C2-symmetry to E+ with respect to the x3-axis) is of center-focus type 
because it has a pair of pure imaginary eigenvalues.
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2.1. Weak focus at E0

Consider parameters in the set

D0 := {(a, b, c, δ0) : b = −a, δ0 < −a2, c �= 0}. (2.2)

Let ε := b + a for b near −a and regard ε as the perturbation parameter. In the case ε = 0 the equilibrium 
E0 is a center-focus type and the linearization of system (1.2) at E0 has eigenvalues −c and ±i

√
−δ0 − a2. 

Then, we can transform system (1.2) into the following form
⎧⎪⎨
⎪⎩

z′1 = −z2 − a(δ0
√
−δ0 − a2)−1z1z3 − δ−1

0 z2z3,

z′2 = z1 + a2(δ0(−δ0 − a2))−1z1z3 + a(δ0
√
−δ0 − a2)−1z2z3,

z′3 = −c(
√
−δ0 − a2)−1z3 + 4a(δ0

√
−δ0 − a2)−1z2

1 + 4δ−1
0 z1z2,

(2.3)

where z′i := dzi/dτ2 and dτ2 :=
√
−δ0 − a2dτ1, by translating E0 to the origin O and diagonalizing the 

linear part of system (1.2) in the case that ε = 0.
Our first task is to approximate a center manifold. By Theorem 1 in [3], system (2.3) has a 2-dimensional 

center manifold

W c = {(z1, z2, z3)|z3 = h(z1, z2), h(0, 0) = 0, Dh(0, 0) = 0},

where h : U → R is smooth on a neighborhood U ⊆ R
2 of the origin as indicated in [3, p. 28]. Let 

h(z1, z2) = φ2(z1, z2) + O(‖(z1, z2)‖3), i.e., φ2 is the second order approximation of h. By [3, Theorem 3],

(Mφ2)(z1, z2) := −∂φ2

∂z1
z2 + ∂φ2

∂z2
z1 + c√

−δ0 − a2φ2 −
4a

δ0
√
−δ0 − a2 z

2
1 + 4

δ0
z1z2

= O(‖(z1, z2)‖3). (2.4)

Comparing coefficients in (2.4), we get

φ2(z1, z2) = 4{cδ0(4δ0 + 4a2 − c2)}−1{(2aδ0 − cδ0 + 2a3 − a2c− ac2)z2
1

− c(2a + c)
√

−δ0 − a2z1z2 + (2a + c)(δ0 + a2)z2
2}. (2.5)

Thus, by a substitution of (2.5), system (2.3) restricted to the manifold W c can be presented as
{

z′1 = −z2 − 4{cδ2
0(4δ0 + 4a2 − c2)

√
−δ0 − a2}−1W (z1, z2),

z′2 = z1 − 4a{cδ2
0(4δ0 + 4a2 − c2)(δ0 + a2)}−1W (z1, z2),

(2.6)

where

W (z1, z2) = a(2aδ0 − cδ0 + 2a3 − a2c− ac2)z3
1 +

√
−δ0 − a2(2aδ0 − cδ0

+ 2a3 − 3a2c− 2ac2)z2
1z2 + (2a + c)(δ0 + a2)(a + c)z1z

2
2

+
√

−δ0 − a2(δ0 + a2)(2a + c)z3
2 + o(‖(z1, z2)‖3).

Our second task is to compute a normal form for system (2.6). Let z = z1 + iz2. Then (2.6) can be 
represented as the complex form

ż = iz + 4(
√
−δ0 − a2 − ai){cδ2

0(4δ0 + 4a2 − c2)(δ0 + a2)}−1W (z + z̄
,
z − z̄ ). (2.7)
2 2i
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Actually, there is no second degree terms. As done in [18], the third degree terms transformations with the 
near-identity transformation do not affect the coefficient of the third degree resonant term z2z̄. Hence, we 
can reduce system (2.7) to the form

ẇ = iw + C1w
2w̄ + O(‖(w, w̄)‖5), (2.8)

where

C1 =
√
−δ0 − a2c(2a− c) + i(2cδ0 + 8aδ0 + 8a3 + 2a2c− 3ac2)

2cδ0(4δ0 + 4a2 − c2)(−δ0 − a2) .

Thus, the first Lyapunov quantity L1 is given by

L1|E0 = Re(C1) = 2a− c

2δ0(4δ0 + 4a2 − c2)
√
−δ0 − a2 . (2.9)

On the basis of the above results we can discuss the Hopf bifurcation for (1.2) at E0. By the classical 
Hopf bifurcation theorem [5], we obtain

Theorem 1. If (a, b, c, δ0) ∈ D0 and a �= c/2 then the equilibrium E0 of system (1.2) is a locally stable 
(respectively, unstable) weak focus of multiplicity 1 for a < c/2 (respectively, a > c/2). For sufficiently small 
|ε| system (1.2) undergoes a Hopf bifurcation at E0 as ε passes 0. Moreover,

(1) for a < c/2, there is a unique stable limit cycle when ε < 0 but no limit cycle when ε ≥ 0;
(2) for a > c/2, there is a unique unstable limit cycle when ε > 0 but no limit cycle when ε ≤ 0.

The Maxwell–Bloch system (1.2) looks like the general Lorenz system considered in [20] and it is really of 
the form in a special case as indicated in the Introduction, but it is quite different from the general Lorenz 
system. Equilibrium E0, discussed in Theorem 1, can be of center-focus type but the corresponding one in 
[20] is not the case.

Consider the case L1 = 0, i.e. a = c/2. Actually, the first three Lyapunov quantities L1, L2 and L3 vanish 
in this case. We leave this case in Section 3.

2.2. Weak foci at E±

Consider parameters in the set

D := {(a, b, c, δ0) : b = B(a, c, δ0), a > 0, c(δ0 − ab) > 0, c(δ0 + a2) > 0}. (2.10)

Let ε := b − B(a, c, δ0) for b near (a, c, δ0) and regard ε as the perturbation parameter. When ε = 0, i.e. 
b = B(a, c, δ0), the linearization of system (1.2) at E+ has eigenvalues −2a(δ0 + a2 + ac)/(δ0 + 3a2) and 
±i

√
c(δ0 + a2)/a. For sufficiently small |ε|, the linearization of (1.2) at E+ has one negative eigenvalue and 

a pair of conjugate complex eigenvalues λ1,2 = σ(ε) ± i ω(ε) such that σ(0) = 0, ω(0) =
√

c(δ0 + a2)/a,

dσ

dε
|ε=0 = − c(δ0 + 3a2)3

2{4a3(δ0 + a2 + ac)2 + [(δ2
0 + 4a2δ0 + 3a4)

√
c/(δ0 + a2)]2}

�= 0.

When ε = 0, system (1.2) has a two-dimensional center manifold near E+. Then, we can transform system 
(1.2) into the form
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⎧⎪⎨
⎪⎩

z′1 = −z2 + F1(z1, z2, z3),
z′2 = z1 + F2(z1, z2, z3),
z′3 = −2a2(δ0 + a2 + ac){

√
ac(δ0 + a2)(δ0 + 3a2)}−1z3 + F3(z1, z2, z3),

(2.11)

where z′i := dzi/dτ2, dτ2 :=
√
c(δ0 + a2)/adτ1 and Fi (i = 1, 2, 3) are given in Appendix A, by translating 

E+ to the origin O and diagonalizing the linear part of system (1.2) in the case that ε = 0.
Using the same procedure in Subsection 2.1 to compute the 6-th approximation of center manifold, we 

finally get the first three Lyapunov quantities

L1|E+ = a3c(2a− c)(δ0 + 3a2)3Ω1(a, c, δ0)
8(cδ0 + 4a3 + a2c)(δ0 + a2 + ac)(δ0 + a2)

√
ac(δ0 + a2)K1K2

,

L2|E+ = a4(2a− c)(δ0 + 3a2)5Ω2(a, c, δ0)
576(cδ0 + 4a3 + a2c)2(δ0 + a2 + ac)(δ0 + a2)3

√
ac(δ0 + a2)K3

1K
3
2K3

,

L3|E+ = a5(2a− c)(δ0 + 3a2)7Ω3(a, c, δ0)
331 776c(cδ0 + 4a3 + a2c)6(δ0 + a2 + ac)5(δ0 + a2)5

√
ac(δ0 + a2)K5

1K
5
2K

2
3K4

, (2.12)

where

Ω1(a, c, δ0) = δ4
0 + 5a(2a− c)δ3

0 + a3(26a− 31c)δ2
0 + a4(26a2 − 71ac + 2c2)δ0

+ 9a7(a− 5c),

K1 = cδ3
0 + a2(4a + 7c)δ2

0 + a4(8a + 23c)δ0 + a5(a + 4c)(4a + c),

K2 = cδ3
0 + a2(a + 7c)δ2

0 + a4(2a + 17c)δ0 + a5(a2 + 11ac + c2),

K3 = 9cδ3
0 + a2(4a + 63c)δ2

0 + a4(8a + 143c)δ0 + a5(4a2 + 89ac + 4c2),

K4 = 4cδ3
0 + a2(a + 28c)δ2

0 + 2a4(a + 31c)δ0 + a5(a2 + 38ac + c2),

and the polynomial Ω2(a, c, δ0) of 232 terms, is given in Appendix A. The polynomial Ω3(a, c, δ0) of 1026 
terms, is too long to display, but interested readers can easily compute it using any available computer 
algebra system.

One can see a common factor (2a − c) in L1, L2 and L3. In this subsection we consider the case a �= c
2 . 

Since the denominators of Li s (i = 1, 2, 3) are both positive, real zeros of Li (i = 1, 2, 3) are determined 
by Ωi s (i = 1, 2, 3). Therefore, in order to determine the order of weak focus and give the corresponding 
parameter condition, we need to analyze the affine varieties V(Ω1, Ω2) and V(Ω1, Ω2, Ω3) (we recall that 
the variety of a polynomial ideal is the set of common zeros of polynomials generating the ideal).

Theorem 2. If (a, b, c, δ0) ∈ D and a �= c/2 the equilibrium E+ of system (1.2) is a weak focus of order at 
most 3. Moreover, E+ is of order �, � = 1, 2, 3, if and only if (a, b, c, δ0) ∈ D�, where

D1 := D \ {(a, b, c, δ0) : a = c

2} \ D2 \ D3,

D2 := {(a, b, c, δ0) ∈ D : Ω1 = 0, a �= ζic, a �= c

2 , i = 1, 2},

D3 := {(a, b, c, δ0) : b = B(a, c, δ0), δ0 = Ξ(a, c), a = ζic, c > 0, i = 1, 2},

Ξ(a, c) is given in (2.13), ζ1 ≈ 7.100800902 × 10−3 and ζ2 ≈ 3.781934043 × 10−1.

Proof. We first investigate when system (1.2) has a focus of order 3. Using the routine minAssGTZ (based 
on the algorithm of [12]) of the primdec library [8] of the computer algebra system Singular [13] we 
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find that the variety of the ideal 〈Ω1, Ω2〉 consists of seven irreducible components defined by prime ideals 
J1, . . . , J7 where J1 = 〈c −2a, 3a2 + δ0〉, J2 = 〈4c3 −537c2a +156ca2 −1112a3, 4c2 −529ca +718a2 +162δ0〉, 
J3 = 〈8c − 7a, 9a2 + 2δ0〉, J4 = 〈c, 9a4 + 8δ0a2 + δ2

0〉, J5 = 〈c, a2 + δ0〉, J6 = 〈a, δ0〉, J7 = 〈g1, . . . , g5〉 with

g1 = 4860c7 − 742 281c6a + 8 384 728c5a2 − 33 867 084c4a3 + 57 679 952c3a4

− 58 329 656c2a5 + 74 779 488ca6 − 35 189 056a7,

g2 = 22 039 674 356 198 256 539 940c6 − 3 321 283 327 197 950 417 619 759c5a

+ 31 278 840 305 921 724 111 242 728c4a2 − 92 964 622 693 414 013 509 322 164c3a3

+ 103 113 902 470 440 177 572 551 248c2a4 − 146 701 224 872 093 995 490 671 928ca5

+ 139 972 292 926 740 412 342 550 192a6 + 13 545 456 502 066 787 476 381 392δ0a4,

g3 = 6 851 634 739 274 520c5 − 1 036 863 732 245 476 962c4a + 10 349 861 913 622 199 318c3a2

− 30 877 842 609 948 852 489c2a3 + 33 376 139 523 696 940 131ca4

− 42 033 748 438 313 542 876a5 + 4 534 912 418 970 834 679δ0ca2

− 9 237 859 684 802 411 264δ0a3,

g4 = −5 071 398 660c4 + 714 534 108 871c3a− 2 843 433 053 754c2a2 + 3 850 612 802 085ca3

− 10 913 918 038 772a4 + 704 900 693 341δ0c2 − 988 173 957 019δ0ca− 1 566 632 018 336δ0a2,

g5 = −28 136 192 400c4 + 169 379 836 258 889c2a2 − 465 492 814 856 837ca3

− 990 252 677 556 100a4 + 101 652 561 937 098δ0c2 − 409 287 952 913 593δ0ca

+ 138 633 004 210 400δ0a2 + 32 738 653 715 544δ2
0.

It is easily seen that the sets defined by ideals J4, J5, J6 do not satisfy condition (2.10) and the set defined 
by J1 does not satisfy the condition a �= c

2 for the theorem. Straightforward computations show that for 
parameters from V(J2) and V(J3) we have Ω3 �= 0.

The analysis of systems from V(J7) is more difficult. In this case we first solve the equation g2 = 0 for δ0, 
obtaining

δ0 = Ξ(a, c), (2.13)

where

Ξ(a, c) = (−139 972 292 926 740 412 342 550 192a6 + 146 701 224 872 093 995 490 671 928a5c

− 103 113 902 470 440 177 572 551 248a4c2 + 92 964 622 693 414 013 509 322 164a3c3

− 31 278 840 305 921 724 111 242 728a2c4 + 3 321 283 327 197 950 417 619 759ac5

− 22 039 674 356 198 256 539 940c6)/(13 545 456 502 066 787 476 381 392a4). (2.14)

Then we substitute this value into g3, g4, g5 and denoting the obtained functions by g̃i (i = 3, 4, 5) we see 
that g̃i = fig1 where fi are rational functions. Thus, to find the solutions of the system g1 = · · · = g5 = 0 it 
is sufficient to find solutions of the equation g1 = 0. To this end, we denote a = ζc. Then g1(a, c) = c7ĝ1(ζ), 
where ĝ1(ζ) := g1(ζ, 1). Using the Maple command “realroot(ĝ1, 1/109)” to isolate real zeros, we see that 
ĝ1 has exactly three real zeros, which are covered by

I1 := [ 3 812 213
,

7 624 427 ], I2 := [ 406 082 075
,
101 520 519 ], I3 := [1 621 125 139

,
405 281 285].
536 870 912 1 073 741 824 1 073 741 824 268 435 456 1 073 741 824 268 435 456
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We claim that Θ := Ξ(ζ, 1) + ζ2 ≤ 0 in I3 because D defined in (2.10), requires that Θ > 0. Compute the 
derivative of Θ,

dΘ
dζ = − Θ1(ζ)

13 545 456 502 066 787 476 381 392ζ5 , (2.15)

where

Θ1(ζ) := (252 853 672 849 347 249 732 337 600ζ6 − 146 701 224 872 093 995 490 671 928ζ5

+ 92 964 622 693 414 013 509 322 164ζ3 − 62 557 680 611 843 448 222 485 456ζ2

+ 9 963 849 981 593 851 252 859 277ζ − 88 158 697 424 793 026 159 760).

In fact, using the Maple command “realroot(Θ1, 1/109)”, we find that there is no real zero in I3, implying 
that Θ is monotone on I3. Checking

Θ(1 621 125 139
1 073 741 824) ≈ −8.932757073 < 0, Θ(405 281 285

268 435 456) ≈ −8.932757090 < 0,

we see that Θ(ζ) < 0 for ζ ∈ I3, the claim is true.
For ζ ∈ I1

⋃
I2, δ0 = Ξ(a, c), b = B(a, c, δ0) satisfies the requirement of D \ Υ. Therefore,

V(J7) = {(a, b, c, δ0) : b = B(a, c, δ0), δ0 = Ξ(a, c), a = ζic, i = 1, 2},

where ζ1 ≈ 7.100800902 × 10−3 ∈ I1 and ζ2 ≈ 3.781934043 × 10−1 ∈ I2. Thus, we see that

V (Ω1,Ω2) ∩ (D \ Υ)

= {(a, b, c, δ0) : b = B(a, c, δ0), δ0 = Ξ(a, c), a = ζic, c > 0, i = 1, 2}. (2.16)

Finally, we prove that V(Ω1, Ω2, Ω3) ∩ (D \ Υ) = ∅, that is, the maximal order of a week focus is 3. 
Computing with minAssGTZ of Singular the decomposition of the variety of the ideal 〈Ω1, Ω2, Ω3〉 we 
find that it consists of 6 irreducible component defined by the ideals J1, . . . , J6 given above. As we have 
seen above the zero sets of these ideals are outside the set D \ Υ, that is,

V(Ω1,Ω2,Ω3) ∩ (D \ Υ) = ∅. (2.17)

Thus, E+ is a weak focus of order at most 3. �
In the case of a = c/2, the first three Lyapunov quantities L1|E+ , L2|E+ and L3|E+ vanish. If we continue 

the same procedure as above, we may need to compute higher order Lyapunov quantities up to the first 
nonzero one. We meet the same problem as in Subsection 2.1. It is not easy to determine whether the 
equilibrium E0 is a center or focus by computing approximations of center manifold. We consider this case 
in Section 3.

3. Centers

Determining whether an equilibrium with a pair of conjugate pure imaginary eigenvalues is really a 
center is much more difficult in a higher dimensional space than on a plane. As we know, one hardly 
identifies centers by proving all Lyapunov quantities to be zeros, not mentioning the determination on an 
approximated center manifold. Although time-reversibility or integrability are applied to judge centers for 
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planar systems, they are not available on an approximated center manifold. For this reason, we need to give 
a closed form for a global center manifold.

The above mentioned global center manifold is selected from invariant algebraic surfaces. It is easy to 
check (see, e.g. [24, Proposition 3.6.2]) that a surface defined by the equation F (x1, x2, x3) = 0, where F is 
a polynomial, is an invariant surface of the system

⎧⎪⎨
⎪⎩

ẋ1 = P (x1, x2, x3),
ẋ2 = R(x1, x2, x3),
ẋ3 = Q(x1, x2, x3),

(3.1)

where the maximal degree of polynomials P , Q, R is m, if and only if

∂F

∂x1
P + ∂F

∂x2
Q + ∂F

∂x3
R = K F, (3.2)

with K being a polynomial of degree at most m − 1. It is clear that F is a partial integral of (3.1). The 
polynomial F is called a Darboux polynomial [7] of system (3.1) and K is termed a cofactor.

Below we find algebraic partial integrals up to degree 2 of Maxwell–Bloch system (1.2) passing through E0. 
By translating equilibrium E0 to the origin, system (1.2) is changed into the following system

⎧⎪⎨
⎪⎩

ẋ1 = −a x1 + x2 := P (x1, x2, x3),
ẋ2 = δ0 x1 − b x2 + x1x3 := R(x1, x2, x3),
ẋ3 = −c x3 − 4x1x2 := Q(x1, x2, x3).

(3.3)

The following theorem gives the conditions on coefficients of system (1.2) which yield the existence of 
invariant algebraic surfaces. As it turns out, some of the obtained surfaces are also center manifolds of the 
system.

Theorem 3. The Maxwell–Bloch system (1.2) has an invariant algebraic curve or surface F = 0 passing 
through the point E0 and defined by a polynomial of degree at most 2 if and only if one of the following 
conditions holds:

(1) b = c and δ0 = 0, under which F (x1, x2, x3) = 4x2
2 + x2

3, or
(2) a = b = c, under which F (x1, x2, x3) = 4δ0x2

1 − 4x2
2 − (x3 − δ0)2, or

(3) a = c/2, under which F (x1, x2, x3) = 2x2
1 + x3 − δ0, or

(4) b = c = 0, under which F (x1, x2, x3) = 4x2
2 + x2

3 − ν, where ν ≥ 0 is an arbitrary constant.

Proof. Our strategy is to find a Darboux factor F of system (3.3) in the polynomial form

F (x1, x2, x3) =
l∑

i=1
Fi(x1, x2, x3),

where l ≥ 1 is an integer, Fi is a homogeneous polynomial of degree i, and Fl �= 0. By the C2-symmetry of 
system (3.3) with respect to the x3-axis, F (−x1, −x2, x3) = F (x1, x2, x3), which implies that F is of the 
form

F (x1, x2, x3) =
l∑

ak,m,nx
k
1x

m
2 xn

3 , k + m ≡ 0 (mod 2). (3.4)

k+m+n=1
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On the other hand, as mentioned just before the theorem, the cofactor K(x1, x2, x3) is of at most 1 order 
and therefore we assume that

K(x1, x2, x3) = c0 + c1x1 + c2x2 + c3x3. (3.5)

In order to prove the existence of such an F (x1, x2, x3), we start our searching from l = 1 upon. For 
l = 1, F (x1, x2, x3) = a0,0,1x3 by (3.4). Substituting this F and the cofactor K given in (3.5) in Eq. (3.2)
and comparing the coefficients of the term x1x2, we obtain a0,0,1 = 0, implying that F (x1, x2, x3) ≡ 0, 
a contradiction to the assumption that Fl(x1, x2, x3) �= 0. Next, consider l = 2. Then,

F (x1, x2, x3) = a0,0,1x3 + a2,0,0x
2
1 + a0,2,0x

2
2 + a0,0,2x

2
3 + a1,1,0x1x2.

Substituting in (3.2) this F (x1, x2, x3) and the K(x1, x2, x3) given in (3.5) and comparing the coefficients 
of all terms, we obtain the algebraic system

gj(a, b, c, δ0, as1,s2,s3 , cm) = 0, j = 1, . . . , 17, (3.6)

where

g1 = −a0,0,1(c + c0), g2 = −(2a + c0)a2,0,0 + δ0a1,1,0, g3 = −c1a0,0,1,

g4 = −4a0,0,1 + 2a2,0,0 − (a + b + c0)a1,1,0 + 2δ0a0,2,0, g5 = a1,1,0 − (2b− c0)a0,2,0,

g6 = −c2a0,0,1, g7 = −c3a0,0,1 − (2c− c0)a0,0,2, g8 = −c1a2,0,0,

g9 = −c2a2,0,0 − c1a1,1,0, g10 = −c3a2,0,0 + a1,1,0, g11 = −c2a1,1,0 − c1a0,2,0,

g12 = −c1a0,0,2, g13 = −c3a1,1,0 + 2a0,2,0 − 8a0,0,2, g14 = −c2a0,2,0,

g15 = −c3a0,2,0, g16 = −c2a0,0,2, g17 = −c3a0,0,2. (3.7)

We denote by I := 〈g1, g2, . . . , g17〉 the ideal generated by polynomials given above. To obtain the condition 
for existence of Darboux polynomial (3.4) we have to eliminate from the system

g1 = g2 = · · · = g17 (3.8)

the variables aijk and cm. One way is to use resultants. However doing this one has to deal with very 
cumbersome and unfeasible calculations. Much more efficient way is provided by the so-called Elimination 
Theorem (see, e.g. [6,24]). By the theorem in order to eliminate from the system the aijk and cm it is sufficient 
to compute a Gröbner basis of the ideal with respect to an elimination order where aijk, cm > a, b, c, δ0. The 
algorithm is realized in many computer algebra system, for our computations we used the routine eliminate
of the computer algebra system Singular [13].

However if one tries to use the algorithm directly, the output of computation is the zero ideal 〈0〉, that 
means, the system always has a solution. Indeed, system (3.7) always has the trivial solution, so, in order 
to get conditions for existence of invariant surfaces we have to exclude this solution from the consideration. 
To this end we have to look for solutions of (3.8) under which of conditions: a2,0,0 �= 0, a0,2,0 �= 0, a0,0,2 �= 0, 
a1,1,0 �= 0. Thus, we first add to the ideal I the polynomial 1 −wa2,0,0, obtaining the ideal I1 = 〈1 −wa2,0,0, I〉
in the polynomial ring over the field of rational numbers. Eliminating from I1 by eliminate of Singular

the variables ar1,r2,r3 , cm and w we obtain the elimination ideal J1 = 〈f1, f2〉, where

f1 := 8ab2 − 10abc + 2ac2 − 4b2c + 5bc2 − c3,

f2 := 6a2 − 4ab− 5ac + 2bc + c2.
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In a similar way, after elimination of ar1,r2,r3 , cm and w from the ideal I2 = 〈1 − wa0,2,0, I〉 we obtain the 
ideal J2 = 〈b − c, a c d − c2d〉. With the routine intersect of Singular we then compute J = J1 ∩ J2 (thus, 
V (J) = V (J1) ∪V (J2)). Now, using the routine minAssGTZ of Singular to find the decomposition of the 
affine variety V (J) of the ideal J we obtain

V (J) = V1
⋃

V2
⋃

V3
⋃

V4, (3.9)

where

V1 = {(a, b, c, δ0) : b = c, δ0 = 0}, V2 = {(a, b, c, δ0) : a = b = c},

V3 = {(a, b, c, δ0) : a = c

2}, V4 = {(a, b, c, δ0) : b = 0, c = 0}.

Computing for the remaining cases a0,0,2 �= 0 and a1,1,0 �= 0 we do not obtain conditions different from 
those defined by (3.9).

Performing now easy computations we find the Darboux polynomial given in the statement in the theorem, 
corresponding to parameters of the sets V1, V2, V3, V4. Note, that despite of the polynomial of case (1) has 
degree 2, the equation F = 0 defines an invariant line, but not an invariant surface. �

In what follows we discuss system (1.2) in the four cases listed in Theorem 3.

3.1. Case (1) and generic case (2)

System (1.2) restricted to the invariant line 4x2
2 + x2

3 = 0 (equivalently, x2 = x3 = 0), given in case (1)
of Theorem 3, is the equation ẋ1 = −a x1, which has no centers obviously.

Another invariant surface 4δ0x2
1−4x2

2−(x3−δ0)2 = 0, given in case (2) of Theorem 3, has two possibilities: 
for δ0 < 0 it is exactly the equilibrium E0 : (0, 0, δ0), which is not a center as indicated in the second 
paragraph of Section 2; for δ0 > 0, it has two branches

F+ : x1 = { 1
δ0

x2
2 + 1

4δ0
(x3 − δ0)2}1/2, F− : x1 = −{ 1

δ0
x2

2 + 1
4δ0

(x3 − δ0)2}1/2,

restricted to which system (1.2) can be presented as

{
ẋ2 = −c x2 + x3{ 1

δ0
x2

2 + 1
4δ0 (x3 − δ0)2}1/2,

ẋ3 = −c (x3 − δ0) − 4x2{ 1
δ0
x2

2 + 1
4δ0 (x3 − δ0)2}1/2,

(3.10)

and
{

ẋ2 = −c x2 − x3{ 1
δ0
x2

2 + 1
4δ0 (x3 − δ0)2}1/2,

ẋ3 = −c (x3 − δ0) + 4x2{ 1
δ0
x2

2 + 1
4δ0 (x3 − δ0)2}1/2,

(3.11)

respectively. The generic case is that c �= 0, where system (3.10) has exactly one equilibrium S1 : (0, δ0)
when δ0 ≤ c2 but S1 and one more equilibrium S2 : (c

√
δ0 − c2/2, c2) when δ0 > c2. Neither S1 nor S2

is a center because the Jacobian matrix has the traces −2c and −c at S1 and S2 respectively. Similarly, 
system (3.11) has exactly one equilibrium S1 : (0, δ0) when δ0 ≤ c2 but S1 and one more equilibrium 
S3 : (−c

√
δ0 − c2/2, c2) when δ0 > c2. Again, neither S1 nor S3 is a center because the Jacobian matrix has 

the traces −2c and −c at S1 and S3 respectively. The special case c = 0 will be left to Subsection 3.4.
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3.2. Generic case (3)

In this case we have a = c/2, where system (1.2) has an invariant surface F1 : Ψ1(x1, x2, x3) := 2x2
1 +

x3 − δ0 = 0 by Theorem 3. As above, we first consider the generic situation that c �= 0.

Theorem 4. In the case a = c/2 and (a, b, c, δ0) ∈ D0 ∪D, where D0 and D are defined in (2.2) and (2.10), 
the invariant surface F1 is a global center manifold of system (1.2) and, restricted to the manifold, the 
equilibrium E0 is a center of system (1.2) if (a, b, c, δ0) ∈ D0 and the equilibria E± are both centers of 
system (1.2) if (a, b, c, δ0) ∈ D. Moreover,

(1) E0 is a rough center, i.e., the order of center is 0, if δ0 �= −c2(c2 + 1)/4,
(2) E0 is a weak center of order 1 if δ0 = −c2(c2 + 1)/4 and c2 �= 4

√
15/15 − 1,

(3) E0 is a weak center of order 2 if δ0 = −c2(c2 + 1)/4 and c2 = 4
√

15/15 − 1, and
(4) E± are both rough centers.

Proof. First, we prove the surface F1 is a global center manifold of system (1.2). Actually, when a = c/2
and (a, b, c, δ0) ∈ D0, the equilibrium E0 is of center-focus type. Computing the gradient of the function 
Ψ1(x1, x2, x3) at E0, we obtain ∇Ψ1(E0) = (0, 0, 1), which is a normal vector of the surface F1 at E0. On 
the other hand, the tangent space of center manifolds [3] at E0 is spanned by the vectors

e1 = (− c

2δ0
, 1, 0), e2 = (−

√
−4δ0 − c2

4δ0
, 0, 0),

the eigenvectors of the linear part of system (1.2) at E0 corresponding to the pair of conjugate pure imaginary 
eigenvalues. One can check that

∇Ψ1(E0) · e1 = 0, ∇Ψ1(E0) · e2 = 0,

implying that the surface F1 also has the same tangent space at E0. Therefore, the surface F1 is a global 
center manifold of system (3.12). Similarly, when a = c/2 and (a, b, c, δ0) ∈ D, we can check that E0 and 
E± all lie on the surface F1 and the equilibria E± are both of center-focus type. Simple computation shows 
that the normal vector of the surface F1 at E+ is ∇Ψ1(E+) = (

√
8δ0 + 2c2, 0, 1) and that the tangent space 

of center manifolds [3] at E+ is spanned by the vectors

e1 = (0,−1
2 , 0), e2 = (− 1√

8δ0 + 2c2
,− c

2
√

8δ0 + 2c2
, 1).

One can check that

∇Ψ1(E+) · e1 = 0, ∇Ψ1(E+) · e2 = 0,

which implies the surface F1 also has the same tangent space at E+. Thus, the surface F1 is a global center 
manifold of system (1.2) in this situation.

Next, we prove that E0 is a center on the center manifold F1 if a = c/2 and (a, b, c, δ0) ∈ D0 and that E±
are both centers on the center manifold F1 if a = c/2 and (a, b, c, δ0) ∈ D. Restricted to the manifold F1, 
system (1.2) becomes

{
ẋ1 = − c

2x1 + x2,

ẋ2 = δ0x1 − b x2 − 2x3.
(3.12)
1



L. Liu et al. / J. Math. Anal. Appl. 430 (2015) 549–571 561
Fig. 1. (A) Qualitative properties of E0; (B) Qualitative properties of E0 and E± for system (1.2) on center manifold F1.

If (a, b, c, δ0) ∈ D0, system (3.12) has exactly one equilibrium O : (0, 0), which corresponds to E0 of (1.2). 
System (3.12) can be changed by an invertible linear transformation into the following form

{
x′

1 = −x2 + {2δ3
0
√
−4δ0 − c2}−1(c x1 +

√
−4δ0 − c2x2)3,

x′
2 = x1 + c{2δ3

0(4δ0 + c2)}−1(c x1 +
√
−4δ0 − c2x2)3,

(3.13)

with the canonical linear part, where x′
i := dxi/dτ2, dτ2 :=

√
−δ0 − c2/4dτ1, and a = −b = c/2. With the 

change of variables

x = c

2x1 +
√
−δ0 −

1
4c

2x2, y =
√

−δ0 −
1
4c

2x1 −
c

2x2,

system (3.13) is further changed into the form
{

x′ = y,

y′ = −x + 8{δ2
0(4δ0 + c2)}−1x3,

(3.14)

which has the Hamiltonian H(x, y) = y2/2 + U(x), where U(x) = x2/2 − 2x4/δ2
0(4δ1 + c2). Note that 

U ′(0) = 0 and U ′′(0) = 1 > 0, implying that the potential U reaches a strictly local minimum at the 
equilibrium O. It follows that O is a center of system (3.14), i.e., E0 is a center of system (1.2) restricted 
to the center manifold F1 (see in Fig. 1 (A)).

If (a, b, c, δ0) ∈ D, system (3.12) has three equilibria O and

S+ : (
√

2δ0 − bc

2 ,
c
√

2δ0 − bc

4 ), S− : (−
√

2δ0 − bc

2 ,−c
√

2δ0 − bc

4 ),

which correspond to E0 and E± of (1.2), respectively. Translating S+ to the origin O and diagonalizing the 
linear part, we can change system (3.12) into the form

⎧⎨
⎩

x′
1 = −x2 − 12(c x1+

√
8δ0+2c2x2)2

(8δ0+3c2)2 − 32(c x1+
√

8δ0+2c2x2)3

(8δ0+3c2)3
√

8δ0+2c2 ,

x′
2 = x1 + 12(c x1+

√
8δ0+2c2x2)2

(8δ0+3c2)2
√

8δ0+2c2 + 16 c(c x1+
√

8δ0+2c2x2)3
(8δ0+3c2)3(4δ0+c2) ,

(3.15)

where x′
i := dxi/dτ2, dτ2 :=

√
2δ0 + c2/2 dτ1 and the equalities a = −b = c/2 given in the region D is used. 

With the change of variables
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x = c x1 +
√

8δ0 + 2c2x2, y =
√

8δ0 + 2c2 x1 − c x2,

system (3.15) is further changed into the form

{
x′ = y,

y′ = −x− 12
(8δ0+3c2)

√
8δ0+2c2x

2
1 − 16

(8δ0+3c2)2(4δ0+c2)x
3
1,

(3.16)

which has the Hamiltonian H(x, y) = y2/2 + U(x), where

U(x) = 1
2x

2 + 4
(8δ0 + 3c2)

√
8δ0 + 2c2

x3 + 4
(8δ0 + 3c2)2(4δ0 + c2)x

4.

Note that U ′(0) = 0 and U ′′(0) = 1 > 0, implying that the potential U reaches a strictly local minimum at 
the equilibrium O. It follows that O is a center of system (3.16), i.e., E+ is a center of system (1.2) restricted 
to the center manifold F1 (see in Fig. 1 (B)). Similarly, E− is also a center on the center manifold.

In order to determine the order of center E0, let P (r, μ) denote the minimum period of the periodic orbit 
passing through the nonzero point (r, 0), which surrounds the center O of (3.13), where μ := (a, b, c, δ0). 
Note that the time-rescaling between (3.12) and (3.13) does not change the monotonicity of the period 
function P (r, μ) except for a constant multiplier 

√
−δ0 − c2/4. By [4, Lemma 2.1],

P (r, μ) = 2π +
∞∑
i=2

ιi(μ)ri, (3.17)

where ιi(μ)’s are called period coefficients or period quantities. For μ ∈ D0, using the polar coordinates 
z1 = r cosϑ and z2 = r sinϑ in (3.13), we get r′ = G3(ϑ)r3, ϑ′ = 1 + H2(ϑ)r2, where

G3(ϑ) := 1
2δ3

0
√
−4δ0 − c2

{
− 4c(−3δ0 − c2 + (δ0 + c2)

√
−4δ0 − c2) cos4 ϑ

+ 4(c2(3δ0 + c2) + (δ0 + c2)
√
−4δ0 − c2) cos3 ϑ sinϑ

+ c(−3(4δ0 + c2) + (8δ0 + 5c2)
√

−4δ0 − c2) cos2 ϑ

− (4δ0 + c2)(3c2 +
√

−4δ0 − c2) cosϑ sinϑ− c(4δ0 + c2)
√

−4δ0 − c2
}
,

H2(ϑ) := 1
2δ3

0
√
−4δ0 − c2

{
4(c2(3δ0 + c2) + (δ0 + c2)

√
−4δ0 − c2) cos4 ϑ

+ 4c(−(3δ0 + c2) + (δ0 + c2)
√
−4δ0 − c2) cos3 ϑ sinϑ

− (3c2(4δ0 + c2) + (8δ0 + 5c2)
√

−4δ0 − c2) cos2 ϑ

− (4δ0 + c2)(−3 +
√
−4δ0 − c2) cosϑ sinϑ + (4δ0 + c2)

√
−4δ0 − c2

}
.

Then, using G3 and H2, one can compute the period quantities

ι2(μ) = −3π
2

√
−4δ0 − c2 − c2

δ2
0
√
−4δ0 − c2

,

ι4(μ) = 3π
8 δ−5

0 (4δ0 + c2)−1{(15c2 + 35 + 24cπ)δ2
0 + c2(−5c2 + 12cπ + 5)δ0

− c4(c2 + 1) + 2cδ0(3π(c2 − 1) + 5c)
√

−4δ0 − c2
}
,

ι6(μ) = 3π
δ−8
0 (4δ0 + c2)−3/2{[(1120c3 + 768π2c3 + 2160πc2 − 1536π2c + 2380c
128
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− 2160π)δ3
0 + 3c2(64π2c3 − 35c3 + 360πc2 − 192π2c + 105c− 120π)δ2

0

+ 2c4(−13c3 + 24πc2 − 35c + 24π)δ0 + c7(11c2 + 3)]c + [(−720πc3

− 768π2c2 − 1120c2c− 2160π − 1540)δ3
0 − 3c2(−120πc3 + 192π2c2

− 105c2 + 360πc− 64π2 + 35)δ2
0 + 2c4(24πc3 + 25c2 + 24πc + 35)δ0

− c6(13c2 + 5)]
√

−4δ0 − c2
}
.

Thus, as defined in [4], E0 is a center of order 0 if and only if ι2(μ) �= 0, i.e., δ0 �= −c2(c2 + 1)/4. In case 
δ0 = −c2(c2 + 1)/4, ι2(μ) = 0 and

ι4(μ) = 24π(15c4 + 30c2 − 1)
c10(c2 + 1)4 ,

implying that E0 is a center of order 1 if and only if δ0 = −c2(c2 + 1)/4 and c2 �= 4
√

15/15 − 1. Further, if 
δ0 = −c2(c2 + 1)/4 and c2 = 4

√
15/15 − 1, we have ι2(μ) = ι4(μ) = 0 and

ι6(μ) = 345 990 234 375
√

15(2
√

15 − 5)π
8(4

√
15 − 15)

�= 0,

implying that E0 is a center of order 2.
We similarly discuss for μ ∈ D. One can compute

ι2(μ) = 48π
(4δ0 + c2)(8δ0 + 3c2) �= 0,

implying that the center E+ is of order 0, i.e., a rough center. This completes the proof. �
3.3. Generic case (4)

In this case we have b = c = 0, where system (1.2) has the invariant surface F2 : Ψ2(x1, x2, x3) :=
4x2

2 + x2
3 = ν (∀ν ≥ 0), i.e., 4x2

2 + x2
3 is a first integral, by Theorem 3. As above, we generically assume 

that a �= 0 and leave the special case a = b = c = 0 to Subsection 3.4. The surface F2 has two possibilities: 
for ν = 0 it is the straight line x2 = x3 = 0, i.e., the x1-axis; for ν > 0, it has two branches F2+ : x3 =
{ν − 4x2

2}1/2 and F2− : x3 = −{ν − 4x2
2}1/2. System (1.2) restricted to F2+ and F2− can be presented 

as

{
ẋ1 = −a x1 + x2,

ẋ2 = x1{ν − 4x2
2}1/2 and

{
ẋ1 = −a x1 + x2,

ẋ2 = −x1{ν − 4x2
2}1/2,

(3.18)

respectively. A similar discussion to (3.10) and (3.11) shows that neither of systems in (3.18) has a 
center. In fact, the first system of (3.18) has three equilibria S11 : (0, 0), S12 : (

√
ν/2a, 

√
ν/2) and 

S13 : (−√
ν/2a, −√

ν/2) but the latter two are not equilibria of system (1.2). Moreover, S11 is not a 
center because the Jacobian matrix has the trace −a. The second system of (3.18) can be discussed simi-
larly.

For ν = 0, the invariant surface F2 is the x1-axis, but we cannot restrict our system to a one-dimensional 
invariant manifold to judge whether an equilibrium on it is a center. We turn to consider the singular line 
{(x1, x2, x3) ∈ R

3|x1 = 0, x2 = 0}, which was given in the beginning of Section 2. Clearly, the x1-axis 
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intersects the singular line at equilibrium O : (0, 0, 0). A simple computation shows that the eigenvalues at 
O are 0, 0 and −a. Diagonalizing the linear part of system (1.2), we obtain

⎧⎪⎨
⎪⎩

x′
1 = 4a−2x2

2 + 4a−1x2x3,

x′
2 = −a−2x1x2 − a−1x1x3,

x′
3 = x3 + a−3x1x2 + a−2x1x3,

(3.19)

where dτ2 = −adτ1. By Theorem 1 in [3], system (3.19) has a 2-dimensional center manifold

W c = {(x1, x2, x3)|x3 = h(x1, x2), h(0, 0) = 0, Dh(0, 0) = 0}, (3.20)

where h : U → R, defined on a small neighborhood U ⊆ R
2 of the origin, is of enough smoothness. 

Let h(x1, x2) = φk(x1, x2) + O(‖(x1, x2)‖k+1) and φk(x1, x2) = Σi+j≤kγi,jx
i
1x

j
2. By Theorem 3 in [3], 

(Mφk)(x1, x2) = O(‖(x1, x2)‖k+1), where the operator M is defined by

(Mh)(x1, x2) := ∂h

∂x1
(4a−2x2

2 + 4a−1x2h) + ∂h

∂x2
(−a−2x1x2 − a−1x1h)

− h− a−3x1x2 + a−2x1h.

Lemma 1. Function h(u, v) defined in (3.20) satisfies h(u, −v) = −h(u, v).

Proof. First, we claim that h(u, 0) = 0. Suppose that h has a nonzero term um (m ≥ 2), i.e., h(u, 0) �= 0. 
By Theorem 3 in [3], the second order approximation of h is φ2(u, v) = −a−3uv. Let p (p > 2) denote the 
smallest order of nonzero term um. Comparing the coefficients in the relation

(Mφp)(u, v) = O(‖(u, v)‖p+1), (3.21)

we get γ0,p = 0, a contradiction to the choice of p.
Next, we prove that the degree of v in h(u, v) is odd. For an indirect proof, assume that h has a nonzero 

term like uiv2j (i ≥ 0, j ≥ 1). Let q denote the smallest order q = i + 2j > 2. For any k < q (k ∈ Z+), the 
k-th order has the form of un1v2n2+1, n1 ≥ 0, n2 ≥ 0, k = n1 + 2n2 + 1. Since γi,2j �= 0, the q-th order 
approximation φq has a nonzero term u�1v�2 which satisfies one of the following

(I) : i = n1 + �1 − 1, 2j = 2n2 + �2 + 2,

(II) : i = n1 + �1 + 1, 2j = 2n2 + �2.

From both cases (I) and (II) we obtain �2 ≡ 0(mod 2), a contradiction to the fact that q is the smallest 
order. Thus, h(u, v) is of the form

∑
i+2j≥1,i,j≥0

γi,2j+1u
iv2j+1

which implies that h(u, −v) = −h(u, v). �
Lemma 1 enables us to give the following result about singular center.

Theorem 5. When b = c = 0 and a �= 0, O is a singular center of system (1.2) on the 2-dimensional center 
manifold, which is orbitally equivalent to a center but crossed by the singular line {(x1, x2, x3) ∈ R

3|x1 = 0,
x2 = 0}.
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Fig. 2. Qualitative properties of O for system (3.19) on the 2-dimensional center manifold.

Proof. Restricted to the 2-dimensional center manifold Wc given in (3.20), system (3.19) is presented as
{

dx1
dσ1

= 4x2
2 + 4ax2h(x1, x2),

dx2
dσ1

= −x1x2 − ax1h(x1, x2),
(3.22)

where dσ1 = a−2dτ2. With another time-rescaling dσ2 = x2dσ1, system (3.22) can be transformed into the 
form {

dx1
dσ2

= 4x2 + 4ah(x1, x2),
dx2
dσ2

= −x1 − ax1h(x1, x2)/x2.
(3.23)

System (3.23) has an equilibrium at (0, 0) with eigenvalues ±2i, i.e., the equilibrium (0, 0) of system (3.23)
is of center-type. Normalizing the linear part of system (3.23), we obtain

{
dx1
dσ2

= −x2 + W1(x1, x2),
dx2
dσ2

= x1 + W2(x1, x2),
(3.24)

where W1(x1, x2) := ax2h(2x2, x1)/x1 and W2(x1, x2) := ah(2x2, x1). By Lemma 1,

W1(−x1, x2) = −ax2h(2x2,−x1)/x1 = ax2h(2x2, x1)/x1 = W1(x1, x2),

W2(−x1, x2) = ah(2x2,−x1) = −ah(2x2, x1) = −W2(x1, x2),

implying that system (3.24) is time-reversible [24] with respect to the x2-axis. Therefore, (0, 0) is a center 
of system (3.24). This completes the proof. �

The so-called “singular center”, obtained in Theorem 5, is actually surrounded by an infinite set of 
heteroclinic orbits on the 2-dimensional center manifold Wc, each of which is heteroclinic to two equilibria 
on the singular line, as shown in Fig. 2. System (1.2) restricted to the center manifold is orbitally topologically 
equivalent to a center except for the singular line.

3.4. Case a = b = c = 0

The last three cases in Theorem 3 intersect mutually at the point (a, b, c) = (0, 0, 0), at which system 
(1.2) has two polynomial first integrals 2x2

1 + x3 and 4x2
2 + x2

3, which will be referred to cases (3) and (4)
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Fig. 3. Phase portraits of (1.2) for a = −1, b = 1 − 5 × 10−3, c = 1 and δ0 = −2.

of Theorem 3 respectively. Consequently, system (1.2) is integrable [2], which was also investigated in [23]. 
Actually, the solution of system (1.2) restricted to the invariant surface 2x2

1 + x3 = ν1 (∀ν1 ≥ 0) is 4x2
2 +

(ν1 − 2x2
1)2 = ν2 for all ν2 ≥ 0. It implies that the equilibria (±

√
ν1/2, 0, 0) are both centers.

4. Numerical simulations

In this section we make numerically simulations to illustrate one limit cycle produced from the Hopf
bifurcation near E0 (given in Subsection 2.1), three limit cycles from the Hopf bifurcation near E± (given 
in Subsection 2.2) and centers, which are not indicated in [15].

Consider system (1.2) with a = −1, c = 1 and δ0 = −2. Clearly, (a, b, c, δ0) ∈ D0. As done in Subsec-
tion 2.1 for weak focus E0, from (2.2) and (2.9) we compute bifurcation parameter values

b = 1, L1 = − 3
20 .

Theorem 1 implies that a Hopf bifurcation happens as ε = 0. Simulation with the program “ode45” in 
MATLAB shows that for ε = −5 × 10−3 < 0 a unique stable limit cycle (the thin cycle in Fig. 3) appears.

Consider system (1.2) with c = 1. Clearly, (a, b, c, δ0) ∈ D3. As done in Subsection 2.2 for weak focus E+, 
from (2.10) and (2.12) we compute bifurcation parameter values

a = ζ1 ≈ 7.1008009023 × 10−3, b = B(ζ1, 1,Ξ(ζ1, 1)) ≈ −7.0999737066 × 10−1,

δ0 = Ξ(ζ1, 1) ≈ 2.0013204743 × 10−4, L1 = L2 = 0, L3 = 9.5324853736 × 107.

Theorem 2 implies that a Hopf bifurcation with codimension 3 degeneracy happens. Simulation with the 
program “ode45” in MATLAB shows that for ε = −10−10, δ0 = Ξ(ζ1, 1) +4.6355 × 10−8 and a = ζ1 +10−10

three limit cycles appear near E+ (three thin cycles in Fig. 4). The three cycles of system (1.2) locating 
from inside to outside are unstable, stable and unstable respectively.

In order to simulate the center given in Subsection 3.2, Consider system (1.2) with a = 1, b = −1, 
c = 2 and δ0 = −2. Clearly, (a, b, c, δ0) ∈ D0 and a = c/2. Then E0 is a center by Theorem 4. Choosing 
an initial point P0 arbitrarily on the invariant surface F1 : 2x2

1 + x3 − δ0 = 0 but not at E0, we use the 
MATLAB program “ode45” to simulate the orbit. For example, choosing (0, 1, −2), (1, 0, −4), (1.5, 0, −6.5), 
(2, −1, −10) and (2.5, 0, −14.5), we observe in Fig. 5 that the five simulated orbits are all periodic orbits 
around E0.

Finally, consider system (1.2) with a = 1, b = −1, c = 2 and δ0 = 0. Clearly, (a, b, c, δ0) ∈ D and 
a = c/2. Choosing an initial point (1, 1, −2), which satisfies 2x2

1 + x3 − δ0 = 0 (the invariant surface F1) 
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Fig. 4. Phase portraits of (1.2) for a = ζ1 + 10−10, b = B(ζ1, 1,Ξ(ζ1, 1)) − 10−10, c = 1 and δ0 = Ξ(ζ1, 1) + 4.6355 × 10−8.

Fig. 5. Phase portraits of (1.2) for a = 1, b = −1, c = 2 and δ0 = −2.

and y2/2 + U(x) = 0 (the Hamiltonian in the coordinate (x, y, z)), we use the MATLAB program “ode45” 
to simulate the orbit in the 3-dimensional phase space. As seen in Fig. 6, the orbit tends to the saddle O as 
t and −t both increase, showing that the orbit is homoclinic to the saddle O. Similarly, from another initial 
point (−1, −1, −2) we can plot the other homoclinic orbit. The two homoclinic orbits form a butterfly-shape. 
Further, choosing an initial point P1 arbitrarily on the invariant surface F1 but outside the butterfly-shape of 
homoclinic orbits, we use the MATLAB program “ode45” to simulate the orbit. The initial point, e.g. (0, 1, 0), 
can be found easily from the equality 2x2

1 + x3 − δ0 = 0 and the inequality y2/2 +U(x) > 313/576. We can 
observe from Fig. 6 that the orbit starting from P1 is a periodic orbit. Similarly, choosing an initial point P2
arbitrarily on the invariant surface F1 but inside one of the homoclinic orbits and not at E±, we simulate the 
orbit. Such initial points, e.g. (0.5, 0.5, −0.5), (−0.5, −0.5, −0.5), (0.3, 0.3, −0.18) and (−0.3, −0.3, −0.18), 
can be found from the equality 2x2

1 + x3 − δ0 = 0 and the inequality 0 < y2/2 + U(x) < 313/576. We can 
observe from Fig. 6 that all orbits starting from the initial points are also periodic orbits.
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Appendix A

The functions F1, F2 and F3 in (2.11) have the form

F1 = {ac(δ0 + a2)(δ0 + a2 + ac)(cδ0 + 4a3 + a2c)2[cδ3
0 + a2(4a + 7c)δ2

0 + a4(8a + 23c)δ0
+ a5(a + 4c)(4a + c)]}−1{a3c2(δ0 + a2)(2a− c)(cδ0 + 4a3 + a2c)(δ0 + 3a2)3z2

1

+ 2a3
√
ac(δ0 + a2)(δ0 + 3a2)[c2δ4

0 + c(8a3 + 2a2c + 5c2a− c3)δ3
0 + a2(16a4 + 24a3c + 12a2c2

+ 25c3a− 6c4)δ2
0 + a4(32a4 + 56a3c + 30a2c2 + 47c3a− 13c4)δ0 + a6(a + c)(16a3 + 24a2c

+ 27ac2 − 8c3)]z1z2 + a2c(δ0 + 3a2)2[c2δ0 + ac(8a2 + 5ac + 2c2)δ3
0 + a3(16a3 + 32a2c

+ 19ac2 + 12c3)δ2
0 + a5(32a3 + 72a2c + 39ac2 + 26c3)δ0 + 16a7(a + c)3]z2

2

+ (1/2)
√
ac(δ0 + a2)(cδ0 + 4a3 + a2c)(δ0 + 3a2)[−c2δ4

0 + 4a2c(a− 3c)δ3
0 + 2a3(8a3 + 2a2c

− 17c2a− 2c3)δ2
0 + 4a5(a + c)(8a2 − 5ac− 4c2)δ0 + a7(16a3 + 12a2c + 3ac2 − 20c3)]z1z3

+ (δ0 + 3a2)(cδ0 + 4a3 + a2c)[c2δ5
0 + ac(8a2 + 3ac + 2c2)δ4

0 + 2a3(8a3 + 16a2c + ac2 + 5c3)δ3
0

+ 2a5(24a3 + 32a2c− 5ac2 + 5c3)δ2
0 + a7(48a3 + 64a2c− 19ac2 − 26c3)δ0 + a9(16a3 + 24a2c

− 9ac2 − 44c3)]z2z3 − (1/4)(δ0 + a2)(cδ0 + 4a3 + a2c)2(δ0 + 3a2)[3cδ3
0 + a(8a2 + 13ac + 4c2)δ2

0

+ a3(16a2 + 29ac + 16c2)δ0 + a5(8a2 + 19ac + 20c2)]z2
3},

F2 = {ac
√

ac(δ0 + a2)(δ0 + a2 + ac)(cδ0 + 4a3 + a2c)2[cδ3
0 + a2(4a + 7c)δ2

0 + a4(8a + 23c)δ0
+ a5(a + 4c)(4a + c)]}−1{−a3c(2a− c)(δ0 + a2)(δ0 + 3a2)(cδ0 + 2a3 + 2a2c)[cδ2

0 + 4a2(a + c)δ0
+ a3(4a2 + 11ac− 2c2)]z2

1 + a2c
√

ac(δ0 + a2)(δ0 + 3a2)[c2δ4
0 + ac(4a2 + 12ac− c2)δ3

0

+ a3c(52a2 + 38ac− 5c2)δ2
0 + a4(64a4 + 76a3c + 108a2c2 − 35ac3 + 4c4)δ0 + a6(a + c)(64a3 + 60a2c
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− 27ac2 + 4c3)]z1z2 − a3c2(δ0 + 3a2)2[−c(a− c)δ3
0 − a2(4a2 − 5ac− 3c2)δ2

0 + a3(16a3 + a2c

+ 17ac2 − 4c3)δ0 + a5(a + c)(20a2 + 7ac− 4c2)]z2
2 + (1/2)(cδ0 + 4a3 + a2c)

√
ac(δ0 + a2)[c2δ5

0

+ a2c(4a + 11c)δ4
0 + 2a4c(20a + 23c)δ3

0 + 2a5(16a3 + 40a2c + 65ac2 − 4c3)δ2
0 + a6(64a4 + 88a3c

+ 129a2c2 + 16ac3 − 8c4)δ0 + a8(4a2 − ac + 4c2)(8a2 + 13ac− 4c2)]z1z3 − (1/2)ac(2a− c)(δ0
+ 3a2)(cδ0 + 4a3 + a2c)[cδ4

0 + 2a2(2a + c)δ3
0 − 4a3(a− c)2δ2

0 − 2a6(10a + c)δ0 − 3a7(4a2 + 3ac

− 4c2)]z2z3 + (1/4)(δ0 + a2)(cδ0 + 4a3 + a2c)2[cδ4
0 + 2a(2a2 + 2ac + c2)δ3

0 + 2a3(2a2 + 13ac

+ 2c2)δ2
0 − 2a4(2a3 − 22a2c− 11ac2 + 4c3)δ0 − a6(4a3 − 21a2c− 36ac2 + 16c3)]z2

3},

F3 = a(δ0 + 3a2){
√
ac(δ0 + a2)(δ0 + a2)(cδ0 + 4a3 + a2c)2[cδ3

0 + a2(4a + 7c)δ2
0 + a4(8a + 23c)δ0

+ a5(a + 4c)(4a + c)]}−1{−2a3c(2a− c)(δ0 + a2)(δ0 + 3a2)(cδ0 + 2a3 + 2a2c)z2
1

− 2a2
√
ac(δ0 + a2)[c2δ3

0 − ac(4a2 − 15ac + 2c2)δ2
0 − a3(a− 2c)(16a2 + 16ac− 3c2)δ0

− a5(16a3 − 36a2c− 21ac2 + 4c3)]z1z2 + 2a3c(δ0 + 3a2)[c(3a− 2c)δ2
0 + 2a2(a + c)(4a− 3c)δ0

+ a4(8a2 − 5ac− 4c2)]z2
2 +

√
ac(δ0 + a2)(δ0 + a2)(cδ0 + 4a3 + a2c)[cδ2

0 + 6a2cδ0 + a3(16a2 − 7ac

+ 4c2)]z1z3 − 2a(2a− c)(δ0 + a2)(cδ0 + 4a3 + a2c)[cδ2
0 + a2(2a + c)δ0 + 2a4(a− 2c)]z2z3

+ (1/2)(δ0 + a2)2(cδ0 + 4a3 + a2c)2(δ0 − 5a2 + 4ac)z2
3}.

The function Ω2 in (2.12) has the form

Ω2(a, c, δ0)

= 162c5(3a + 4c)δ20
0 + 9ac4(78a3 + 3173a2c + 3366ac2 − 396c3)δ19

0 + a2c3(4240a5

+ 33 095a4c + 779 035a3c2 + 632 136a2c3 − 158 940ac4 − 324c5)δ18
0 + a4c2(10 608a6 + 136 524a5c

+ 837 950a4c2 + 12 917 089a3c3 + 7 808 294c4a2 − 3 373 596ac5 − 13 806c6)δ17
0 + a5c(5760a8

+ 315 456a7c + 2 191 292a6c2 + 13 524 871a5c3 + 145 589 319a4c4 + 63 248 363a3c5 − 45 503 468a2c6

− 233 244ac7 − 990c8)δ16
0 + a7(256a9 + 148 544a8c + 4 379 968a7c2 + 23 375 112a6c3 + 148 023 240a5c4

+ 1 188v674 618a4c5 + 344 415 926a3c6 − 437 562 968a2c7 − 2 246 450ac8 + 6339c9)δ15
0 + a8(5376a10

+ 1 737 152a9c + 37 858 720a8c2 + 182 160 872a7c3 + 1 153 386 996a6c4 + 7 319 972 926a5c5

+ 1 170 089 812a4c6 − 3 184 121 498a3c7 − 14 753 835a2c8 + 712 757ac9 + 396c10)δ14
0 + a10(48 896a10

+ 12 309 952a9c + 227 714 496a8c2 n
√ + 1 074 238 328a7c3 + 6 647 472 088a6c4 + 34 919 432 930a5c5

+ 1 253 403 482a4c6 − 18 150 676 862a3c7 − 80 722 138a2c8 + 13 388 285ac9 − 32 012c10)δ13
0

+ a12(262 912a10 + 59 293 760a9c + 1 007 319 648a8c2 + 4 869 143 320a7c3 + 29 138 403 284a6c4

+ 131 342 566 330a5c5 − 11 794 054 172a4c6 − 82 751 022 376a3c7 − 460 655 993a2c8 + 139 892 125ac9

− 924 031c10)δ12
0 + a13(948 480a11 + 206 069 312a10c + 3 378 744 512a9c2 + 17 120 479 848a8c3

+ 99 026 035 700a7c4 + 393 900 821 812a6c5 − 88 429 860 718a5c6 − 305v 432 042 428a4c7

− 2 766 911 666a3c8 + 979 755 941a2c9 − 11 151 274ac10 + 10 532c11)δ11
0 + a15(2 452 736a11

+ 535 082 944a10c + 8 746 036 640a9c2 + 46 995 421 928a8c3 + 264 167 398 666a7c4 + 947 810 455 284a6c5

− 356 100 252 020a5c6 − 918 278 669 110a4c7 − 14 699 342 547a3c8 + 4 947 716 383a2c9 − 79 621 894ac10

+ 123 998c11)δ10
0 + a17(4 722 432a11 + 1 060 238 784a10c + 17 646 229 920a9c2 + 101 108 214 544a8c3

+ 556 950 405 572a7c4 + 1 833 743 678 052a6c5 − 1 011 496 976 314a5c6 − 2 251 845 493 082a4c7
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− 61 875 647 382a3c8 + 18 642 517 339a2c9 − 374 762 902ac10 + 195 414c11)δ9
0 + a18(6 918 912a12

+ 1 622 432 064a11c + 27 875 915 232a10c2 + 170 699 087 376a9c3 + 929 922 315 050a8c4

+ 2 848 096 058 876a7c5 − 2 168 275 934 934a6c6 − 4 490 994 868 220a5c7 − 199 830 454 601a4c8

+ 53 174 412 183a3c9 − 1 207 803 097a2c10 − 5 207 380ac11 + 25 608c12)δ8
0 + a20(7 797 504a12

+ 1 926 640 320a11c + 34 469 383 872a10c2 + 225 663 258 008a9c3 + 1 226 553 813 064a8c4

+ 3 532 292 054 870a7c5 − 3 585 242 022 206a6c6 − 7 232 031 398 608a5c7 − 491 961 075 398a4c8

+ 114 951 845 813a3c9 − 2 657 129 204a2c10 − 46 634 320ac11 + 321 768c12)δ7
0 + a22(6 772 480a12

+ 1 772 158 784a11c + 33 187 481 056a10c2 + 232 112 389 560a9c3 + 1 268 641 320 756a8c4

+ 3 464 737 737 042a7c5 − 4 586 483 877 684a6c6 − 9 291 287 384 310a5c7 − 919v169 411 289a4c8

+ 186 395 461 243a3c9 − 3 784 987 480a2c10 − 199 877 372ac11 + 1 648 632c12)δ6
0 + a23(4 502 784a13

+ 1 251 104 576a12c + 24 596 364 736a11c2 + 183 514 882 760a10c3 + 1 015 324 958 328a9c4

+ 2 647 375 904 046a8c5 − 4 499 079 350 034a7c6 − 9 353 568 379 458a6c7 − 1 289 831 005 518a5c8

+ 221 502 742 011a4c9 − 2 873 886 088a3c10 − 518 381 756a2c11 + 4 021 928ac12 + 14 976c13)δ5
0

+ a25(2 253 056a13 + 665 444 032a12c + 13 752 775 200a11c2 + 109 263 519 272a10c3

+ 615 240 310 228a9c4 + 1 539 657 049 248a8c5 − 3 316 954 240 212a7c6 − 7 187 260 941 408a6c7

− 1 332 266 950 467a5c8 + 185 145 265 163a4c9 + 147 659 023a3c10 − 856 155 840a2c11 + 3 377 768ac12

+ 114 016c13)δ4
0 + a27(822 016a13 + 258 091 712a12c + 5 609 238 336a11c2 + 47 357 335 288a10c3

+ 272 546 584 382a9c4 + 657 316 294 191a8c5 − 1 775 405 025 120a7c6 − 4 053 227 753 328a6c7

− 978 567 632 982a5c8 + 101 213 346 307a4c9 + 2 488 463 582a3c10 − 899 418 276a2c11 − 4 578 824ac12

+ 316 256c13)δ3
0 + a28(206 592a14 + 68 912 960a13c + 1 574 481 632a12c2 + 14 095 815 912a11c3

+ 83 185 003 655a10c4 + 193 961 491 169a9c5 − 650 164 392 180a8c6 − 1 575 302 734 878a7c7

− 481 793 117 541a6c8 + 31 086 463 569a5c9 + 2 170 815 122a4c10 − 586 187 026a3c11 − 12 142 296a2c12

+ 343 136ac13 + 1664c14)δ2
0 + a30(32 000a14 + 11 328 832a13c + 271 890 800a12c2 + 2 575 592 804a11c3

+ 15 623 907 502a10c4 + 35 306 694 059a9c5 − 145 469 603 508a8c6 − 375 753 549 450a7c7

− 142 060 101 972a6c8 + 3 137 100 941a5c9 + 752 505 322a4c10 − 221 951 434a3c11 − 9 760 648a2c12

+ 134 560ac13 + 1664c14)δ0 + 9a33(256a13 + 96 064a12c + 2 419 296a11c2 + 24 197 716a10c3

+ 151 149 103a9c4 + 331 644 501a8c5 − 1 664 266 629a7c6 − 4 593 869 904a6c7 − 2 101 159 719a5c8

− 49 913 273a4c9 + 8 763 265a3c10 − 4 319 580a2c11 − 322 832ac12 − 320c13).
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