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Abstract: At the start of Run 2 in 2015, the LHC delivered proton-proton collisions at a center-of-
mass energy of 13 TeV. During Run 2 (years 2015–2018) the LHC eventually reached a luminosity
of 2.1 × 1034 cm−2 s−1, almost three times that reached during Run 1 (2009–2013) and a factor of
two larger than the LHC design value, leading to events with up to a mean of about 50 simultaneous
inelastic proton-proton collisions per bunch crossing (pileup). The CMS Level-1 trigger was
upgraded prior to 2016 to improve the selection of physics events in the challenging conditions posed
by the second run of the LHC. This paper describes the performance of the CMS Level-1 trigger
upgrade during the data taking period of 2016–2018. The upgraded trigger implements pattern
recognition and boosted decision tree regression techniques formuon reconstruction, includes pileup
subtraction for jets and energy sums, and incorporates pileup-dependent isolation requirements for
electrons and tau leptons. In addition, the new trigger calculates high-level quantities such as
the invariant mass of pairs of reconstructed particles. The upgrade reduces the trigger rate from
background processes and improves the trigger efficiency for a wide variety of physics signals.
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1 Introduction

The CERN LHC collides bunches of particles in the CMS and ATLAS experiments at a maximum
rate of about 40MHz, where the bunches are spaced 25 ns apart. Of these only about 1000 per
second can be recorded for further analysis. The Level-1 trigger system uses custom hardware
processors to select up to 100 kHz of the most interesting events with a latency of 4 µs. The High
Level Trigger (HLT) then performs a more detailed reconstruction, including particle tracking, on a
commodity computing processor farm, reducing the rate by another factor of 100 in a few hundred
milliseconds. Events passing the HLT selection are sent to a separate computing farm for more
accurate event reconstruction and storage.

The LHCoperation is organized into periods of physics production, where protons or heavy ions
are collided, and periods of shutdown during which repairs and upgrade work are performed. The
original CMS trigger system performed efficiently in the LHC Run 1 (between 2009 and 2013) and
2015. Its design is described in ref. [1] and its performance in ref. [2]. In 2015 the LHC increased
the proton-proton center-of-mass collision energy from 8 to 13 TeV. The instantaneous luminosity
steadily increased throughout Run 2, which ended in 2018. These changes were designed to provide
a larger data set for studies of rare interactions and searches for new physics, but they also presented
several challenges to the trigger system. Improved trigger algorithms were needed to enhance the
separation of signal and background events and to provide more accurate energy reconstruction in
the presence of a larger number of simultaneous collisions per LHC bunch crossing (pileup).

The CMS Collaboration undertook a major upgrade to the Level-1 trigger system (Phase 1)
between Run 1 and Run 2, and plans a second upgrade (Phase 2) after Run 3 ends (expected
in 2024). The Phase 1 upgrade replaced all of the Level-1 trigger hardware, cables, electronics
boards, firmware, and software, as described in the Technical Design Report for the Level-1 trigger
upgrade [3]. Despite higher instantaneous luminosity, energy, and pileup, the upgraded Level-1
trigger maintained or increased its efficiency to separate the chosen signal events from background,
because of finer detector input granularity, enhanced object reconstruction (e.g., µ, e/γ , jet, τ, and
energy sums), and correlated multi-object triggers targeting specific physics signatures.

This paper describes the trigger algorithms of the Phase 1 Level-1 trigger upgrade and reports
their performance, measured using Run 2 data. A brief overview of the CMS detector is given in
section 2. Section 3 describes the performance of the LHC and its impact on the CMS trigger system
in Run 2. Section 4 provides an overview of the large collection of algorithms used to select events
for physics measurements. Section 5 describes the design of the upgraded Level-1 trigger, including
updates since ref. [3]. The reconstruction algorithms, along with their performance, are described
in detail for each subdetector: the muon trigger in section 6, and the calorimeter trigger in section 7;
appendix A provides details on a calorimeter trigger issue that affected Run 2 data. Section 8
provides two examples of newmulti-object global trigger algorithms, while section 9 describes how
the data quality of the Level-1 trigger is monitored in real time. Section 10 summarizes and draws
conclusions regarding the achievements of the upgraded Level-1 trigger in Run 2.
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2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6m internal diameter,
providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker,
a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron
calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters
extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are
detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid.
Drift tubes (DTs) cover the central region (|η | < 1.2), cathode strip chambers (CSCs) are installed in
the endcaps (0.9 < |η | < 2.4), and resistive plate chambers (RPCs) provide overlap out to |η | < 1.7.
A more detailed description of the CMS detector, together with a definition of the coordinate system
used and the relevant kinematic variables, can be found in ref. [4].

3 The LHC in Run 2

Trigger performance depends on the running conditions of the LHC, such as instantaneous lumi-
nosity, number of colliding bunches, and even the structure of the filling scheme. The LHC was
designed to collide protons with a center-of-mass energy of 14 TeV and an instantaneous luminosity
corresponding to 1.0×1034 cm−2 s−1, but it initially operated at lower energies and intensities. Dur-
ing Run 1 the center-of-mass energy was increased in steps up to 8 TeV with a peak instantaneous
luminosity near 8.0× 1033 cm−2 s−1. At that time, the LHC operated with a longer minimum bunch
spacing of 50 ns, instead of the originally foreseen 25 ns.

During the first long shutdown period of the LHC in 2013–2014, the accelerator was modified
to provide safe operation at 13 TeV with 25 ns bunch spacing, and the CMS experiment underwent
upgrades [5] to prepare for a dramatic increase in collision rate. Run 2 of the LHC lasted from 2015
until the end of 2018 with peak instantaneous luminosities of about 2.1 × 1034 cm−2 s−1. A typical
filling scheme for the LHC in Run 2 comprised 2556 proton bunches per beam out of 3564 possible
bunch locations. The bunches were grouped in “trains” of 48 bunches with 25 ns spacing, with larger
gaps between trains. Of these, 2544 bunches collided at the CMS interaction point. In the second
long shutdown of the LHC (2019–2020), upgrades to the accelerator are planned, possibly increasing
the center-of-mass energy for Run 3 (foreseen to start late 2021 or early 2022), and allowing the LHC
to sustain a maximum instantaneous luminosity of 2.0 × 1034 cm−2 s−1 for longer periods of time.

In 2017 the LHC suffered frequent beam dumps. These were caused when an electron cloud
generated by tightly packed bunches interacted with frozen gas in the beam pipe. The gas had
become trapped in one area of the LHC during the year-end technical stop between 2016 and
2017 [6]. To mitigate this effect, the LHC moved to a special “8b4e” filling scheme in September
2017. In this scheme the standard 48 bunch trains are replaced by mini-trains of 8 filled bunches
followed by 4 empty slots, suppressing the formation of electron clouds. Since the 8b4e filling
scheme allows a maximum of 1916 filled bunches in the LHC, the peak instantaneous luminosity
was leveled to≈1.55×1034 cm−2 s−1, so the average pileupwould not exceed 60. The LHC delivered
41.0 and 49.8 fb−1 of proton-proton collisions to CMS in 2016 and 2017, respectively, during which
35.9 and 41.5 fb−1 of good quality data were recorded.

– 3 –
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In 2018 the beam dump issues had largely been mitigated so that a return to the preferred
nominal scheme was possible. The advantage of this scheme is the use of a larger number of
colliding bunches, providing higher instantaneous luminosity without increasing the pileup. The
peak luminosity of about 2.0 × 1034 cm−2 s−1 led to an average pileup of 55, similar to that at the
start of 2017. The LHC ran smoothly in 2018 and delivered an integrated luminosity of 68.0 fb−1

to CMS, which recorded 59.7 fb−1 of good quality data.
The LHC periodically provides short special runs, such as the van der Meer scans, with non-

standard beam settings, which require dedicated triggers and calibrations. The precise measurement
of the integrated luminosity recorded by CMS is a necessary ingredient for most of the CMS physics
results, and the CMS experiment has several detectors dedicated to this measurement. The van der
Meer scans provide data necessary to calibrate these measurements.

During the van der Meer scans, the LHC beams are scanned across each other to provide an
accurate luminosity calibration. The trigger system is used tomeasure the rate of the beam collisions,
which is used to calculate the luminosity, as described in ref. [7]. For some periods of the van
der Meer scan, the Level-1 trigger system records, with high rate, only events from selected bunch
crossings in the LHC orbit bunch structure to improve the precision of the luminosity calibration.

4 The physics program and the trigger menu

The CMS physics program targets many areas of interest to the high-energy physics community.
After the discovery of the Higgs boson [8–10], measuring its properties, which are currently
compatible with the standard model (SM) predictions [11], became of central importance. Searches
for supersymmetric and exotic particles, together with candidates for dark matter, are also central to
the CMS physics program and they require a high-performance trigger. Such a high-performance
trigger also enables precision measurements of SM properties in the electroweak, top quark, and
quantum chromodynamics (QCD) sectors, with special attention to the physics of bottom quarks,
where triggering objects often have low transverse momentum (pT). Heavy ion collisions are
included in the CMS physics program, expanding our knowledge of quark-gluon plasma dynamics.

The Level-1 trigger information from the muon and calorimeter detectors with coarse gran-
ularity and precision is used to select collision events for investigations in all of the previously
mentioned physics areas. The selection is performed using a list of algorithms (known as “seeds”),
which check events against predetermined criteria, that are collectively called the “menu”. Any
event that satisfies the conditions of at least one seed in the menu is accepted for further processing
in the trigger chain. This initiates a readout of the complete detector information from the data
acquisition system, and the data are sent to the HLT. The broad range of menu algorithms reflects
the wide variety of research interests of the CMS Collaboration. The Level-1 menu evolves with
shifting CMS physics priorities and adapts to changes in beam or detector performance.

The most straightforward trigger algorithms consist of criteria applied to one or more objects of
a single type, such asmuons, hadronic jets, tau leptons, photons or electrons, scalar sumof transverse
energy (HT), and the energy corresponding to the vector sum of the transverse missing momentum
(Emiss

T ). Typical criteria include thresholds on the transverse component of the object’s energy ET
(or momentum), and on its η. Signal processes with massive particles typically produce objects
at high pT and low |η | values (central in the detector), whereas the vast majority of background
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Figure 1. Fractions of the 100 kHz rate allocation for single- and multi-object triggers and cross triggers in
a typical CMS physics menu during Run 2.

objects are low pT and tend to have higher |η |. Single- and double-object seeds form the majority
of the menu and cover about 75% of the available rate. Muon and electron thresholds are chosen to
efficiently select leptonic W and Z boson decays, and ττ thresholds are set to maximize the Higgs
boson acceptance in this decay channel.

The “cross” seeds combine physics objects of different types, for example a muon and a jet,
allowing lower thresholds that target a diverse range of signals. More complex algorithms using
correlations between multiple objects select highly specific signal events, such as hadrons decaying
to muons, or Higgs bosons produced via vector boson fusion (VBF). Finally, a small fraction
of events passing less restrictive algorithms are collected to calibrate the detectors and measure
trigger efficiencies. Figure 1 shows the “proportional rate”, the fraction of the maximum Level-1
trigger rate allocated to single-, multi- (same type), and cross- (different type) object seeds. In the
proportional rate calculation, events triggered by N different seeds are weighted by 1/N to ensure
that the total sums to 100%.

Themenu algorithms are designed using a simulation of the Level-1 object reconstruction using
either Monte Carlo (MC) simulated collision events or, where possible, previously collected data.
The seed thresholds are adjusted to achieve a total menu rate that is less than 100 kHz, estimated with
data collected with a trigger that requires only a crossing of proton bunches, referred to as a zero-bias
trigger. The detection of the crossing of bunches consists of the coincidence of two simultaneous sig-
nals from the two beam pick-up monitors installed at the opposite ends of CMS along the beam line.

Trigger algorithm rates depend on the ability of the trigger reconstruction to discriminate
between signal objects, arising in hard collisions, from backgrounds or misidentified objects. This
becomesmore difficult as pileup increases. Figure 2 shows the rate of some benchmark trigger seeds
targeting leptons (left) and hadrons (right) as a function of pileup. Rate and pileup are measured
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Figure 2. Level-1 trigger rates as a function of pileup for some benchmark seeds targeting leptons (left) and
hadrons (right). Rates are measured using data recorded during the 2018 LHC run. Definitions of the seed
names are in table 1. The curves represent fits to the data points that are quadratic and constrained to pass
through the origin.

Table 1. Detailed description of Level-1 trigger seed names used in figure 2.

Algorithm name Description

L1_SingleLooseIsoEG28er2p5 Single loosely isolated e/γ with ET > 28GeV and |η | < 2.5
L1_DoubleIsoTau32er2p1 Double isolated τ with ET > 32GeV and |η | < 2.1
L1_SingleMu22 Single muon with pT > 22GeV
L1_DoubleEG_25_12_er2p5 Double e/γ with ET > 25GeV,12GeV and |η | < 2.5
L1_DoubleMu_15_7 Double muon with pT > 15GeV,7GeV
L1_ETMHF100 Emiss

T > 100GeV
L1_SingleJet180 Single jet with ET > 180GeV
L1_DoubleJet150er2p5 Double jet with ET > 150GeV and |η | < 2.5

in a time interval of a “luminosity section”, corresponding to 218 LHC orbits or 23.3 seconds of
data taking. In this and subsequent figures, error bands in the data points represent their statistical
uncertainty only. Single-object trigger rates generally increase linearly with pileup, whereas double-
object paths may have a higher-order dependency. The largest dependence on pileup is shown by the
seeds based on the missing transverse energy. The Level-1 trigger reconstruction cannot distinguish
between objects generated by different collisionswithin the samebunch crossing. However, in offline
reconstruction the objects are associated with different reconstructed vertices that originate from
different collisions. This requires tracking information, which is not available in the Level-1 trigger.

The rate of an algorithm can be reduced by applying a “prescale” that determines what fraction
of events selected by the seed will pass the trigger. A prescale of N means that only one in every N
events satisfying the condition is accepted. Prescale values can only be positive integer numbers.
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Figure 3. Total Level-1 menu rates as a function of pileup for three sets of algorithms, or “prescale columns”,
defined in the text. The rates were recorded during a LHC fill with 2544 proton bunches. The instantaneous
luminosities of 2.0×, 1.7×, and 1.5×1034 cm−2 s−1 correspond to an average pileup of 55, 47, and 42 respec-
tively. The curves represent fits to the data points that are quadratic and constrained to pass through the origin.

With a prescale of two, for example, only half of the events selected by the seed will propagate
to the HLT. A “prescale column” is a set of prescale values applied to each of the seeds in a particular
menu. During an LHC fill the beam intensity decreases with time, so multiple prescale columns
with decreasing prescale values are used, to maximize signal efficiency while keeping the rate under
100 kHz.

Trigger algorithms used for most physics analyses have a prescale value of one in all columns,
whereas high rate calibration triggers generally have prescale values that are greater than one.
Figure 3 shows the trigger rate as a function of pileup, defined as for figure 2, for a few benchmark
prescale columns of the trigger menu. These were tuned to reach a total Level-1 trigger rate
of 100 kHz for three different target instantaneous luminosity values. The prescale columns for
luminosities of 1.5 × 1034 cm−2 s−1 and 1.7 × 1034 cm−2 s−1, represented by the black dots and
red squares, respectively, were not used to collect data at the highest pileup, but were activated
only when their corresponding Level-1 trigger rate was lower than 100 kHz. Although quadratic
functions fit the data points well, the very small quadratic coefficient of these fits indicates a mostly
linear dependence of the rate on pileup suggesting a negligible contamination from pileup events.

The total number of algorithms in the CMS Level-1 menu used in proton-proton collisions
is between 350 and 400; the system architecture is limited to 512, which is a factor 4 larger
than the Run 1 system. There were about 150 unprescaled seeds in the menu at the end of
2018, of which approximately 100 were “contingency” seeds with stricter selection requirements.
The remaining 50 were responsible for collecting data for all physics analyses that used the full
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integrated luminosity delivered by the LHC. The other 250 algorithms were prescaled and used
for calibrations, monitoring, trigger efficiency measurements, and other ancillary measurements.
Tables 2 and 3 show the unprescaled algorithms and their corresponding thresholds. Algorithms
with no pT threshold for muons have an effective minimum pT that varies as a function of |η |,
because very low-pT muons do not reach the muon chambers.

5 The Level-1 trigger architecture

During the first LHC long shutdown and extending into 2015, the new CMS Level-1 trigger was
installed to run in parallel with the Run 1 (legacy) Level-1 trigger, and eventually replaced it. The
upgraded Level-1 trigger is described in detail in ref. [3], with the exception of two new muon
systems: the concentrator and preprocessor fanout (CPPF) and the TwinMux, which are described
in section 6. Section 5 summarizes the overall design of the upgraded trigger, shown in figure 4.

In contrast to the Run 1 system that used the VersaModule Eurocard (VME) standard and many
parallel electrical cables for the interconnects, the upgraded trigger uses AdvancedMezzanine Cards
(AMC) based on MicroTCA technology [12] and multi-Gb/s serial optical links for data transfer
between modules. The MicroTCA crate provides a high-bandwidth backplane, system monitoring
capabilities, and redundant power modules. The number of distinct electronics board types is
greatly reduced because many components are based on common hardware designs.

The calorimeter trigger consists of two layers: Layer-1 receives, calibrates, and sorts the local
energy deposits (“trigger primitives”) which are sent to the trigger by the ECAL and HCAL; Layer-2
uses these calibrated trigger primitives to reconstruct and calibrate the physics objects such as elec-
trons, tau leptons, jets, and energy sums. The calorimeter trigger follows a time-multiplexed trigger
design [13] illustrated in figure 5. Each main processing node has access to a whole event with a
granularity of ∆η×∆φ of 0.087×0.087 radians (where phi is azimuthal angle) in most of the calori-
meter acceptance (a slightly coarser granularity is used at high |η |). A demultiplexer (DeMux) board
then reorders, reserializes, and formats the events for the global trigger (µGT, which is pronounced
micro-GT to emphasize the connection to the MicroTCA technology used in this upgrade) process-
ing. Because the volume of incoming data and the algorithm latency are fixed, the position of all
data within the system is fully deterministic and no complex scheduling mechanism is required. The
benefits of time multiplexing include removal of regional boundaries for the object reconstruction
and full granularity when computing energy sums. The multiplicity of processing nodes provides
the flexibility to add nodes as required by complex trigger algorithms. These algorithms are fully
pipelined and start processing as soon as the minimum amount of data is received.

The muon trigger system includes three muon track finders (MTF) which reconstruct muons
in the barrel (BMTF), overlap (OMTF), and endcap (EMTF) regions of the detector, and the global
muon trigger (µGMT, pronounced micro-GMT) for final muon selection. The µGT finally collects
muons and calorimeter objects and executes every algorithm in the menu in parallel for the final
trigger decision.

– 8 –
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Table 2. List of the most used unprescaled Level-1 trigger algorithms (seeds) during Run 2 and their
requirements.

Algorithm Requirements (pT, ET, m
µµ

, and mjj in GeV)
Muons
Single µ pT > 22 & Tight quality
Double µ pT > 15,7 &Medium quality
Double µ pT > 15,5 & Tight quality
Double µ pT > 8,8 & Tight quality
Double µ + mass pT > 4.5 & |η | < 2.0 & Tight quality & OS & m

µµ
> 7

Double µ + ∆R pT > 4 & Tight quality & OS & ∆R < 1.2
Double µ + ∆R pT > 0 & |η | < 1.5 & Tight quality & OS & ∆R < 1.4
Double µ + BX pT > 0 & |η | < 1.4 &Medium quality & Non-colliding BX
Triple µ pT > 5,3,3 &Medium quality
Triple µ pT > 3,3,3 & Tight quality
Triple µ + mass pT > 5,3.5,2.5 &Med. qual.; two µ OS & pT > 5,2.5 & 5 < m

µµ
< 17

Triple µ + mass Three µ any qual.; two µ & pT > 5,3 & Tight qual. & OS & m
µµ

< 9

Electrons / photons (e/γ )
Single e/γ pT > 60
Single e/γ pT > 36 & |η | < 2.5
Single e/γ pT > 28 & |η | < 2.5 & Loose isolation
Double e/γ pT > 25,12 & |η | < 2.5
Double e/γ pT > 22,12 & |η | < 2.5 & Loose isolation
Triple e/γ pT > 18,17,8 & |η | < 2.5
Triple e/γ pT > 16,16,16 & |η | < 2.5

Tau leptons (τ)
Single τ pT > 120 & |η | < 2.1
Double τ pT > 32 & |η | < 2.1 & Isolation

Jets
Single jet pT > 180
Single jet + BX pT > 43 & |η | < 2.5 & Non-colliding BX
Double jet pT > 150 & |η | < 2.5
Double jet + ∆η pT > 112 & |η | < 2.3 & ∆η < 1.6
Double jet + mass pT > 110,35; two jets pT > 35 & mjj > 620
Double jet + mass pT > 30 & |η | < 2.5 & ∆η < 1.5 & mjj > 300
Triple jet pT > 95,75,65; two jets pT > 75,65 & |η | < 2.5

Energy sums
Emiss

T Emiss
T > 100 (Vector sum of pT of calorimeter deposits with |η | < 5.0)

HT HT > 360 (Scalar sum of pT of all jets with pT > 30 and |η | < 2.5)
ET ET > 2000 (Scalar sum of pT of calorimeter deposits with |η | < 5.0)

Terms used
Tight quality: muons with hits in at least 3 different muon stations.
Medium quality: muons with hits in at least 2 different muon stations.
The “non-colliding BX” requirement selects beam-empty events.
∆R ≡ ((∆φ)2 + (∆η)2)1/2, and phi is the azimuthal angle in radians.
OS: Opposite Sign (of electric charge).
ET: scalar sum of pT of calorimeter deposits.
HT: scalar sum of pT of jets.
Isolation and loose isolation: the isolation requires an upper limit on the transverse calorimeter energy surrounding
the candidate. The limit depends on the pileup, the Level-1 candidate ET and |η |. Details are given in sections 7.2
and 7.3.

– 9 –
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Table 3. List of the most used cross object unprescaled Level-1 trigger algorithms (seeds) during Run 2 and
their corresponding requirements.

Algorithm Requirements
(pT, ET, m

µµ
, and mjj in GeV)

Two objects
Single µ + Single e/γ pT(µ) > 20 & Tight quality(µ) & pT(e/γ ) > 10 & |η(e/γ )| < 2.5
Single µ + Single e/γ pT(µ) > 7 & Tight quality(µ) & pT(e/γ ) > 20 & |η(e/γ )| < 2.5
Single µ + pT(µ) > 18 & |η(µ)| < 2.1 & Tight quality(µ) &
Single τ pT(τ) > 24 & |η(τ)| < 2.1
Single µ + HT pT(µ) > 6 & Tight quality(µ) & HT > 240
Single e/γ + pT(e/γ ) > 22 & |η(e/γ )| < 2.1 & Loose isolation(e/γ ) &
Single τ pT(τ) > 26 & |η(τ)| < 2.1 & Isolation(τ) & ∆R > 0.3
Single e/γ + pT(e/γ ) > 28 & |η(e/γ )| < 2.1 & Loose isolation(e/γ ) &
Single jet pT(jet) > 34 & |η(jet)| < 2.5 & ∆R > 0.3
Single e/γ + HT pT(e/γ ) > 26 & |η(e/γ )| < 2.1 & Loose isolation(e/γ ) & HT > 100
Single τ + Emiss

T pT(τ) > 40 & |η(τ)| < 2.1 & Emiss
T > 90

Single jet + Emiss
T pT(jet) > 140 & |η(jet)| < 2.5 & Emiss

T > 80

Three objects
Single µ pT(µ) > 12 & |η(µ)| < 2.3 & Tight quality(µ) &
Double jet + ∆R pT(jet) > 40 & ∆η(jet,jet) < 1.6 & |η(jet)| < 2.3 & ∆R(µ, jet) < 0.4
Single µ + pT(µ) > 3 & |η(µ)| < 1.5 & Tight quality (µ) &
Single jet + Emiss

T pT(jet) > 100 & |η(jet)| < 2.5 & Emiss
T > 40

Double µ + HT pT(µ) > 3 & Tight quality(µ) & HT > 220
Double µ + pT(µ) > 0 &Medium quality(µ) & ∆R(µ,µ) < 1.6 &
Single jet + ∆R pT(jet) > 90 & |η(jet)| < 2.5 & ∆R(µ, jet) < 0.8
Double µ + Single e/γ pT(µ) > 5 & Tight quality(µ) & pT(e/γ ) > 9 & |η(e/γ )| < 2.5
Double e/γ + Single µ pT(e/γ ) > 12 & |η(e/γ )| < 2.5 & pT(µ) > 6 & Tight quality(µ)
Double e/γ + HT pT(e/γ ) > 8 & |η(e/γ )| < 2.5 & HT > 300

Four objects
Double µ + Double e/γ pT(µ) > 3 &Medium quality(µ) & OS(µ) & pT(e/γ ) > 7.5
Double µ + Double e/γ pT(µ) > 5 &Medium quality(µ) & OS(µ) & pT(e/γ ) > 3

Five objects
Double µ + Emiss

T + pT(µ) > 3 & Tight quality(µ) & Emiss
T > 50 &

Single jet OR (pT(jet) > 60 & |η(jet)| < 2.5) OR
Double jet (pT(jet) > 40 & |η(jet)| < 2.5)

HT + Quad jet HT > 320 & pT(jet) > 70,55,40,40 & |η(jet)| < 2.4
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Figure 4. Diagram of the upgraded CMS Level-1 trigger system during Run 2. More details about the
muon and calorimeter trigger systems in section 6 and 7 respectively. Labels in the diagram correspond to
trigger primitives (TPs), cathode strip chambers (CSC), drift tubes (DT), resistive plate chambers (RPC),
concentration preprocessing and fan-out (CPPF), hadron calorimeter barrel (HB) and endcap (HE), hadron
calorimeter forward (HF), electromagnetic calorimeter (ECAL), demultiplexing card (DeMux).

In the upgraded trigger, the BMTF, µGMT, µGT, and Layer-2 use the same type of processor
card. The OMTF and EMTF electronic boards similarly share a common design, whereas Layer-1,
TwinMux, and CPPF each use a different design. All processor cards, however, use a XilinxVirtex-7
Field Programmable Gate Array (FPGA). Thus many firmware and control software components,
e.g., data readout and link monitoring, can be reused by several systems, reducing the workload for
development and maintenance.

An advanced mezzanine card called the AMC13 [14] provides fast control signals from the
trigger control and distribution system to the trigger AMCs over the MicroTCA backplane. If an
event is selected, the trigger AMCs send their data over the backplane to the AMC13, which also
connects to the central CMS data acquisition system via 10Gb/s optical links. More details on the
hardware can be found in ref. [3].
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De-multiplexing 
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Figure 5. The time-multiplexed trigger architecture of the upgraded CMS calorimeter trigger.

6 The Level-1 muon trigger and its performance

The CMS muon detector is composed of three partially overlapping subdetectors (CSCs, DTs, and
RPCs, as described in section 2), whose signals are combined together into “trigger primitives”
(TPs) to reconstruct muons and measure their pT. Trigger primitives provide coordinates, timing,
and quality information from detector hits. Figure 6 shows the geometrical arrangement of the three
muon subdetectors in a quadrant of the CMS detector.

In the legacy trigger, data from each of the three subdetectors were used separately to build
independent muon tracks, which were combined by a global muon trigger. The upgraded Level-1
trigger combines information from all available subdetectors to reconstruct tracks in three distinct
pseudorapidity regions, improving themuon reconstruction efficiency and resolutionwhile reducing
the misidentification rate.

The BMTF takes inputs from DT and RPC chambers in the barrel; all three muon subsystems
contribute to the OMTF tracks in the overlap between barrel and endcap; and the EMTF uses CSC
and RPC information to reconstruct endcap muons. Detector symmetry allows each track finder to
run the same algorithm in parallel for different regions in φ. The BMTF is segmented in twelve
sectors of 30◦ each, and both the OMTF and EMTF are segmented into 12 sectors of 60◦, six on
each end of the experiment. A single board builds tracks in one sector, plus 20–30◦ of overlap to
account for muon bending in φ.
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Figure 6. An R-z slice of a quadrant of the CMS detector [15]. The origin of the axes represents the
interaction point. The proton beams travel along the z-axis and cross at the interaction point. The three CMS
muon subdetectors are shown: four stations of DTs in yellow, labelled MB; four stations of CSCs in green,
labelled ME; and four stations of RPCs in blue, labelled RB or RE.

The track finders use muon detector TPs to build muon track candidates, assign a quality to
each, and measure the charge and the pT of each candidate from the bending in the fringe field of
the magnet yoke. Each track finder uses muon finding and pT assignment logic optimized for its
region, and assigns the track quality corresponding to the estimated pT resolution.

Each track finder transmits up to 36 muons to the µGMT, which resolves duplicates from differ-
ent boards, and sends the data for a maximum of eight muons of highest rank (a linear combination
of pT and a quality value) to the µGT, where they are used in the final Level-1 trigger decision.

6.1 Barrel muon trigger primitives

The DT and RPC barrel systems consist of four cylindrical stations wrapped around the solenoid,
each split into 12 wedges in φ and 5 wheels along the beam direction. In the upgraded Level-1
trigger, a new layer called the TwinMux merges DT trigger primitives and RPC hits from the
same station (i.e., detector layer) into “superprimitives”. Superprimitives combine the better spatial
resolution of the DT and the more precise timing from the RPC. Each superprimitive is assigned a
quality, which depends on the location of its inputs, η and φ coordinates, and an internal bending
angle φb. The TwinMux then sends superprimitives to the BMTF. The TwinMux also transmits
unmerged DT TPs and RPC hits to the OMTF. In both cases the TwinMux increases the bandwidth
of the data links used to transmit TPs, thus reducing the number of data links. Merging DT and

– 13 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
1
0
0
1
7

RPC hits also improves the TP efficiency and timing in each station, which results in improved
BMTF performance. The TwinMux is described in detail in ref. [16].

6.2 Endcap RPC trigger primitives

The CPPF consists of eight MicroTCA boards with FPGA processors, designed to concentrate
endcap RPC TPs for transmission onto higher-bandwidth optical links. The CPPF clusters RPC
hits in adjacent strips into a single TP, and computes their θ and φ coordinates before transmitting
up to two clusters per 10◦ chamber to the EMTF. The CPPF was commissioned in 2017. A detailed
description is given in ref. [17].

6.3 Barrel muon track finder

The BMTF reconstructs muons in the barrel region (|η | < 0.83). The BMTF track finding and pT
assignment algorithms are similar to their predecessors running on theDTTF [2, 18]. Look-up tables
(LUTs) use the bending angle and the quality of the superprimitives of an inner station to form an ac-
ceptancewindow for the outer station through an extrapolation unit. Each extrapolation unit receives
superprimitives from one thirty-degree sector/wheel and its five neighbors, i.e. the two adjacent
sectors in the same wheel and the corresponding three in the neighboring wheel. The track assem-
bler unit receives the paired superprimitives for all stations and combines them. Tracks with more
stations, especially inner stations where the magnetic field is stronger, are assigned higher quality.

The assignment unit uses LUTs to assign pT, φ, and η of a track. The pT value is assigned based
on the difference of the φ coordinates of TPs in neighboring stations, ∆φ, for the majority of tracks.
However, ∆φ by itself cannot distinguish high- and low-pT tracks because of the inversion of their
curvature due to the inversion of the magnetic field direction in the yoke with respect to the inner
solenoid region. For this reason two LUTs encode the pT value for either the high- or low-pT case,
and the internal bending angle of the superprimitive, φb, is used to select the appropriate result. A
LUT based purely on the bending angle φb augments the pT assignment for tracks reconstructed
from only two superprimitives, where at least one of the TPs is assigned good quality by the
TwinMux. The pT assigned by this LUT is compared to the one obtained using the TP ∆φ and the
smaller value is selected.

6.4 Overlap muon track finder

The OMTF receives data from three DT and five RPC stations in the barrel, plus four CSC and
three RPC stations in the endcap, giving 18 total “layers” that are used to build tracks (since each
DT station has two layers). Track reconstruction occurs independently in each sector in φ. The
OMTF uses detector hits directly from the RPC system and trigger primitives from the DT and CSC
systems. In the following section the word “hits” is used to indicate either. Each track is constructed
starting from a single reference hit in one layer, so the first step is to select up to four reference
hits, favoring hits from inner layers and those with good φ resolution. Up to two reference hits may
come from the same layer, enabling efficient reconstruction of nearby muons.

The algorithm uses patterns generated from simulated events to associate hits in other layers
with the reference hit. For eachmuon charge there are twenty-six patterns corresponding to different
pT ranges, from 2 to 140GeV. Each pattern encapsulates information about the average muon track
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propagation between layers and the probability density function of hit spread in φ in each layer,
with respect to the reference hit. The patterns differ depending on the reference layers used. When
multiple patterns match a given hit, a statistical estimator based on the φ distribution of the hits
resolves the ambiguity, preferring patterns with a larger number of matched layers. The OMTF
reconstruction algorithm can be regarded as a naive Bayes classifier.

Properties of the best matched patterns, together with the reference hit φ, are passed to the
internal muon sorter, which removes possible duplicates from a single muon producing multiple
reference hits. The three best muons per board are transmitted to the µGMT, giving a maximum of
36 muons. A more detailed description of the algorithm is found in ref. [19].

6.5 Endcap muon track finder

The EMTF builds muon tracks from CSC and RPC TPs in the endcap. Both detectors are composed
of four stations separated in z and covering 360◦ in φ. The CSCs have complete four-station coverage
in the pseudorapidity range 1.2 < |η | < 2.4 in two or three concentric rings of detectors per station,
whereas the endcap RPCs cover approximately 1.2 < |η | < 1.7 in two rings of detectors per station.
The CSCs deliver up to two local charged tracks per BX from each 10◦ or 20◦ chamber in each
station and ring, with ≈1/16◦ precision in φ and ≈1/4◦ precision in θ. The RPCs send hits from
chambers with similar geometry, which are clustered by the CPPF into TPs with ≈1/4◦ precision
in φ and ≈1◦ precision in θ.

The EMTF builds tracks using at most one TP (CSC or RPC) per station. The algorithm first
looks for CSC TPs correlated in φ in multiple stations consistent with the presence of a muon track,
matching at least one of the five predefined patterns. The pattern recognition runs in parallel in
four zones in θ. After the patterns are found, the CSC or RPC TP in each station closest to the
pattern is taken for further processing. Resulting tracks are ranked according to their straightness
and the number of stations with hits. Stations 1 and 2 are prioritized because the magnetic field
is much stronger between stations 1 and 2 than beyond station 2. A muon track with TPs in these
two stations therefore has a more precise pT assignment. The three hit patterns with highest quality
from each sector are kept for the pT assignment, and the others are discarded.

The bending angles in φ and θ of the muon track are used to calculate the track pT. However,
this relationship is complicated by several factors. At low pT, muons can experience significant
multiple scattering and energy loss and at high pT, they can initiate electromagnetic showers. In
addition, the CMSmagnetic field strength and direction varies with η outside the solenoid, so muons
of similar momenta can have different behavior in the more central region (|η | < 1.55) than in the
more forward region (|η | > 2.1). The complicated dependencies make this an ideal case for machine
learning. A boosted decision tree (BDT) regression technique is used to provide an estimate of the
track pT, taking these dependencies into account. The BDT input variables are compressed into
30 bits, and training parameters are optimized using MC simulation of single-muon events. The
BDT output values are pre-evaluated and stored in a LUT loaded in a ≈1GB memory module of
the EMTF for fast determination. Additional details about the design, training, and implementation
of the BDT can be found in ref. [20].
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6.6 Global muon trigger

The µGMT receives up to 108muon candidates (3 per sector) sent from the threemuon track finders.
The µGMT sorts the muons and identifies and removes duplicates, sending up to eight muons to
the µGT. Such duplicate muons would significantly increase the trigger rate for multimuon trigger
algorithms andmust be removed while keeping a high efficiency for events with two genuine muons.
In parallel to the duplicate removal and sorting stage, the µGMT also corrects the spatial coordinates
of each muon by extrapolating the track from the muon stations back to the interaction region.

The µGMT uses the pT and the quality of input muons to define an initial ranking, separately
sorting muons from the positive and negative η sides of the OMTF and EMTF, as well as from the
BMTF. It keeps the four highest ranked muons coming from each endcap of the OMTF and EMTF,
along with the highest ranked eight BMTF muons. The second sorting stage compares the ranks of
muons coming from the first stage and selects the eight with the highest rank.

Because of the overlap between adjacent wedges or sectors of the track finders (TFs), a muon
traversing the detector in these overlap regions can be found by the TF processors of both sides
on the overlap. In addition to this overlap in φ, the different regional TFs also have an overlap in
η where a muon can be found by both the BMTF and OMTF, or by the OMTF and EMTF. Two
different methods are used for the identification of duplicates. The first method makes use of the
“track address” of the muon, which encodes the TPs used to build the muon track, to find duplicates
between BMTF wedges. The second method uses the muon track coordinates, which are applied
to find duplicates between adjacent sectors in the OMTF and the EMTF, and between different
regional TFs. For the second method, simulated events are used to determine the optimal size and
shape of the regions in which tracks should be marked as duplicates.

Because the TF systems measure the muon coordinates within the muon systems, the µGMT
extrapolates all input muon track parameters back to the collision point. The extrapolation correc-
tions are derived from MC simulation as a function of pT, φ, η, and charge of the muon, and are
stored in a LUT. The corrections have a coarse granularity since they are limited to 4 bits: they have
steps of 0.05 radians in ∆φ and 0.01 in ∆η and are applied to muons with pT < 64GeV. These cor-
rected coordinates are then propagated to the µGT to improve the performance of trigger algorithms
relying on the invariant mass or difference in spatial coordinates between multiple muons.

The µGMT also transmits the track quality to the µGT as a selection option for specific trigger
paths. Quality is also used for cancellation in case duplicates are found. Muons passing the “tight”
quality criteria have good pT resolution, and are used in single-muon seeds. All BMTF tracks pass
the tight criteria, thanks to the strong magnetic bending effect in the barrel region, whereas OMTF
and EMTF tracks must have TPs in at least three layers, and in EMTF one of those TPs must be in
the innermost layer. The “medium” and “loose” criteria are used in OMTF and EMTF to increase
the trigger efficiency for events with multiple muon tracks by including tracks with fewer TPs, or
without a TP in the first layer.

6.7 Performance

The data recorded since the start of Run 2 are used to study the performance of the upgraded muon
trigger. The performance studies presented in this section use data collected during 2018. Data
collected during 2016 and 2017 give similar results. Figure 7 shows the correlation between the
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inverse of the muon pT assigned at Level-1, proportional to the track curvature, and the inverse of
the offline reconstructed muon pT for the three η regions of interest. The correlation is linear but
slightly off-diagonal, because Level-1 muon pT values are scaled up to provide 90% efficiency for
any given trigger pT threshold. The resolution in the barrel shows better resolution because the
orientation of the magnetic field with respect to the muon track causes less bending in the forward
regions. The figure uses a data set triggered by a single isolated muon, with two oppositely charged
muons consistent with a Z boson decay.

The efficiency measurements use a tag-and-probe [21] technique with offline reconstructed
muons from preselected Drell-Yan events. The tag muon is reconstructed with the CMS particle-
flow algorithm [22], and it is required to have pT > 26GeV and be isolated such that nearby
calorimeter energy deposits must sum to less than 15% of the muon pT. The tag muon must match
within a cone of ∆R =

√
(∆η)2 + (∆φ)2 < 0.1 to a muon reconstructed by the single isolated muon

HLT algorithm with pT > 24GeV. The HLT muon must be seeded by the single-muon Level-1
trigger with a pT threshold of 22GeV.

The numerator of the efficiency measurement includes events where a Level-1 muon from the
triggering bunch crossing matches a probe muon, reconstructed using the particle-flow information,
within∆R < 0.2. The denominator includes all eventswith a tagmuon. The tag and the probemuons
must be separated by ∆R > 0.4. This guarantees that the tag and the probe are two different muons.
Figure 8 shows trigger efficiencies measured for a single-muon trigger with a pT threshold of 22GeV
as a function of the offline reconstructed muon pT. At the threshold value the efficiency reaches
about 86% of the plateau, which is measured to be ≈93%. A more detailed description of the trigger
performance at high muon pT, where radiative showering complicates the reconstruction, is given
in ref. [23]. Figure 9 shows the efficiency as a function of the reconstructed pT of the probe muon,
poffline

T , for the three track finder regions (left), and as a function of η (right). The three track finders
reach an efficiency plateau over 90% for the same precoT value, with the barrel track finder exhibiting
the sharpest turn-on curve. Figure 10 includes efficiency measurements for different quality thresh-
olds versus muon pT and η. The detector geometry is responsible for the reduction of trigger effi-
ciency in certain η regions. Figure 11 shows the efficiency in different |η | regions as a function of the
number of pileup vertices and muon φ. In events with high pileup, extra tracks can confuse the end-
cap muon reconstruction, causing the trigger efficiency to drop by a few% in the far forward region.

In comparison to the legacy trigger system, the efficiency from the upgraded muon trigger is
similar or higher, depending on the η region, as seen in figure 12. Figure 13 overlays the re-emulated
Run 1 (legacy) single-muon algorithm rates and Run 2 (upgrade) rates as a function of Level-1 muon
pT (left) and η (right). The muon trigger rate was studied with an unbiased Run 2 data sample taken
with a prescaled trigger that only required colliding bunches for triggering. For the single-muon
trigger with a 22GeV threshold, the rate is approximately a factor of 2 lower than for the legacy
trigger system, estimated from studies with simulated events. The rate reduction improves at higher
trigger thresholds, giving flexibility for tuning in higher instantaneous luminosity conditions. The
use of more sophisticated pT assignment algorithms, also exploiting multivariate analysis tools
allowed by the more powerful trigger firmware and hardware, result in a significant rate reduction
compared to the legacy system.
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Figure 7. Correlation between 1/pT of the muon (proportional to curvature) as assigned at Level-1 vs. offline
for three |η | regions: barrel (top left), overlap (top right), and endcap (bottom). The measurements come
from a data set enriched with events with a Z boson. Distinct bands in the overlap region come from more
discrete pT assignment with the OMTF patterns.
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Figure 8. Level-1 trigger efficiency, for data and simulation as a function of poffline
T , for all reconstructed

muons in the CMS acceptance (|ηoffline
| < 2.4) for the most commonly used single-muon trigger during Run

2 (pL1T > 22GeV), measured with the tag-and-probe method described in the text with the full 2018 data
set. The left plot focuses on the steep increase part of the curve close to the trigger threshold. The right
plot shows the full momentum range up to 1 TeV. The simulation reproduces the data within a few percent
accuracy. The Level-1 trigger efficiency plateau is stable as a function of the muon transverse momentum,
retaining a high triggering efficiency for muon poffline

T ≤ 1TeV.
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improved momentum resolution from increased bending in the magnetic field of the yoke. The right plot
shows the Level-1 muon efficiency for data and simulation as a function of the offline reconstructed muon η.
The modulation of the efficiency in η is because of the acceptance of the muon systems. The efficiency is
measured with the tag-and-probe method described in the text with the full 2018 data set.
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Figure 10. Level-1 muon trigger efficiency for all possible Level-1 muon qualities as a function of poffline
T (left)

and ηoffline (right), for all reconstructed muons in the CMS acceptance (|ηoffline
| < 2.4), measured with the

tag-and-probe method described in the text with the full 2018 data set. The pL1T thresholds and muon qualities
shown are the most commonly used during Run 2. The efficiency in the right plot is for muons with poffline

T in
the plateau region, well above the pL1T threshold.
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Figure 11. Level-1 trigger efficiency of the muon track finders as a function of the number of offline
reconstructed vertices (left) and muon φ (right), measured with the tag-and-probe method described in the
text with the full 2018 data set. These measurements are shown for the most commonly used single-muon
trigger threshold in 2018 (pL1T > 22GeV). The efficiency has no dependence on the number of vertices for
central muons, and a very mild dependence for endcap muons. The efficiency modulation in φ follows the
geometrical acceptance of the muon detector: the efficiency is higher in the regions where the detector layers
overlap. The efficiency drops at φ = −2.8 and 0.8 are caused by detector inefficiencies.
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Figure 12. Efficiency of the re-emulated legacy Run 1 algorithms compared with the upgraded Run 2
algorithms, measured using a tag-and-probe technique described in the text, plotted as a function of the
offline reconstructed muon pT (left) and η (right). The left figure shows a sharper turn-on efficiency for the
upgraded system for muons with pT between 5 and 25GeV.
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Figure 13. Rates of the re-emulated legacy Run 1 algorithms compared to the upgraded Run 2 algorithms,
as a function of the Level-1 muon trigger pT threshold (left) and η (right). The most common Level-1
single-muon trigger threshold used in 2017 was pµ, L1T ≥25GeV.

7 The Level-1 calorimeter trigger and its performance

The calorimeter trigger was partially upgraded before data taking in the spring of 2015, and was
completed in March 2016.

It is organized in two layers: Layer-1 collects and calibrates the trigger primitives coming from
the calorimeters. Layer-2 receives the output from Layer-1 and reconstructs and calibrates further
physics objects like electrons, photons, tau leptons, jets, and energy sums. The following sections
describe the algorithms developed to reconstruct and identify electrons and photons, tau leptons,
and hadron jets, and to assign accurate energies and positions to each.

7.1 Input calorimeter trigger primitive processing

Calorimeter trigger towers (TTs) group 5×5 crystals in the ECAL barrel (EB) along with the HCAL
barrel (HB) tower directly behind them, with a ∆η×∆φ size of 0.087×0.087. In the endcaps (EE
crystals, HE, and HF), the grouping logic is more complicated because of the layout of the crystals,
which results in TTs with ∆η×∆φ sizes of up to 0.17×0.17. Look-up tables are implemented
in Layer-1 to calibrate electromagnetic energy deposits in the ECAL, as well as hadronic energy
deposits in both ECAL and HCAL towers. This calibration is performed in addition to calibrations
already applied by the ECAL and HCAL electronics, and accounts for the changing calorimeter
response over time, in particular, from radiation damage. An unforeseen timing effect of the
changing crystal response is discussed in appendix A. The Layer-1 calibrations compensate for
various effects including, but not limited to, the average particle energy loss in the tracker material
in front of the calorimeters. The calibration factors for ECAL (HCAL) are binned in η and ET, and
are derived from single-photon (single-pions) simulations.

Figure 14 shows the scale factors derived for both ECAL and HCAL trigger tower inputs, as a
function of η, for various bins in ET. The increase of the calibration factors with η reflects the profile
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Figure 14. Layer-1 energy scale factors for ECAL (left) and HCAL (right), shown for each constant-|η | ring
of trigger towers. As specified in the legend, the color of each point corresponds to a range of uncalibrated
trigger primitive transverse energy values received by the Layer-1 calorimeter trigger. Because of the HCAL
geometry, the signals from trigger tower ring 29 are divided between rings 28 and 30, and no scale factors
are applied.

of the detector material in front of the calorimeters. The choice of the binning of the scale factors
respects the hardware limitation and takes into account the dependency of the resolution in ET.

The ECAL and HCAL TT information sent to the Layer-2 contains the combined ECAL plus
HCAL energy sum, the ECAL/HCAL energy ratio, and additional flags, such as the fine-grain veto
bit described in section 7.2, and a minimum-bias collision bit based on the HF detector used for
some special runs. The TT information, which constitutes the calorimeter trigger primitives, is
streamed with a 9-fold time multiplexing, and sent via asynchronous 10Gb/s optical links to the
Layer-2 trigger.

7.2 The electron and photon trigger algorithm

Electrons (e) and photons (γ ) are indistinguishable to the Level-1 trigger since tracking information
is not available. The e/γ reconstruction algorithm proceeds by clustering total (ECAL plus HCAL)
energy deposits around a “seed” trigger tower defined as a local energymaximumabove ET = 2GeV.
Clusters are built dynamically, i.e., including surrounding towers over 1GeV without any predeter-
mined cluster shape requirement, and further trimmed to include only contiguous towers to match
the electron footprint in the calorimeter and optimize the trigger response. The trimming process re-
sults in various candidate shapes being produced that can be categorized and used for identification
purposes. As illustrated in figure 15, themaximum size of the clusters is limited to 8 TTs tominimize
the impact of pileup energy deposits, while including most of the electron or photon energy. An
extended region in the φ direction is used to obtain better coverage of the shower since the electron
energy deposit extends along the φ-direction because of the magnetic field and bremsstrahlung.
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Figure 16. The pseudorapidity position of Level-1 e/γ candidates with respect to the offline reconstructed
electron position, separately for the barrel and endcap regions(left). The relative transverse energy of the
Level-1 e/γ candidates with respect to the offline reconstructed electron transverse energy, also separately for
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Crystal Ball function for the left plot and a combination of a Gaussian and an one-sided tail asymmetric
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The e/γ candidate position is the energy-weighted position of the cluster towers. Figure 16
shows the position and transverse energy compared with those for objects reconstructed offline. Bet-
ter position resolution improves the computation of more sophisticated variables, such as invariant
masses at the µGT level. The data used consist of events triggered by a single electron trigger and
tag-and-probe selections, which makes the sample pure in Z → ee candidates, with the correspond-
ing pT spectrum. The resolution of the offline position is driven by the tracker track uncertainty.

To reduce background rates, a shape veto is defined to reject the clusters least compatible with
a genuine e/γ candidate such as pileup-induced energy deposits. Additional identification criteria
are also defined:

• The Fine Grain Veto Bit. This veto is used in the barrel to quantify the compactness of
the electromagnetic shower within the seed tower and discriminates against hadron-induced
showers.

• The H/E veto. This veto requires a low ratio of HCAL to ECAL energy in the seed tower.
Different thresholds are used in the barrel and the endcap regions.

These identification variables are optimized to reduce the rate of misidentified electrons while
maintaining the maximum trigger efficiency for genuine electrons, and are removed for candidates
with ET > 128GeV.

Isolation requirements are added to the identification criteria to produce a collection of isolated
Level-1 e/γ candidates. The isolation transverse energy E iso

T corresponds to the ET deposit in the
6×9 TT region in η×φ around the seed tower, from which the e/γ ET is subtracted (illustrated in
figure 15). To determine if an e/γ candidate is isolated, a threshold stored in a LUT is applied to
E iso

T depending on the Ee/γ
T , the η position, and a pileup estimator called nTT. The latter is obtained

by counting the number of TTs with ETT
T ≥0.5GeV in the eight central η rings of the calorimeters

(|η | ≤ 0.34). The isolation threshold is optimized to target a specific rate and efficiency for certain
ET ranges. Two working points were derived using Z → ee collision events and a zero bias trigger
sample to estimate the rate. A loose set of isolation requirements is used for candidates in trigger
algorithmswith intermediate ET thresholds (between 20 and 30 GeV), which are typically dielectron
and cross-trigger algorithms. For single electron algorithms, which apply energy thresholds on the
electrons above 30 GeV, that are targeting events with a Z or a W boson, a tighter set of isolation
requirements is implemented.

The sum of the ET of the seed and clustered towers is the raw ET of the e/γ candidate. An
additional energy calibration is performed in the Layer-2 trigger with the scale factors derived from
Z → ee collision events. The raw energy is scaled with factors depending on the η position of the
seed tower, the cluster shape, and the cluster ET.

The trigger efficiency of the upgraded e/γ algorithm is shown in figure 17. Performances for
both the nonisolated and the isolated Level-1 e/γ triggers are provided. The studies are performed
using a tag-and-probe technique based on Z → ee events recorded in 2018 by an HLT trigger
path requiring a tight electron with pT > 32GeV. Both the tag and the probe are offline electrons
required to be within the ECAL fiducial volume (|η | < 1.4442, or |η | > 1.566 and |η | < 2.5)
and to pass the loose electron identification criteria. In addition, the tag is required to have a pT
above 30GeV, and to be geometrically matched to the HLT electron triggering the event within
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Figure 17. The Level-1 e/γ trigger efficiency as a function of the offline reconstructed electron ET for
thresholds of 30 and 40GeV (left). The Level-1 trigger efficiency as a function of the offline reconstructed
electron ET for two typical unprescaled algorithms used in 2018 (right): an ET threshold of 34GeV in black,
and of 28GeV with the tight set of isolation requirements in red (as discussed in the text). The efficiency
curve for the logical OR of the two algorithms is shown in blue. The functional form of the fits consists of a
cumulative Crystal Ball function convolved with a polynomial or exponential function in the low ET region.

∆R < 0.3. All other reconstructed electrons in the event passing the loose identification criteria are
probe electrons. They are geometrically matched to Level-1 e/γ candidates with ∆R < 0.3 and are
used to evaluate the Level-1 e/γ trigger efficiency. The tag-and-probe electrons in the pair must
not be within ∆R < 0.6 of each other. The invariant mass of the tag-and-probe electron system is
required to be between 60 and 120GeV. The trigger efficiency as a function of the number of offline
reconstructed vertices is shown in figure 18. The left plot shows the Level-1 e/γ isolated trigger
efficiency for a 32GeV threshold as a function of the number of offline reconstructed vertices. The
trigger efficiency is also shown for the tight set of isolation requirements. The right plot shows in
black (red) the Level-1 trigger rate, measured using an unbiased data set with an average pileup of
49, for a single e/γ algorithm as a function of the ET threshold applied on the candidate without
(with) the tight set of isolation requirements. The same plot shows in blue (yellow), the Level-1
trigger rate for a double e/γ algorithm as a function of the ET threshold applied on the subleading e/γ
candidate without (with) the tight set of isolation requirements on the leading e/γ candidate (the ET
threshold on the leading candidates is always 10GeV higher). The rates of seeds with and without
isolation converge at high Ee/γ , L1

T because of the relaxation of the isolation criteria with Ee/γ , L1
T .

7.3 The hadronic tau lepton trigger algorithm

The hadronically decaying τ lepton trigger algorithm efficiently reconstructs τ lepton decays to one,
two, or three charged or neutral pions (τh). These pions may produce more than one cluster spatially
separated in φ because of the magnetic field. Although the τh energy deposit is typically more
spread out than that of an electron, the dynamic clustering developed for the e/γ trigger is adapted
to reconstruct these individual clusters, which can subsequently be merged.
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Figure 18. TheLevel-1 e/γ isolated trigger efficiency (left) as a function of the number of offline reconstructed
vertices and the Level-1 trigger rate (right) as a function of the ET threshold applied on the candidate.
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Figure 19. The Level-1 τ clustering algorithm and isolation definition. The e/γ dynamic clustering is used to
reconstruct single clusters around local maxima or seeds (yellow and green), which can then be merged into a
single τh candidate. Each square represents a trigger tower where the ECAL and HCAL energies are summed.
A candidate is considered isolated if the ET in the isolation region (white) is smaller than a chosen value.

Figure 19 illustrates the τ lepton reconstruction algorithm, which merges two neighboring
clusters under some proximity conditions. Hadronically decaying τ leptons are typically low-
multiplicity jets, and have less surrounding hadronic activity than QCD-induced jets. The candidate
position is computed as an energy-weighted average centered around the seed tower of the main
cluster, giving four times better resolution than the Run 1 τ lepton trigger algorithm. An isolation
threshold, which depends on the ET and η of the τ lepton, and the nTT variable (as discussed in
section 7.2), is applied to discriminate genuine τ leptons from QCD-induced jets. The isolation
requirement is loosened for high nTT to ensure constant τ lepton identification efficiency as a
function of pileup. A relaxation of the isolation with ET is also implemented to achieve the
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Figure 20. The Level-1 τ trigger energy response with respect to the offline reconstructed τ lepton pT, as
measured in 2017 data for the barrel and endcap regions (left). The fits consist of Crystal Ball functions.
The resolution as a function of the offline τ lepton pT (right), where the resolution is estimated by the
root-mean-square of the Eτ , L1

T /pτ , offline
T distribution, divided by its mean, in bins of pτ , offline

T .

maximum efficiency at high ET. The isolation thresholds are stored in a LUT that can be optimized
to target a specific rate and efficiency for a given pT range, e.g., for a τ lepton pair from a Higgs
boson decay. With the intense LHC running conditions during Run 2, the working point for
isolation is adjusted to provide optimum efficiency even at the peak instantaneous luminosity of
2.1 × 1034 cm−2 s−1. The isolation optimization is performed on simulated Z → ττ samples to
evaluate the signal efficiency and on unbiased data to estimate the rate.

The τ lepton ET is calibrated using corrections that depend on the raw ET and η of the candidate,
the presence of a merged cluster, and an estimate of the H/E fraction. The upgraded Level-1 τ lepton
trigger energy resolution for barrel and endcap separately is shown in figure 20 (left).

By using a smaller number of TTs to reconstruct the energy deposit footprint of the τ lepton
more precisely, the upgraded algorithm is more resilient against pileup and allows more precisely
adjustable thresholds for physics. Figure 20 (right) shows the energy resolution of the upgraded τ

trigger algorithm as a function of pT.
The performance of the Level-1 τ algorithm is measured in Run 2 data for τ leptons from

Z → τ
µ

τh decays using a tag-and-probe technique, where τ
µ
represents a decay to a muon and

neutrinos. The measurement is performed in events that satisfy the single-muon HLT path with
a 27GeV threshold on the muon pT. The events contain a well-identified and isolated µ-τh pair
satisfying transverse mass mT(E

miss
T ,µ) < 30GeV and visible mass 40 < mvis(τh,µ) < 80GeV,

where the computation of mvis(τh,µ) only includes the visible decay products of the τh. The tag
muon is required to have ∆R < 0.5 to the HLTmuon. The probe hadronically decaying τ leptons are
reconstructed using the standard hadrons-plus-strip algorithm [24], and selected using a “medium”
isolation criteria [24], and are required to satisfy pT > 20GeV and |η | < 2.1; discriminators are also
applied to reduce the contamination from muons and electrons. The details of the offline τ lepton
reconstruction are described in ref. [24]. The probes are matched to Level-1 hadronic τ candidates
within ∆R < 0.5 and used for efficiency measurements.
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Figure 21. The Level-1 τ trigger efficiency, as a function of the offline reconstructed τ lepton pT, for
typical thresholds of 30, 34, and 38GeV (left). The Level-1 isolated τ trigger efficiency, as a function of the
offline reconstructed τ ET, for the same three thresholds (right). The functional form of the fits consists of a
cumulative Crystal Ball function convolved with an arc-tangent.

The trigger efficiency, plotted as a function of the offline reconstructed τ lepton pT, is shown
in figure 21 for nonisolated and isolated Level-1 τ candidates. The relaxation of the isolation
identification criteria with ET ensures that the efficiency reaches a plateau value of 100% at high
ET. The turn-on curves are obtained by matching geometrically the τ candidates reconstructed
offline that pass all the identification and isolation requirements of the H → ττ analysis with its
Level-1 counterpart. The stability of the efficiency with respect to pileup is illustrated in figure 22
(left). Figure 22 (right) shows the double-τ rate as function of the ET threshold applied to both of
the Level-1 τ candidates. The rate is measured in an unbiased data sample. For typical thresholds
of ≈30GeV, a significant rate reduction is achieved by using the isolation requirement.

7.4 The jet and energy sum trigger algorithms

The Level-1 jet reconstruction algorithm is based on square-jet approach similar to that used
in Run 1, but uses a 9×9 TT sliding window centered on a local maximum, the jet seed, with
ET > 4GeV. In the barrel, the window size matches the anti-kT [25] clustering size of 0.4 used in
the offline jet reconstruction. A jet candidate must have a seed energy greater than the TTs in the
triangle above the diagonal of the 9×9 square window, and greater than or equal to the TTs in the
triangle below the same diagonal. This is to avoid double counting and to prevent TTs with the same
energy from vetoing one another when being considered as a jet seed. The veto condition applied
is antisymmetric along the diagonal of the 9×9 window to prevent TTs with the same energy from
vetoing one another. The jet candidate energy is the sum of all TT energies in the 9×9 window.
In addition to reconstructed jets, the total scalar sum of transverse energy over all TTs, ET, and
the magnitude of the vector sum of transverse energy over the same TTs, Emiss

T , use trigger tower
granularity. The total scalar transverse energy of all jets, HT, and the corresponding magnitude of
the vector sum Hmiss

T are computed using Level-1 jets.
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Figure 22. The integrated Level-1 selection efficiency for the isolated τ trigger with ET≥30GeV, matched
to an offline reconstructed and identified τ lepton with pT > 50GeV, as a function of the number of offline
reconstructed vertices (left). The Level-1 double-τ trigger rate, as a function of the ET threshold, for τ

candidates with and without an isolation requirement applied (right). The rate is measured requiring two τ

candidates with ET larger than the bin value, in a unbiased data set with an average pileup of 55.

!
"

Figure 23. The area used by the jet pileup subtraction algorithm to estimate the energy deposit from the
local pileup, in blue, and the area used to measure the energy of the Level-1 jet, in orange.

The estimated ET from pileup, which is subtracted from each jet, is computed locally on a
jet-by-jet basis in each bunch crossing, to respond dynamically to fluctuating pileup conditions.
The chosen pileup subtraction algorithm provides a significant rate reduction, while maintaining
efficiency. Figure 23 shows the regions that are used to estimate the local pileup energy to be
subtracted from the jet energy. The pileup is estimated using four 3×9 outer regions, one on each
side of the 9×9 jet square. The pileup ET is calculated as the energy sum of the three lowest energy
regions, so the ET from an adjacent jet in the remaining outer region is not subtracted from the ET.
Since this area for subtraction (3 of 4 outer areas) equals the jet area, the implementation is simple.
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Figure 24. Efficiency curves for the Level-1 jet trigger for the barrel + endcap (left) and forward (right)
pseudorapidity ranges.

To ensure consistent jet energy response, Level-1 jets are calibrated in bins of jet pT and η,
since any loss or mismeasurement will depend on the energy of the jet and the material it traverses.
A dedicated LUT is derived from a QCD multijet simulation that returns a pT scale factor that is
applied to each jet. The LUT is derived by matching Level-1 jets to generator jets within∆R < 0.25,
then fitting correction curves produced in bins of jet η of 1/〈EL1

T /E
gen
T 〉 as a function of 〈E

L1
T 〉.

Figure 24 shows the performance of the Level-1 jet triggers in the combined barrel and endcap
region and in the forward region, measured using an independent data sample collected with a
single-muon trigger. The efficiencies show a sharp turn-on and high efficiency for a number of
thresholds, representative of those used in Run 2 for various single-jet and multijet seeds. Figure 25
shows the efficiency curves for the Level-1 HT and Emiss

T triggers. The Emiss
T trigger efficiency

is measured using events triggered by and reconstructed with a single muon, and is plotted as
a function of offline Emiss

T , which is the magnitude of the negative vector sum of the pT of all
calorimeter energy deposits, with |η | ≤ 5.0.

Toward the end of 2016 data taking, an increase in the instantaneous luminosity revealed a
significantly nonlinear dependence of the Emiss

T rates on event pileup. For 2017 and 2018 data
taking, pileup mitigation was implemented and applied on an event-by-event basis to the Emiss

T
algorithm. The event pileup is estimated with the variable nTT (described in section 7.2) and is used
along with the TT η to retrieve from a LUT a pileup- and η-dependent ET threshold below which
TTs do not enter the calculation of the Emiss

T . The LUT was derived using functions encoding the
pileup estimate, the TT η, and the TT width in η, since the pileup energy per TT increases with |η |
and the TT size. The functional form and corresponding constant factors were optimized to give
the best trigger efficiency, measured in single-muon triggered data, for a fixed rate calculated from
unbiased data. The LUT was also derived by calculating the average TT ET for each value of η
from unbiased data, and this gave a similar performance to the function-based LUT.
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Figure 25. Efficiency curves for the scalar sum of jet energy with ET≥30GeV (left) and missing transverse
energy (right) for various thresholds. The thresholds are indicated as L1 HT and L1 Emiss

T in the legends.
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Figure 26. Efficiency curves with and without pileup mitigation (PUM) applied are compared (left) for the
thresholds that give the same rate. These are shown as a function of the offline reconstructed particle flow
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T
,NoMu). Rate versus the average pileup per luminosity section is

shown (right) with and without pileup mitigation applied.
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The improvement of the Emiss
T trigger efficiency after using the pileup mitigation algorithm is

shown in figure 26, for events from 2018 single-muon triggered data with pileup between 50 and
60. The rate of the Level-1 Emiss

T trigger with a threshold of 80 (120)GeV with pileup mitigation
enabled is the same as the rate for a threshold of 118 (155)GeV with pileup mitigation switched
off. Also shown in figure 26 is the pileup dependence for fixed thresholds of the Level-1 Emiss

T
algorithm, with and without pileup mitigation. Rate is calculated from unbiased data for 2855 filled
bunches for the Level-1 thresholds of 80 and 120GeV, where the pileup shown is the average pileup
per luminosity section. Applying pileup mitigation, by excluding low-energy TTs in events with
significant pileup and reducing the contribution from large TTs at large eta, provided a significant
rate reduction while maintaining trigger efficiency. This allowed the Level-1 Emiss

T threshold to be
reduced, increasing sensitivity to a range of important physics channels.

7.5 Adjustments for heavy ion collisions

In heavy ion (HI) lead-lead collisions, a large particle multiplicity variation is observed; although
peripheral collisions can result in only a few particles per interaction, central events can produce
largemultiplicities equivalent to pp collisions with pileup of 200–300. Whilemost of the algorithms
developed for pp collisions were reused, the wide range of multiplicity required that some of the
Level-1 algorithms were optimized, and a few were developed specifically for HI collisions.

To select low-pT hadronic collisions efficiently, a minimum bias trigger was developed based on
a coincidence of energy deposits in the positive and negative η sides of the HF calorimeter. Using the
same principle, an ultra-peripheral collision (UPC) triggerwas designed to be activated only in a spe-
cific low-energy region. A highmultiplicity UPC algorithmwas also developed, based on the imbal-
ance between the positive and negative η sides of the sumof trigger tower ET in the barrel calorimeter.

In addition, the parameters of the e/γ algorithm were adapted by removing the H/E constraint
and adjusting the fine grain bit threshold. For optimal performance in the HI environment, the jet
pileup subtraction algorithm used for proton collisions was replaced with an alternative, based on
the average energy in φ-rings of the calorimeter.

8 The global trigger

The µGT combines information from both the µGMT and the calorimeter Layer-2, and it performs
a trigger decision based on a menu of sophisticated algorithms, as described in section 4. The µGT
is made compact and reliable by merging the functionality formerly distributed across multiple
distinct boards into a single processor board type. The µGT distributes its processing across up to
six of these common boards working independently of each other. The outputs of the processing
boards are merged before being sent to the HLT.

The µGT began operation with one processing board in 2016 and was extended to its final
form of six processing boards by the beginning of 2017. The use of multiple processing boards
with larger FPGAs permitted the computation of more high-level quantities, such as invariant or
transverse masses, by using LUTs and digital signal processors. In this way, it is possible to migrate
increasingly higher-level quantities from the HLT into the Level-1 trigger.

Occasionally, the LHC running parameters change on short notice, making it operationally
challenging to reoptimize the Level-1 trigger menu. The µGT calculates preview rates for each
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prescale column, so that the shift crew can avoid premature enabling of prescale columns that would
raise the Level-1 rate above the limit.

A unique classification of certain physics objects input to the µGT can be difficult. For example,
a hadronic jet could be separately reconstructed as both a τ lepton and a jet by the Layer-2 trigger.
This poses a problem in algorithms looking for both jets and τ leptons. The µGT implements a
dedicated treatment to resolve ambiguities for all possible object combinations between Level-1
objects, such as τ leptons and jets. For example, in an event with two jets, each having ET > 35GeV,
and one τ lepton with ET > 45GeV, both jets must be separated by ∆R > 0.2 from the τ candidate,
which ensures that such an event contains at least three nonoverlapping objects.

8.1 Dedicated analysis triggers

The large processing power available in the µGT permits the implementation of sophisticated
analysis-targeted trigger algorithms. In this section, three types of such algorithms are discussed.
The first type selects vector boson fusion (VBF) events using the invariant mass of jet pairs. The
second type targets the production of low-mass dimuon resonances (e.g., Υ decays), and the third
tags b jet candidates using jet-muon coincidences.

Dedicated vector boson fusion trigger. Higgs boson production via VBF occurs through the
interaction of two W or Z bosons. The incoming quarks only lose a small fraction of their energy in
the interaction. After hadronizing, the outgoing quarks typically form jets in the forward direction,
with a large invariant mass and separation in η. The VBF algorithm looks for at least two jets with
ET > 115 and ET > 35GeV and at least one pair of jets with ET > 35GeV each and an invariant
mass greater than 620GeV. In the µGT, half of the squared mass is computed:

m2
j1 j2
/2 = pj1

T pj2
T [cosh(∆ηj1 j2) − cos(∆φ j1 j2

)],

where cosh(∆ηj1 j2) and cos(∆φ j1 j2
) are obtained through dedicated LUTs using the η and φ of

the jets as inputs. The algorithm can select 2- or 3-jet topologies, depending on whether the jet
with ET > 115GeV enters a pair with mj1 j2

> 620GeV. The performance of the Level-1 VBF
trigger algorithm was measured in 2017 data, using an unbiased sample collected with a single-
muon trigger. Figure 27 shows that the efficiency, as functions of the offline leading jet pT and
the maximum dijet invariant mass, reaches a high efficiency plateau for VBF-like events, making
it suitable as a lower rate and high efficiency trigger for VBF-like topologies. The Level-1 VBF
trigger algorithms were used to seed HLT paths in 2017 and 2018, increasing the signal acceptance,
especially for invisible Higgs boson decays and H → ττ [26].

Low-mass dimuon triggers. The pT thresholds for the usual dimuon triggers are not well adapted
to record dimuon resonances with masses less than 20GeV. These thresholds are typically 15GeV
on the leading muon and 5GeV on the subleading muon, so they only select very boosted low-mass
dimuon resonances. To collect inclusive low-mass dimuon pairs at low enough rates, the µGT can
compute the dimuon invariant mass m

µµ
, using the same technique described above in the case of the

VBF trigger. Seeds requiring 3 < m
µµ
< 9GeV and 5 < m

µµ
< 17GeV are included in the menu, as

shown in table 2. Figure 28 shows the Level-1 and the offline m
µµ

spectrum in Run 2 data collected
withmulti-muon triggers. The 9.46GeVΥmeson peak can be isolated quite distinctly after themuon
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Figure 27. Efficiency of the Level-1 VBF trigger as a function of the offline leading jet pT (left) and mjj
(right), estimated as the fraction of H → ττ analysis-like offline events passing the Level-1 VBF trigger
selection (the Level-1 and offline requirements applied are detailed in the plots). The efficiency is evaluated
using 2017 data.

coordinates are extrapolated to the nominal vertex, as described in section 6.6. A recent example of
a successful low-mass trigger is the 5.6 sigma observation of B0

s → µ
+

µ
− with a branching fraction

of 2.9±0.7±0.2×10−9 with a limit set on B0
→ µ

+
µ
− < 3.6×10−10 at 95% confidence level [27].

b jet tagging using muons. A significant fraction of b hadron decays produce muons. These
are often in the same direction as the rest of the products of the b hadron. The Level-1 trigger
includes a simple b-tagging algorithm based on the proximity of a muon to a jet. For example, the
µGT implements seeds looking for events with one pT > 3GeV muon and two ET > 16GeV jets,
where the muon is within ∆R < 0.4 of one of the jets. This new feature improves the efficiency and
reduces the rate of the already available b jet tagging seeds that were previously limited by the use
of uncorrelated ∆η and ∆φ information between jets and muons.

9 Data certification and validation

TheLevel-1 trigger performance ismonitored online by physicists working in shifts for nonstop data-
taking operational support, who are trained to recognize and solve trigger problems. Trigger rates
are continuously displayed for each algorithm, as well as occupancy plots and energy distributions
for each physics object. Unexpected discrepancies compared with the reference distributions are
investigated promptly by Level-1 object experts who determine the appropriate course of action.

The Level-1 trigger system uses a two-step process to certify the collected data. “Express
certification” is typically performed within 24 hours, and identifies any anomalous behavior of the
trigger that may have passed unnoticed during data taking. In the “final certification”, high-quality
data are selected for physics analyses. The certification is performed for both collision and cosmic
ray data taking.

– 34 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
1
0
0
1
7

0 2 4 6 8 10 12 14 16 18 20

 [GeV]µµm

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

a
. 
u
.

Offline muons

L1 not extrapolated to vertex

L1 extrapolated to vertex

CMS  (13 TeV)
-1

 4.2 fb

Figure 28. The offline and Level-1 m
µµ

spectra of oppositely charged muons, with and without extrapolation
of the Level-1 track parameters to the nominal vertex, using a data set of low-mass dimuons. The highest-
mass resonance corresponds to the Υ mesons, and is clearly identifiable both offline and in Level-1, after
extrapolation. The Level-1 m

µµ
spectrum is shifted higher compared with the offline spectrum because of pT

offsets designed to make the Level-1 muon trigger 90% efficient at any given pT threshold.

During express certification, the time evolution of the total output rate of the Level-1 trigger
is examined, taking into account information about the beam conditions, prescale values applied,
status of each subdetector, and dead time (the recording time lost because the readout system is not
ready to accept new events). Individual rates of different trigger seeds targeting physics objects are
compared with reference rates as a function of pileup.

For each run, data quality monitoring (DQM) plots are produced, including occupancy of muon
and calorimeter trigger systems, physics object variables (such as muon η and φ), and the timing of
trigger seeds. The data are also compared with an emulation of the Level-1 trigger reconstruction.
The DQM system performs statistical tests to identify distributions that differ from expectations.
Any abnormal rates or DQM distributions may indicate incorrect functioning of some part of the
Level-1 trigger system, which will be studied, corrected (when possible), and taken into account in
the final certification.

The final Level-1 trigger certification is based on the comparison of the efficiency and resolution
measured for each type of Level-1 object to the corresponding offline quantities, combined with the
information from express certification. The efficiencies are calculated for different types of trigger
seeds using a tag-and-probe method, and the resolutions are determined by comparing the trigger-
level kinematic variables with their offline reconstructed counterparts, similarly to the performance
studies presented in this paper. If the efficiencies and resolutions show no significant deviation
from the expected performance, and the results of the express certification indicate that the trigger
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operated successfully, the data is certified as valid for physics analyses from the point of view of
the Level-1 trigger.

If a certain run does not pass the certification criteria, the source of the performance loss is
identified and analyzed. In general, trigger performance losses are caused either by amalfunctioning
Level-1 trigger subsystem itself, or by missing or corrupted input from other detector subsystems.
In case of a severe performance loss, the data must be discarded independently of the origin of the
problem. To minimize the data loss, the certification is performed per luminosity section.

In 2018, 1.36% of the collision data collected by CMS was certified as “bad” by Level-1, but
only 0.016%was invalidated solely from Level-1 trigger issues. The remainder included some other
significant detector malfunction.

10 Summary and conclusions

The CMS Level-1 trigger system was upgraded for Run 2 of the LHC. The system improved
in performance and flexibility using high-bandwidth serial I/O links for data transfer and large,
modern field-programmable gate arrays for reconfigurable algorithms. Maintenance improved
with increased standardization through the use of the MicroTCA telecommunications standard and
common hardware designs for its components.

The new trigger hardware provides improved e/γ isolation performance, substantially more
efficient τ lepton identification, improved muon transverse momentum resolution, and the ability
to reconstruct jets with finer calorimeter granularity. New features, such as pileup subtraction and
invariant mass calculations, expand the trigger design possibilities. These improvements help to
control trigger rates and keep thresholds at lower levels thanwould be required with the previous sys-
tem despite the significantly increased LHC energy, luminosity, and pileup in Run 2. The adoption of
more powerful trigger processors led to the deployment of more advanced trigger algorithms, target-
ing specific analyses, resulting in significant improvements in physics capability compared to Run 1.

The upgraded Level-1 trigger system operated during Run 2 with high efficiency for all physics
objects, and adapted to the rapidly changing LHC running conditions. As a result, the trigger
efficiency was stable and independent of the evolving LHC parameters. Special LHC running
conditions and heavy-ion data taking were accommodated effectively as well, exploiting the full
capability and flexibility of the trigger system.

The upgraded system improved the energy and momentum resolution, and the identification
efficiency and background rejection of the Level-1 physics objects. This significantly lowered
the rate at a given threshold compared with the Run 1 system, thereby allowing similar trigger
requirements to fit within the unchanged Level-1 rate limit.

An analysis of Run 2 data shows that the trigger rate reduction and efficiency gain benefited the
physics program of the CMS Collaboration under conditions of increased LHC energy, luminosity,
and pileup. An example includes the H → ττ analysis [28], which shows a significant improve-
ment in trigger efficiency; other Higgs boson decay channel analyses maintained a similar trigger
efficiency despite the harsher beam conditions. Moreover, all analyses looking for large transverse
missing energy (Emiss

T ), including searches for dark matter, supersymmetry [29], and invisible Higgs
boson decay [26], were only possible inRun 2 because of the improved resolution of theLevel-1Emiss

T
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and the pileup mitigation algorithm. Searches for low-mass dimuon resonances exploited the in-
variant mass requirement for reducing the rate and lowering the muon momentum requirement [27].
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A Level-1 trigger prefiring

Since the beginning of Run 2, a slowly developing shift in the shape of the ECAL pulses was
observed. This effect, which manifests itself as an increasing offset in the timing calibration of the
pulses, is radiation-induced and is related to the transparency loss of the ECAL crystals. Because
of this, the endcap crystals at highest pseudorapidity are most affected. This timing calibration
offset is compensated offline via regular pulse shape and timing calibration measurements, but was
not corrected online in the formation of the ECAL TPs. With time, the accumulated offset brought
the endcap pulses to the limit of the region where the trigger bunch-crossing assignment would be
affected. Once this was realized, in early 2018, the endcap timing delays in the ECAL front-end
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electronics were corrected, and the pulse synchronization was optimized. However, in 2016–2017,
a gradually increasing fraction of ECAL TPs at |η | > 2.5 had wrongly associated an energy deposit
to the previous bunch crossing (BX −1). When such a misassignment occurs it causes several
effects on the data. First, it may lead the Level-1 trigger system to “prefire”, i.e., to accept the
earlier collision in BX −1, whereas the collision in BX 0 is the one of interest. Secondly, when
the misassigned TP energy is not large enough to pass the trigger condition, it induces a bias in the
energy measurement of calorimeter deposits in the trigger chain and offline.

Prefiring happens, e.g., when an ECAL TP, whose ET exceeds the threshold of the single
electron trigger, is assigned to BX −1; or when the misassignment of an ECAL TP leads to a large
Emiss

T reconstructed at Level-1 in BX −1. Prefiring of Level-1 triggers represents a problem in their
combined effect with the CMS trigger rules. These are the conditions that prevent buffer overflows
in special cases. Triggers rules are enforced immediately after the final decision of the global
trigger (µGT). The most commonly enforced trigger rules prevent the issuance of more than one
Level-1 trigger acceptance decision in three consecutive bunch crossings, or more than two Level-1
trigger acceptances in 25 consecutive BXs. Thus, when a trigger accepts the event in BX −1, the
interesting event in BX 0 will not be accepted. The readout event in BX −1 will likely be rejected
by the HLT since it is unlikely to reconstruct any interesting physics objects. The main consequence
of prefiring is therefore an inefficiency in recording potentially interesting events.

The measurement of the prefiring rate requires the use of a special set of events called “unpre-
firable” events. An event in BX 0 is unprefirable when the event in BX −3 is accepted by the Level-1
trigger: the trigger rules veto events in BX −2 and BX −1. For every triggered event, all Level-1
objects and µGT decision bits are stored in a window of ±2BX. Therefore, from a set of selected
unprefirable events, the prefiring probability can be computed for a specific analysis selection. The
rate of unprefirable events is very small compared with the total number of events in any given
primary data set, about 0.1%. Ad hoc corrections at the analysis level are applied to correct for
this effect. One of the most affected analyses is the search for invisible decays of a Higgs boson
produced via VBF, with energetic forward jets. Their measurements from an unbiased data sample
result in a correction of about 1% for mjj of 200GeV and up to 20% for mjj larger than 3.5 TeV [26].

Secondary effects of the TP time shift are a potential bias in the energy measurement of the
calorimeter deposit in the trigger chain. If the energy of early TPs is large enough to create a Level-1
object that prefires a Level-1 trigger path, the event in BX 0 is lost. In contrast, if BX −1 is not
accepted, a residual effect on BX 0 is still present because the information about the TPs associated
with BX −1 is lost. This residual effect biases the energy of several Level-1 objects and causes a
degradation of the trigger efficiency turn-on . Standard trigger efficiency measurements and scale
factors generally applied in physics analyses account for this effect.

A second bias arises because of the impact on the ECAL selective readout logic. The TP
inputs are used by the ECAL selective readout units to decide whether a certain region of the
detector needs to be read out or not (zero-suppressed). Crystals associated with the early TP will
be read out by the ECAL data acquisition system in zero-suppression mode, injecting a bias into
the HLT/offline energy measurement. For high-pT jets this effect is expected to be small because
the zero-suppression thresholds are low. This energy bias is mostly recovered by the residual jet
energy corrections applied at the analysis level.
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