EVALUATION OF OPERATIONAL FACTORS FOR THE ENERGY EFFICIENY OPTIMIZATION OF HIGH-SPEED RORO VESSELS BY TRIM OPTIMIZATION

UĞUR DEMİR

PİRİ REİS UNIVERSITY 2019

EVALUATION OF OPERATIONAL FACTORS FOR THE ENERGY EFFICIENY OPTIMIZATION OF HIGH-SPEED RORO VESSELS BY TRIM OPTIMIZATION

by Uğur Demir

Submitted to the Institute for Graduate Studies in Science and Engineering in partial fulfillment of the requirements for the degree of Master of Science

Graduate Program in Maritime Transportation and Management Engineering Piri Reis University

2019

Uğur Demir, a MSc. student of Piri Reis University Maritime Transportation and Management Engineering ID 168013001, successfully defended the thesis entitled

EVALUATION OF OPERATIONAL FACTORS FOR THE ENERGY EFFICIENY OPTIMIZATION OF HIGH-SPEED RORO VESSELS BY TRIM OPTIMIZATION which he prepared after fulfilling the requirements specified in the associated legislations, before the jury whose signatures are below.

APPROVED BY

Assoc. Prof. Dr. Ergün DEMİREL.
(Thesis Supervisor)
Asst. Prof. Dr. Kadir ÇİÇEK
Asst. Prof. Dr. Dincer BAYER

Date of Submission : 14/ December / 2019

Date of Defence : 14 / January / 2020

Date of Approval : 14 / January / 2020

To the all Seafarers who passed away

ACKNOWLEDGMENTS

This thesis was addressed for my Master's degree in Maritime Transportation and Management Engineering at Piri Reis University.

I would like to appreciate the following spirits, without whose guidance and assistance, this thesis would not have been achievable. I continue my thankfulness to my thesis advisor Assoc.Prof. Dr. Ergun Demirel attention and aid through the execution of this study.

I owe a duty of appreciation to Capt. Hasan Göler who initiated my range about the maritime horizon on whole means and who encouraged my works both worldly and emotionally.

v

ABSTRACT

Fuel-Efficiency are the primary concern on management of Energy Efficiency in the maritime industry. The most substantial element of the running cost of vessels is fuel consumption, which also has a huge effect on Global Greenhouse Gases (GHG) emissions. International Maritime Organization (IMO) has formed the Energy Efficiency Operational Indicator (EEOI), which gives data concerning the energy of the ships in operation. The fuel consumption is the principal figures for the prognostication of EEOI and many operational standards are focusing on reducing fuel consumption such as speed adjustment, improvement of voyage plan, routing according to the weather forecast and arranging on time schedules. Trim optimization is one of the most used fuel-saving methods specified by IMO. Several of the studies in the literature are about Computational Fluid Dynamics (CFD) calculations and other theoretical methods. However, Literature needs more studies about the implementation of CFD results to real-life to evaluate if calculated results confirmed with the real-field data. During this research, real course data of high-speed RO-RO vessels evaluated and compared the outcomes of the Trim optimization software which is generated with the CFD method to define optimum trim conditions of these vessels corresponding with different displacements. Specially designed Trim Optimization software (Eco Assistant) based on CFD calculations developed by DNV GL was used by sister ships selected in this study. The vessels in which the dataset was obtained were built-in the identical shipyard in 2005 and had the equivalent technical details. They have completed the same Hull performance and displacement between certain ports in the same geographical area. The actual field data of the test vessels were evaluated with the methodology of ISO 19030 Standards to eliminate of operational factors affecting the energy efficiency such as hull performance, engine, propeller system , displacement and speed, statistically analysed by means of tailed sample t-test and the fuel-saving results of Trim optimization software compared with the actual fuel consumptions outcomes. As a result, it has been observed that trim optimization software based on CFD calculations provides fuel saving among only one of the vessels tested.

ÖZET

Yakıt Verimliliği, denizcilik endüstrisindeki Enerji Verimliliği Yönetiminin temel sorunudur. Gemi işletme maliyetinin en önemli kısmı, Sera Gazı (GHG) emisyonları üzerinde de büyük etkisi olan yakıt tüketimidir. Uluslararası Denizcilik Örgütü (IMO), faaliyette olan gemilerin etkinliği hakkında bilgi sağlayan Enerji Verimliliği Operasyonel Göstergesini (EEOI) geliştirmiştir. Yakıt tüketimi, EEOI hesaplamasında ana kriterdir ve, hız ayarlaması, sefer planının iyileştirilmesi, hava durumu rotaları ve sefer sürelerinde düzenleme gibi birçok operasyonel standard, yakıt tüketimini azaltmaya odaklanmaktadır. Trim optimizasyonu, IMO tarafından belirtilen en çok kullanılan yakıt tasarrufu sağlayan vöntemlerinden biridir. Literatürdeki Trim optimizasyon çalışmaların bir kısmı Hesaplamalı Akışkanlar Dinamiği (CFD) hesaplamaları ve diğer teorik yöntemler ile ilgilidir. Bununla birlikte, Literatürde, CFD yöntemi ile hesaplanan sonuçların, gerçek alan verileriyle karşılaştırmasını sağlamak ve değerlendirmek için CFD sonuçlarının gerçek hayata uygulanması hakkında daha fazla çalışmaya ihtiyaç vardır. Bu çalışmada, yüksek hızlı RO-RO gemilerinin gerçek saha verileri ile farklı deplasman ve hızlara karşılık gelen optimum trim koşullarını tanımlamak için CFD yöntemiyle üretilen Trim optimizasyon yazılımının sonuçları karşılaştırılmıştır. DNV GL tarafından geliştirilen CFD hesaplamaları temeline dayanan ve özel olarak dizayn edilmiş Trim Optimizasyon yazılımı (Eco Assistant) bu çalışmada seçilen sister gemiler tarafından kullanılmıştır. Verilerin elde edildiği gemiler, 2005 yılında aynı tersanede inşa edilmişler ve aynı teknik detaylara sahiplerdir. Aynı coğrafi bölgedeki belirli limanlar arasında aynı karina performansı ve deplasman ile seferlerini tamamlamışlardır. Test gemilerinin gerçek alan verileri, ISO 19030 Standartları metodolojisi ile değerlendirilmiş olup karina performansı, makine ve pervane sistemi ve deplasman gibi enerji verimliliğini etkileyen operasyonel faktörler elemine edilmis ve tailed sample t-test ile istatistiksel olarak analiz edilmiştir ve Trim optimizasyonu yazılımının vermiş olduğu yakıt tasarrufu sonuçları ile karşılaştırılmıştır. Sonuç olarak CFD hesaplamalarına dayanan trim optimizasyon yazılımının test edilen gemiler arasında sadece bir tanesinde yakıt tasarrufu sağladığı gözlemlenmiştir

TABLE OF CONTENT

ACKNOWL	EDGMENTS	v
ABSTRACT	۲	vi
ÖZET vi	i	
	CONTENT	
	GURES	
	ABLES	
	MBOLS/ABBREAVATIONS	
	NTRODUCTION	
	O Studies on "Energy Efficiency of the Ship"	
	ip Energy Efficiency	
	e Ship Energy Efficiency Management Plan	
	ergy Efficiency Operational Indicator	
1	erational Factors of The Ship Energy Efficiency Optimization	
1.5.1	Vessel Resistance	
1.5.2	System of Propulsion	16
1.6 Mo	ost Preferred Methods for Fuel-Efficient Operation of Ships	
1.6.1	Improved voyage planning	19
1.6.2	Weather routing	19
1.6.3	Optimization of Vessel's Speed	19
1.6.4	Optimization of Vessel's Shaft Power	20
1.6.5	Ballast Optimization	20
1.6.6	New Designs of Propellers	20
1.6.7	Effective using Method of rudder and Course control arrangements	20
1.6.8	Hull maintenance	20
1.6.9	Propulsion system	21
1.6.10	Waste heat recovery	21
1.6.11	Improvement applied fleet management	21
1.6.12	Cargo distribution for optimization	21
1.6.13	Type of Fuel used	22
1.6.14	Miscellaneous	
1.7 "Ti	rim Optimization"	22
	viii	

	1.7.	.1 Definition of Trim Optimization	23
	1.7.	.2 Aim of Trim Optimization	23
	1.8	Literature Review and Field Studies	24
2		METHODOLOGY	27
	2.1	Limitations and Assumptions	28
	2.2	Application of the Methodology	30
	2.3	Ship Particulars of "Test Vessels"	31
3		RESEARCH AND FINDINGS	32
	3.1	Software for Trim Optimization (Eco-Assistant)	32
	3.1.	1 1	
	3.1.		
	3.1	.4 Results: Plausibility check:	38
	3.2	Navigator insight fleet performance manager software	41
	3.3	ISO 10930 Dry docking Performance	42
	3.3.	.2 Performance Values, (PVs)	48
	3.3.	.3 Determination of reference conditions	48
	3.4	Dry-Dock History of Test Vessels	48
4		DISCUSSING AND RESULTS	56
	4.1	Results of Test Vessel 1	56
	4.1	Results of Test Vessel 2	58
	4.2	Results of Test Vessel 3	59
5		CONCLUSION	61
6		REFERENCES	64
7		CURRICULUM VITAE	
8		APPENDIX -A	69

LIST OF FIGURES

Figure 1 Historical development of CO2 emissions from maritime transport [3]	2
Figure 2 Stylized representation of factors determining maritime emissions [3]	3
Figure 3 Wave resistance [4]	6
Figure 4 Trim of the Vessel, by bow & by stern [4]	9
Figure 5 Relationship among Speed and Specific Fuel Consumption of vessel [16]	.10
Figure 6 Relationship among the Speed and Specific Fuel Consumption of vessel [16].	.11
Figure 7 The Resistance of Steering [20].	.13
Figure 8 The resistance combination in real and resistance of mean water created by	
constant waves. [20]	.14
Figure 9 The correlation among time and speed of a 20.0000 DW tanker when sailing in	ı
bow waves [21]	.15
Figure 10 Flow chart of System of Propulsion	
Figure 11 link between load of engine and specific fuel consumption	.17
Figure 21 Navigator Insight and ECO Insight for streamlined reporting and unique	
operational insight [33]	.41
Figure 22 Mediterranean Sea. Example of vessels track	.28
Figure 27 Methodology overview	.31
Figure 12 Geometry generation of Bulbous bow of the test vessels, Step 1 & Step 2	.33
Figure 13 Geometry generation of Bulbous bow of the test vessels, Step 3 & Step 4	.33
Figure 14 Final Geometry of the original hull	.34
Figure 15 mesh discretization of the 3D hull surface	.35
Figure 16 Sample of screen shot of Eco-Assistant software user screen for Test roro	
vessels	.37
Figure 17 Sample of screen shot of Eco-Assistant software user screen for reference rore	0
vessels	.38
Figure 18 Calculated bow wave via CFD vs Real Bow wave shape	.38
Figure 19 Sample of screen shot of Eco-Assistant software user screen for reference rore	0
vessel	.39
Figure 20 Sample of screen shot of Eco-Assistant software user screen for reference rore	0
vessels	.40
Figure 23 Dry-docking Performance (Source: ISO 19030)	.44
Figure 24 In-Service Performance	.45
Figure 25 Maintenance Trigger (Source: ISO 19030)	.46
Figure 26 Maintenance Effect (Source: ISO 19030)	.47
Figure 28 SFOC Curve of MAK 9M43 engines	.51
Figure 29 Speed-Power Curve of test vessels from model test report	.52
Figure 30 Fuel saving results according to Trim optimization Software	.56

LIST OF TABLES

Table 1 A single case including ballast. Voyage of an example vessel	5
Table 2 Statistical results of test vessel, Fuel Consumption Changes [14]	8
Table 3 Statistical results of Vessel 1, Speed Changes [14]	
Table 4 shows the components of each resistance element to the total resistance	16
Table 5 Ship particulars of the "Test Vessels"	
Table 6 Dry-docking History of Test vessels	
Table 7 Sample result table	54
Table 8 Dry Dock history of Test Vessel 1	
Table 9 Paired Samples Statistic of Test Result of Test Vessel 1	57
Table 10 Dry Docking History of the Test Vessel 3	
Table 11 Paired Samples Statistic of Test Result of Test Vessel 2	
Table 12 Dry Docking History of the Test Vessel 3	
Table 13 Paired Samples Statistic of Test Result of Test Vessel 3	60
Table A 1 Dataset of Test Vessel 1	69
Table A 2 Speed and Displacement Corrections calculation of Test Vessel 1	74
Table A 3 Dataset of Test Vessel 2	75
Table A 4 Speed and Displacement Corrections calculation of Test Vessel 2	
Table A 5 Dataset of Test Vessel 3	83
Table A 6 Speed and Displacement Corrections calculation of Test Vessel 3	

LIST OF SYMBOLS/ABBREAVATIONS

°C: Celcius degree A hull : Area of the wetted surface **C:** Resistance coefficient **CFD:** Computational Fluid Dynamic CFj:The fuel mass to CO2 mass conversation factor for fuel CH4:Methane CO2:Carbon Dioxide **DDI:**Dry-docking Interval DDn **DDn+1**: Next Dry-Docking **DOE:** Design of Experiment **E:** Post-Period **EEDI**: Energy Efficiency Design Index **EEOI**: Energy Efficiency Operational Indicator **F:**Speed-Power Curve FCi j : The mass of consumed fuel at voyage **GHG:** Green House Gases H:Hull and Propeller Performance HFCs:Hyrdrofluorcarbons HFO: Heavy Fuel Oil **IMO: Internatiopnal Maritime Organization ISO**:International Organization for Standardization i: mass of consumed fuel at voyage **j**:Fuel type kg:Kilogram kJ:Kilogram Joule Kn: Knot **LCV**:Lower Calorific Value LFO:Ligth Fuel Oil **m:**Metre MARPOL: International Convention for the Prevention of Pollution from Ships mcargo:cargo carried (tonnes) or work done (number of TEU or passengers) or gross tonnes for passenger ships ME:Main Engine **MPEC:** The Maritime Environment Protection Committee **MSC:**Military Sealift Command N2O: Nitrous oxide **Nm:Nautical Miles PFCs:**Perfluorocarbons **PI:**Performance Indicator **pp:**Propulsion **R:**Resistance **R_i:**Propeller Pitch RO-RO: Roll on / Roll Off Vessels

s:Second
SEEMP: Ship Energy Efficiency Management Plan
SF6: Sulphurhexafluoride
SFOC: Specific Fuel Oil Consumption
t:Tonnes
TEU: Twenty Equvalent Unit
UNFCCC: United Nations Framework Convention on Climate Change
V: Speed
VoF: Volume of Fluid
ηR: Rotative Efficiency
ρ: Density
η_B: Efficiency Factor of the Propulsion

1 INTRODUCTION

Fuel combustions is responsible from 2, 5 % of global Greenhouse gases emission and it is estimated that maritime transport emits 1 billion ton of carbon dioxide annually [1]. Future projection indicates that through 2050 depending on business increase and improvements on energy, transportation emissions may rise to 250 %

In 2002 the Kyoto Protocol to the UNFCCC has been signed [2]. Article 2(2) is stated that "The Contractors involved in Annex I shall attempt control or decrease of emissions of greenhouse gases not regulated by the Montreal Protocol from aeronautics and maritime bunker fuels, running through the International Civil Aviation Organization and the International Maritime Organization, sequentially.

The important Green House Gases are classified in Annex A

- "Carbon dioxide (CO2)"
- "Methane (CH4)"
- "Nitrous oxide (N2O)"
- "Hydrofluorocarbons (HFCs)"
- "Perfluorocarbons (PFCs)"
- "Sulphur hexafluoride (SF6)"

Shipping emits a huge amount of CO2 which is a well-known GHG [3]Portions of CO2 may stay in the air for a very long period and create significant climate heating. Shipping also emits other pollutants such as cooling gases and SO2 and NOX. These pollutants have complex but warming and cooling effects, although their life is shorter.

In a complete combustion the products are carbon dioxide, water and Sulphur dioxide only. If the combustion is incomplete, mainly carbon monoxide and partly oxidized and unburned hydrocarbon compounds "hydrocarbon emissions" are produced. If there is a lack of air, CO is generated first; Hydrocarbons (irritations of eyes and mucous membranes), Nitrogen oxides (NOX), Sulphur oxides (SOX) and particles (detrimental to health and carcinogenic) follow.

Emissions can be reduced by engine modifications and there are numerous worldwide and local laws for emission control. [4]

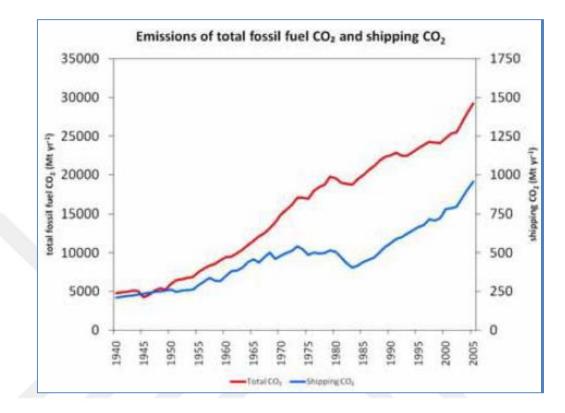


Figure 1 Historical development of CO2 emissions from maritime transport [3]

1.1 IMO Studies on "Energy Efficiency of the Ship"

To decrease emission of the Greenhouse gases from transport business, "The Maritime Environment Protection Committee (MPEC)" of "International Maritime organization" brought mandatory measures in 2011 [5]. Following to this, as new chapter the Energy Efficiency regulations has been added to "International Convention for the Prevention of Pollution from Ships" (MARPOL). That chapters adopted the "Energy Efficiency Operational Indicator (EEOI)" and Ship Energy Efficiency Management Plan (SEEMP) as compulsory for all vessels.

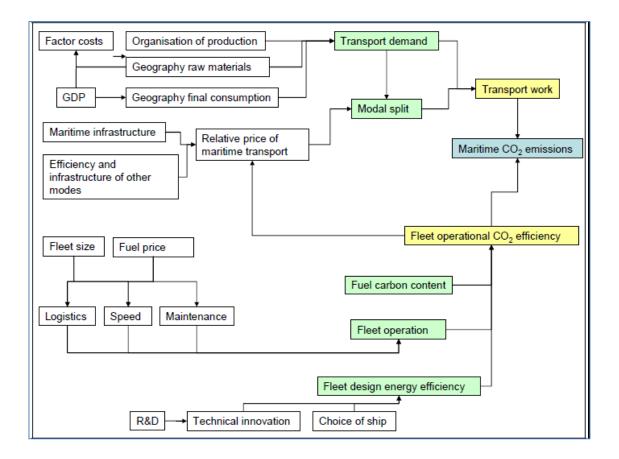


Figure 2 Stylized representation of factors determining maritime emissions [3]

1.2 Ship Energy Efficiency

The IMO, in July 2011 [5], utilized actions to decrease vessels' emissions of greenhouse gases (GHG) i.e the "Energy Efficiency Operational Indicator (EEOI") and the "Ship Energy Efficiency Management Plan (SEEMP)". The EEDI has been declared obligatory for new vessels and the SEEMP for both new and existing vessels, by revisions to MARPOL Annex VI [5]. According to the IMO, the adoption of these compulsory standards for new ships (EEDI) and for all vessels in running (SEEMP) from 2013 onwards will drive to meaningful emission reductions i.e. by 2020, up to 180 million tons of CO2 yearly; a figure that, by 2030, will increase to 390 million tons of CO2 yearly. The reductions will be between 9 and 16% in 2020 and between 17 and 25% by 2030 matched with prevailing method [6] the emission decrease actions will also result in notable fuel cost savings to the shipping trade, although these gains will expect higher investments in more efficient vessels and

More advanced technologies than today. The Marine Environment Protection Committee, at its session in July 2017, was suggested that approximately 2,500 new vessels had been accredited as complying with energy efficiency measures. Between others, the Committee affirmed guidelines for administration affirmation the vessel fuel oil consumption data for vessels of 5,000 gross tonnage and over, beginning from 2019, and guidelines. for the development and management of the IMO ship fuel oil consumption database [7] [8] Those guidelines perform it compulsory for vessels of 5,000 gross tonnage and over to obtain consumption data for any type of fuel oil they burn, as well as extra detailed data, including agents for the transportation industry. The aggregated data will be summarized to the flag State after the end of every calendar year, and finally transported to the IMO database.

1.3 The Ship Energy Efficiency Management Plan

"The Ship Energy Efficiency Management Plan (SEEMP)" [9] ensure an operational set of standards that gives a general strategy to develop the energy efficiency of a vessel in terms of cost savings and efficiency. It supports the most suitable fuel-efficient applications on vessel operation. It improves the ship operators or fleet managers to recognize new technologies and methods when attempting to optimize the performance of a vessel at every section of the SEEM.

1.4 Energy Efficiency Operational Indicator

"Energy Efficiency Operational Indicator" is an indication to observe fleet efficiency and performance by a specific time on the operating of the vessels [10] The EEOI assists ship managers/ship partners to measure the fuel efficiency of a ship and to show the effect of any differences in the operation. E.g., trim optimization, improved voyage planning, and more frequent propeller cleaning, or the accomplishing of some technological initiatives as waste heat recovery plants, re-fitting of bulbous bow, or a new model of propeller design produces fuel savings.

The rate of the EEOI differs considerably over the business circle. It depends on the quantity of cargo, source and destination, weather, etc. So seldom it can be met very quickly, but in other times or locations, it cannot be given at all.

The EEOI cannot be compared across ship types.

Certainly, it can be described as the ratio in mass of CO2 (M) emitted per unit of transport work. The primary formula for EEOI for a voyage as following; [11]

$$EEOI = \frac{\sum_{j} FCj \times C_{fj}}{m_{cargo \times D}}$$
(1)

Where: [11]

- "j is the fuel type"; [11]
- I is the voyage number;" [11]
- FCi "j is the mass of consumed fuel at voyage"; [11]
- CFj "is the fuel mass to CO2 mass conversion factor for fuel "; [11]

• "mcargo is cargo carried (tones) or work done (number of TEU or passengers) or gross tonnes for passenger ships"; and [11]

• "D is the distance in nautical miles corresponding to the cargo carried or work done" [11]

"A simple model, including one ballast voyage, for instance purposes only, is given below"

 Table 1 A single case including ballast Voyage of an example vessel

				Voyage	or time
Fuel consu	mption (FC	period	i data		
Fuel type	Fuel type	Fuel type		Cargo	units)
				(m)	Distance
(HFO	(LFO	()		(tonnes or	(D)
20	5			25000	300
20	5			0	300
50	10			25000	750
10	3			15000	150

$$EEOI = \frac{100 \times 3.114 + 23 \times 3.151}{(25000 \times 300) + (0 \times 300) + (25000 \times 750) + (15000 \times 150)}$$
$$= 13.47 \times 10^{-6}$$

Unit: tonnes CO2/ (tons . • nautical miles)

1.5 Operational Factors of The Ship Energy Efficiency Optimization.

1.5.1 Vessel Resistance

The total resistance is a combination of wave, wind and frictional resistance stated as below; [12]

$R_{total} = R_{frictional} + R_{wave} + R_{wind}$

(2)

Frictional resistance is created by the ship 's hull, which is under the waterline. Resistance of the sea wave is the combine resistance happened by waves induced by the environment, and the vessel's individual wave occurred while advancing and wind resistance is the resistance produced due to wind influence the vessel structures above the waterline

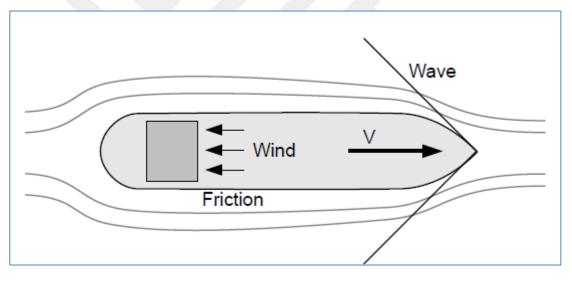


Figure 3 Wave resistance [4]

1.5.1.1.1 Frictional Resistance

45-90% of the total resistance is consist of the frictional resistance [13] The frictional resistance is related to speed and increases as a rate of square of the vessel 's speed. It depends on the section of the hull is below the waterline as well as the form of the hull. For this reason, displacement, trim of a vessel also be the influence of the resistance caused by the friction as well as the form of the hull of a vessel is asymmetrical

Additionally, the vetted surface is also compelled to microorganisms which produced the resistance considerably while developing by time.

Consequently, the frictional resistance is consisting of hull resistance, the fouling resistance, and the resistance caused by different trim and displacement resistance correspondingly.

Hull Resistance

Based on Bernoulli's law says that the water's dynamic pressure by density ρ provides a resistance to the hull form

$$R_{hull} = \frac{1}{2} C_{\rho} V^2 A_{hull} \tag{3}$$

Where V is the speed, A_{hull} is the area of the wetted surface, and C is the resistance coefficient, which is dimensionless. Thus, the fact that the frictional resistance extremely influences the vessel's speed.

1.5.1.1.2 Fouling resistance

Fouling is the name commonly used to define the settlement and growth of marine plants and animals on immersed constructions. Fouling enhances the frictional resistance of a vessel and creates speed loss and a rise in fuel consumption. Sailing routes have a tremendous influence on fouling considering some fields have more important fouling results than others, both. seasonally and regarding locally. [12]

	Mean	Ν	Std. Deviation	Std. Error Mean				
Last year before dry- dock	2,3207	36	0,09590	0,01598				
First year after dry-dock	2,1969	36	0,07445	0,01241				
					-			
	Ν	Correlation	Sig.					
Last year & First year	36	-0,098	0,569					
		· · · · · · · · · · · · · · · · · · ·		4				
			Paired Difference	es				
	Mean	Std Deviation	ation Std. Error Mean	95% Confidence of the Differ		t	df	Sig. (2-tailed)
	Wear	eta. Deviation	eta: Enor Medir	Lower	Upper			
Last year & First year	0,12376	0,12705	0,02117	0,08077	0,16675	5,845	35	0,000

Table 2 Statistical results of test vessel, Fuel Consumption Changes [14]

Table 2 show a statistical fuel consumption of 29004 Gross Tonnage Ro-Ro vessel with a twin propeller, last year dry dock and first year after dry dock., it is easily seen that that average fuel consumption reduced due to clean hull when comparing dirty hull condition before dry dock as %5 [14]

	Mean	Ν	Std. Deviation	Std. Error Mean				
Last year before dry- dock	19,3800	36	0,51440	0,08573				
First year after dry-dock	19 <mark>,8</mark> 533	36	0,51122	0,08520				
					-			
	Ν	Correlation	Sig.					
Lsst year & first year	36	0,173	0,312					
				•				
			Paired Difference	es				
	Mean	Std Deviation	Std. Error Mean	95% Confidence Interva of the Difference		t	df	Sig. (2-tailed)
	weatt	Sid. Deviation	Stu. Error Mean	Lower	Upper			
Lsst year & first year	-0,47333	0,65943	0,10991	-0,69645	-0,25021	-4,307	35	0,000

Table 3 Statistical results of Vessel 1, Speed Changes [14]

The table 3 shows the change of average speed of the subject RO RO vessel as increasing % 2,4 after dry dock with a clean hull condition according to the average speed made during the last year before dry dock. [14]

1.5.1.1.3 Effect of displacement and trim variations

The amount of water is displaced by a vessel is also described as displacement, and this mass of water is equal to the total weight of the ship, Draught difference between aft and forward of a vessel is also named as trim. See in figure 6.

Thus, Trim and displacement are among the main operational conditions which could be controlled by means of transferring, ballasting and de-ballasting the vessel's ballast water.

Several studies have revealed that the delivered power performance alters significantly with different displacement and trim conditions. [13] [15] [16] [17] [18]

Furthermore, the energy loss is also linked to the shape of the structure, the flat bottom, and the displacement. In many laying contours, the form of the hull under the waterline varies frictional resistance

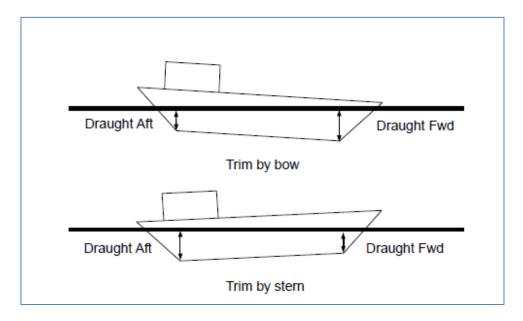


Figure 4 Trim of the Vessel, by bow & by stern [4]

Figure 4 presents the impacts of various displacement arrangements at fuel consumption when the vessel is even keel position. The increase of ship's draft produces a significant Fuel consumption

Figure 5 presents how trim settings influence combustible while displacement is kept in constant by transferring ballast water.

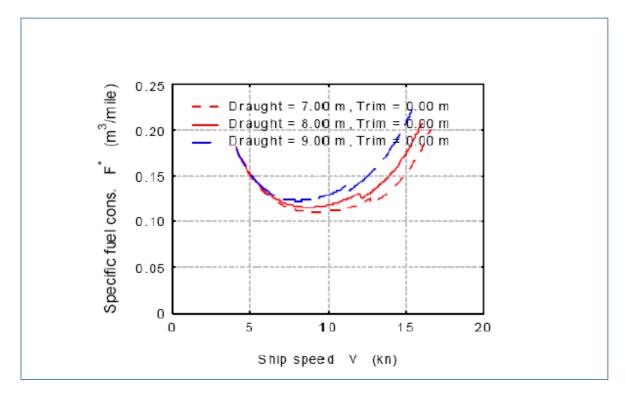


Figure 5 Relationship among Speed and Specific Fuel Consumption of vessel [16]

Figure 5 The link among F (Specific Fuel Consumption) and V(speed) for various draft, and even keel. Consumption of fuel increases as the draft increases [16].

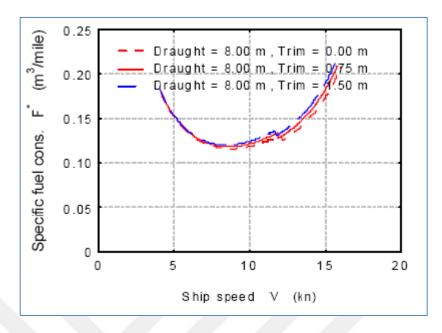


Figure 6 Relationship among the Speed and Specific Fuel Consumption of vessel [16]

Figure 6: The correlation between V, (speed of vessel) and, F (specific fuel consumption of vessel) for various arrangements of trim, by draught at 8m. The consumption of fuel varies smoothly with different trim configuration [16]

An inadequate increment of fuel consumption per mile with an expanding trim

1.5.1.1.4 Other Resistance

In this thesis, it is not mentioned that different conditions could alter the frictional resistance, such as degeneration of the coating or corrosion of the hull. Both hit the frictional resistance instantly. Morover bad weather conditions and inadequate cargo loading can also be considered among the operational factors that have an influence on frictional resistance. Furthermore, shoal areas have an influence on the resistance as the displaced seawater under the vessel will have more prominent difficulty in running to the aft. [13]

1.5.1.2 Wind Resistance

The wind has a portion up to 2-10 % of the total resistance affecting the structure of the vessel above water with wind surface of the vessel and air draught correspondingly [13]. One of the external operation factors of energy efficiency is the uncontrollable wind resistance differs by direction and force of the wind. The wind resistance depends on the vessel's speed and increase as the square of the speed of the vessel and Resistance is substantially equivalent to the square of the vessel's speed, and equivalent to windage surface of a vessel remains above of the waterline. Obtaining a proper method for foretelling wind resistance can be a challenging task [19] corresponding the type of vessel in any dimensions and shapes e.g., cargo ships, tankers, cruise liners or Ro-Ro vessels

1.5.1.2.1 Resistance of Steering

to be able to steer a vessel on a specific course while wind blows near abeam of the vessel, a specific rudder angle must be used to meet winds effect at any given time [17]. That will generate an additional resistance to the combine resistance to vessel. The heading input to the autopilot to keep the vessel in the desired course continuously would cause the vessel advancing while yawing when sailing in waves. it will produce divergent forces of which the element R_{ST} , this end as a combined resistance in the longitudinal path [17] (see figure 7).

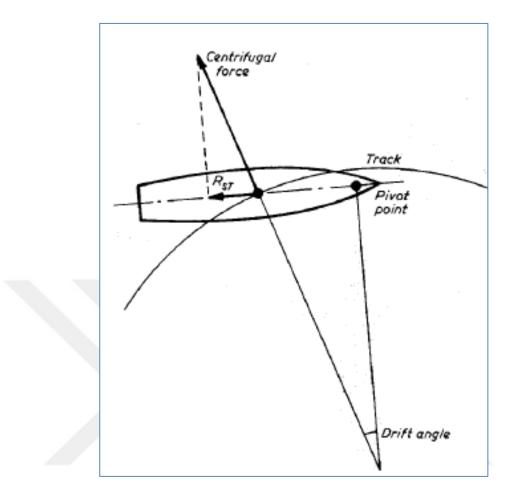


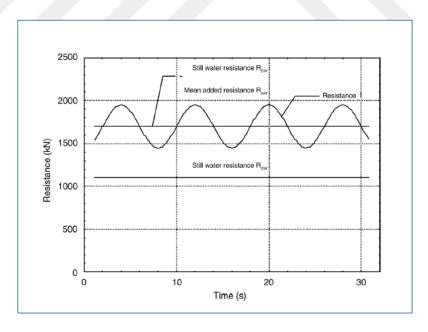
Figure 7 The Resistance of Steering [20].

Figure 7: The centrifugal force creates the resistance of steering, while the vessels steamed with rolling motions caused by the waves and changing course via autopilot.

1.5.1.3 Wave Resistance

The surface of the water is regarded to be the result of the various simplistic harmonious waves, with its own frequency, direction and length of the wave prevail [20]. Generally, the sea waves consist of two types of waves

Sea waves generated by wind are of the induced type. The force of the wind settles the sea waves through airflow pressure on the lee side of the crests and throughout its friction on the wave's surface. The growth of waves generated by wind starts with the generation of ripples, which are thin waves. As the thin waves rise, they transform into gravitational waves, which continuously increase in length and height. In their first degree of expansion, the waves move


in lateral boundaries, which are divided into individual crests. The surface of the water mixed up by the wind gets in a pretty mixed shape, which continuously varies over time. Sea waves induced by wind can always be seen on the surface of the sea, and their dimensions are most varied.

Swell waves are produced outside of the vicinity, frequently produced by winds several nautical miles away. They are natural, and the crests are extended rounded. Moreover, waves move with a lower frequency and have a significant height of wave.

Regarding above information it clearly understood that waves are also uncontrollable operational factor of energy efficiency.

Moving of vessel through water and hitting surface of the sea also creates the resistance of wave. [14] [20].

Figure 8 shows combination of the mean resistance of wave and resistance created by vessel moving through the calm sea.

Figure 8 The resistance combination in real and resistance of mean water created by constant waves. [20] In either circumstances, vessel is delivering its energy to seawater and caused an additional resistance has to be succeeded to keep the vessel's speed [17]. Most substantial part of the additional resistance of the wave belongs to the ship motion vertically. [17] [21] [22] Where

the 5-45% of the total resistance come from. [13]. The resistance of waves is basically equivalent to the square of the speed of the vessel.

Speed limitation could be required as the additional increment of the vessel's thrust of propeller power will not happen at a higher speed as the largest of the power will be converted into the vessel's energy.

Figure 9 describes How the vessel's speed reduces considerably in head waves. It is complicated and hard to foretell the resistance of the wave of the vessel. Various techniques include any forecast of resistance of waves. [21], but their prediction results usually have less accuracy [21]

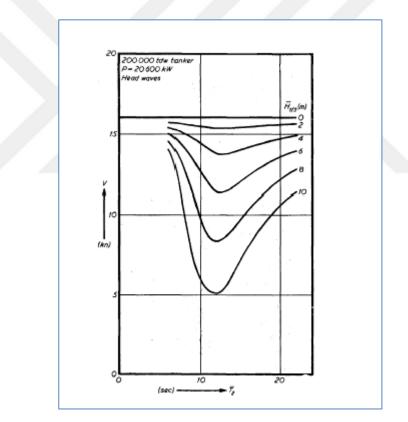


Figure 9 The correlation among time and speed of a 20.0000 DW tanker when sailing in bow waves [21]

Figure 9: The correlation among time and speed of a 20.0000 DW tanker while steaming towards waves from bow. Curved lines define speed decrease while navigating within different waves have a height of 2-meter, 4 meter, 6 meter, 8 meter, and 10 meter respectively.

1.5.1.4 Total Resistance

Table 4 shows the components of each resistance element to the total resistance.

Resistance	% of Total Resistance
Friction	45-90
Wave	5-45
Wind	2-10

Table 4 shows the components of each resistance element to the total resistance

Operational and external conditions influence the total resistance.

Among the operational factors, such as displacement and trim and speed, are controllable factors that influence the total resistance of a vessel. The environmental factors like waves and winds are uncontrollable components of the operational factor directly affecting the total resistance of the vessel.

1.5.2 System of Propulsion

The propeller creates the thrust force, and this force must be in balance with the whole resistance to influence the vessel. This force produced by propellers with converting the energy created via burned fuel into thrust and overcome as the resistance as vessel moving at a certain speed.

Following shows the process on the power is created via system of propulsion. The principal source of power of the propeller is mainly the diesel engine that the fuel is converted into brake power, P_B .

The link between the specific fuel consumption (SFOC) and Fuel Consumption, and the brake power is

Fuel Consumption = $\int P_B . SCOF. (P_B) dt$

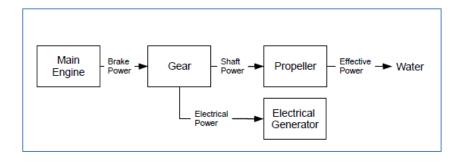


Figure 10 Flow chart of System of Propulsion

The break power produced from fuel is delivered to shaft and generated. The propellers convert the shaft power into thrust and deliver to the water is that also defined as effective power

Figure 11 represents link between load of engine and specific fuel consumption that is described as $P_B = P_{Bmax}$ where P_{Bmax} is upmost power created by the engine.

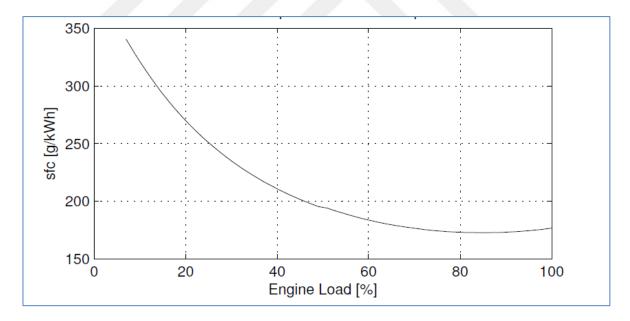


Figure 11 link between load of engine and specific fuel consumption

(4)

Figure 11 illustrate that specific fuel consumption has direct relationship with the engine load, which is defined as $P_B = P_{Bmax}$ and where P_{Bmax} is the maximum power delivered by the engine at a revolution per minutes.

The brake power is the power delivered to shaft system P_B is also transmitted to generator via of the gear reduction:

$$P_{B} = \mathbb{P}_{B}(P_{S+} P_{el}) \tag{5}$$

The shaft power, is P_s , P_{el} is the power delivered to the generator and \mathbb{Z}_B is the gear's efficiency factor in which is admitted being fixed. Eventually, the shaft power is transmitted to the propellers,

$$P_B = \mathbb{Z}_B P_D \tag{6}$$

where P_D is power transferred to Propellers and \mathbb{Z}_S is the shaft's efficiency factor that is assumed. to be fixed. Thrust produced by power of the propeller transmitted to the seawater

$$P_E = \mathbb{D}_p(pp, V, n) P_D(V) \tag{7}$$

where \mathbb{Z}_p propulsion efficiency factor, which is related to propellers' picth, pp,

V, is the speed

the rpm of the shaft, n. T

PE is vessel's effective power. i.e. the power requires to steer the vessel in the water at a certain speed (V)

Usually, the shaft of the vessel rotates with a constant rpm velocity. Vessel speed can be controlled by the propeller pitch, which is a component of operational conditions. The relationship between the P_E , R_i , pp, and V, is determined with below equation [13]

$$P_E(pp, V) = V \sum_i R_i(V) \tag{8}$$

is showing that various of the resistances additionally change on the various speed.

equation restated by joining equalization two, equalization three and equalization four asserted earlier

$$P_{S=} \frac{V \sum_{i} R_{i}(V)}{\mathbb{P}_{p}.\mathbb{P}_{s}(pp,V)}$$

$$\tag{9}$$

Consequently, the shaft power succeeds the total resistance.

1.6 Most Preferred Methods for Fuel-Efficient Operation of Ships

IMO has highlighted remarkable options in regard to "Fuel-efficient" operations are below [9]

1.6.1 Improved voyage planning

A thoroughly planned and performing the voyage plan involving the optimized routes that can help to decrease consumption of bunker and improve "Efficiency" of vessel.

Various software tools in the market provide voyage optimization [9]

1.6.2 Weather routing

It can be obtained a huge potential saving for fuel on special courses. This route can be can provide remarkable fuel savings.

However, at the same time, weather routing could also raise the consumption of fuel for a specific voyage. [9] The distance of two points of the voyage should be taken into account when applying "Weather Routing".

1.6.3 Optimization of Vessel's Speed

Optimization of speed may create meaningful savings. Nevertheless, the best speed indicates the value of speed in which the consumption of fuel according to the tonne mile is at the minimum speed value on that specific voyage. this does not indicate minimum speed; sailing at smaller than best speed is going to spend more extra fuel preferably than more limited. [9]

1.6.4 Optimization of Vessel's Shaft Power

Continuously setting speed over engine power may produce more fuel consumption than an operation at fixed revolution per minute (RPM).

Automation engine management systems can command the engine speed rather than human interference may be advantageous. [9]

1.6.5 Ballast Optimization

Optimization of ballast of a vessel can shortly be defined as ballasting for best trim and displacements and steaming positions. The "*Ballast Water Management Plan*" and *Loading and stability Manual* "of vessel usually give required information on arranging best ballasting of a vessel [9]

1.6.6 New Designs of Propellers

Various retrofit design works or newly designed and produced propellers may provide notable fuel savings — for instance, ducts, fins to improve the "*Energy Efficiency*" of a vessel [9]

1.6.7 Effective using Method of rudder and Course control arrangements

Short cuts on sailed distance during a voyage of vessels by means of avoiding deviation from the intended course and avoid add on consuming fuel caused by correction of heading value may increase "*The Energy Efficiency*" of a vessel. Retrofitted rudder blades also provide remarkable improvements in efficiency. [9]

1.6.8 Hull maintenance

The new coating technologies and systems reduce the hull 's friction resistance on a vessel which remains underwater. It is essential that provide a systematic inspection and maintenance of the hull of a vessel for better fuel efficiency. [9]

1.6.9 Propulsion system

It is a methodical way avoiding heat and construction loss throughout regular keeping and optimization. New model engines which are typically controlled as electronically may improve the gains from the efficiency. In this regard vessels crew should be trained to reach maximum gains from the regular maintenance of engines [9]

1.6.10 Waste heat recovery

In recent years it becomes essential to recover the energy from engine propulsion via shaft motors or thermal heats emitted exhaust gases using retrofit some systems into existing vessels. Thus, generate electricity.

Most of the shipping owner or shippard should be invigorated to apply this kind of new technologies [9]

1.6.11 Improvement applied fleet management

Well-structured fleet Management provides a better use of fleet capacity and use of "best practice" this can be likely to withdraw or decrease continued ballast voyages by *"Improved Fleet Planning*". There is possibility hither for charterers to boost the efficiency.

This may be having close relation with the philosophy of "just in time" arrivals. [9]

1.6.12 Cargo distribution for optimization

At superintendence gives more reliable managing of fleet capability and applying of "best practice," this may be understandable in order to withdraw and decrease ballast voyages by means of enhanced fleet planning. It is surely linked to the philosophy of "just in time" arrivals. [9]

1.6.13 Type of Fuel used

Various alternatives of fuel used is also called as a "CO2 mitigation Method." may help on improving the efficiency of a vessel. However, reaching out this type fuel usually depends on the availability or applicability. [9]

To be able to decrease the desired fuel quantity for implementing an assigning the torch generated, the fuel condition should be increased. [9]

1.6.14 Miscellaneous

While there are several choices accessible, these are not undoubtedly total, and usually depends on area trading area, and possible for claiming the cooperation and supporting a few various business partners considers themselves to be allowed as maximum efficiently.

Those could be viewed as Bulbous bow optimization, Trim optimization, Air Lubrication, or Computer Software to measure fuel consumption, use of renewable energy technology etc. [9]

1.7 "Trim Optimization"

"The Trim optimization" is considered as a best practice among the fuel-efficient methods. [9]

The consumption of fuel caused by the shaft power of vessels that enable to trust of the ship utilizing the propeller by overcoming resistance. Changing the trim influence this resistance and provides to improve fuel saving. However, there is not a unique trim for a vessel that is optimum for all speeds, displacements, water depths, leave alone an optimum single value for all ship.

To maintain optimum trim is the main task. There are many tools, such as trim optimization software in the market used by ship operator.

1.7.1 Definition of Trim Optimization

"The trim optimization" is defined clearly is that angel of trim on a specific condition in terms of speed and displacement of a vessel where desired thrust force is lower according to the any induvial angle of trim at that specific condition. [23]

As another definition of *"The Trim optimization"* described as determining the trim angle on certain circumstances such as "displacement and speed" where desired power of shaft of the vessel is less than any individual trim angle at the certain circumstances.

1.7.2 Aim of Trim Optimization

Optimizing ship trim has earned tremendous drive in current years. Earlier, just a few companies considered trim optimization; most companies thought it is neglectable. However, after fuel prices increased and the effectiveness of ships is gaining more awareness, the trim optimization has enhanced more significant.

Vessels are generally adjusted on for a single trim for the entire voyage condition, ordinarily the service speed at design draft. Real running conditions quite often vary significantly. At other speed and draft compounds, setting the trim can usually be used to decrease the hull resistance. [3]

In order to reduce the hull resistance and its effects on the fuel consumption different methods currently used as model tests numerical analysis and Computational Fluid Dynamics methods among the in-service measurement

The propulsion power and hydrodynamic resistance decline and become minimum levels if vessel sails at an optimum trim for a particular displacement, speed, and sea condition. GHG Emissions are decreased, and fuel consumption will be reduced by reduced propulsion power.

Beforehand only a few companies considered on trim optimization; most companies considered that it is neglectable. However, since fuel prices increased and the effectiveness

of ships is getting more recognition, the trim optimization has become more critical. There is much saving potential in optimized trim sailing. [3] By means of strict trim optimization software, it is even reasonable to determine the optimum trim during a whole voyage, although some design characteristics or safety components can restrict the ample range of "trim optimization".

1.8 Literature Review and Field Studies

Trim optimization has emerged as one of the most effective methods of saving both fuel consumption and reducing emissions by vessels when on transit. [24] That the major fuel-saving efficiency through trim optimization is attained through inclining the vessel in water to such a slanted gradients and slope that the waves of water resistance against the vessel are minimized, while the propulsive power is enhanced. Trim has been stated as the difference between the levels of which the aft and forward of a vessel is dipped in water when compared to the level of the forward stern of the vessel. [25] The difference between the levels in which the aft stern and the forward stern are dipped under water is important because it defines the level of hull resistance that a vessel experiences while on motion [26].

The aim is to minimize the propulsion power required for water displacement while the seed and load and speed of the vessel remain constant. In this respect, Illus contends that moving a vessel at 5 -10 centimetres off the optimal trim level can occasion a serious water wave resistance against the vessel, resulting in the vessel being required to operate at high fuel consumption levels so as to attain the same propulsion power it would at the optimal trim level. [27]

Consequently, realizing fuel-saving through trim optimization requires that the vessels after stern and forward stern dipping under water should be calibrated such that they produce the minimum hull resistance possible when the vessel is on motion. According to Reichel, Minchev & Larsen [28], fuel-saving through trim optimization is quite cheap because no need to require any modifications of the shape of hull or the alteration or upgrading of the vessel's engine. Therefore, through proper ballasting or choosing of the load plan for a vessel, it becomes possible to obtain the right trim optimization, which in turn translates into improved fuel efficiency of the given vessel. [29]

Proper ballasting and load planning ensure the attainment of the proper slanting gradient that optimizes the trim of a vessel and achieves the targeted fuel-saving efficiency is different for different types of vessels. The results of studies undertaken with almost 300 vessels, as presented by Reichel, Minchev & Larsen, indicates that large vessels such as the container vessels, Ro-Ro vessels and tankers have recorded by up to 15% fuel-saving in specific conditions through trim optimization [28].

The focus on the role of Trim optimization in creating fuel-saving efficiency has historically applied a number of approaches. Nevertheless, regardless of the approach applied, the studies done for Trim optimization based on CFD (Computational Fluid Dynamic) and studies based real field data model scale testing (MSC) have demonstrated that indeed, trim optimization works towards enhancing fuel-saving efficiency of the vessels [30]. For example, according to Hochkirch & Mallol, a study undertake to establish the role of trim optimization in creating fuel-saving efficiency applied both the CFD (Computational Fluid Dynamic) and the traditional model scale testing (MSC) to establish if the two approaches would give the same results. [31]

The study conducted by the Military Sealift Command (MSC) focused on one U.S. military vessel for which full-scale sea trials for the identified ship were undertaken and the data of the ship performance such as the propulsion power, speed, and fuel-consumption under different trim angles were recorded. [31]

The study with the same ship was repeated, but this time by applying the FINETM/Marine /Marine CFD computations under both the calm-water powering performance and the turbulent-water powering performance conditions. The results of the study indicated under the optimal trim-angle, "the ranking derived from CFD simulation at model scale agreed very well with model tests", with the real field data model scale testing (MSC) producing a reduction in water displacement total resistance in motion (RTM) of 0.46%, while the and the CFD computations produced an RTM of 0.48% [31]. The study concluded that both the CFD and the model scale testing produced the same results under the optimal trim-angle in

calm-water powering performance, but the results differed slightly under the turbulent-water powering performance conditions.

Another research study by Seok, Kim, Seo & Rhee [32] presents the results of an experimental study conducted to compare the outcome of trim optimization attainable through bow-design improvement by using the real design variation tests field data obtainable under a specific Design of Experiment (DOE) as compared to Computational Fluid Dynamics (CFD) [32]. The study sought to modify the bow of a114K DWT Aframax tanker, with the data of reduced water displacement resistance recorded manually based on the DOE experiment real alteration performance data outcomes, and then compared with the CFD data collected for the vessel both before and after the bow modification and improvement. The results of the study indicated that real DOE field data can be used to determine the parameters necessary for obtaining the best shape of the hull to reduce additional resistance caused by waves just as effectively as the CFD, where the COE "reduction of the added resistance confirmed by CFD analysis was 8%" [32]. The study concluded that COE design variation tests can measure the hull optimization added or reduced wave resistance just as effectively as the CFD simulations.

In conclusion, trim optimization is one of the cheapest ways of attaining fuel-saving efficiency in ships and vessels transport. The existing data from both model scale testing and CFD analysis have demonstrated that with the right optimization of the hull, water displacement resistance can be reduced, and the propulsive power of vessels enhanced. The outcome would be significant fuel-saving efficiency for the vessels.

2 METHODOLOGY

This study is focused on performance and benefits of trim optimization methodologies applied to a high-speed Ro-Ro fleet. In order to evaluate effects of trim optimization, calculated fuel savings results of trim optimization system compared with real field data and analysed statistically to understand if calculated results confirmed by real fuel consumptions of the test vessels.

DNV GL's Eco Assistant software based on CFD methodology used for calculations of trim efficiency and specifically designed for test vessels installed to all fleet.

The actual field data of 3 sister vessels have been studied in this study. The common particular of these vessels is that they were constructed in a shipyard in Germany with the identical particulars in terms of hull and machinery and other outfitting.

Data gathering of the Test Vessels are provided by means of software from DNV GL's as so-called Navigator Insight fleet performance monitoring and Eco-Assistant Trim optimization tool.

Studied Test Vessel are operated on the same routes between Turkey to Italy and France. Oldest vessel was built in 2001 and the last one in 2012.

Regarding with the Test High-Speed RoRo Vessels.

- All "Test Vessels" was built at the same shipyard with same technical structure in terms of hull and machinery with same propeller type in the same year as in 2005
- All "Test Vessels" have identical painting technic as SPC antifouling coating
- Engines of the all "Test Vessels" are operated with the specific type of fuel oil supplied by a reputational supplier company with fixed oil specifications
- All "Test Vessels" are the liner vessel which transport same type roro cargo units with almost same loaded capacity as containers on roll trailers, semitrailers and complete units

- All "Test Vessels" have been managed by a technical management leading roro market in Mediterranean by means of a particular planned maintenance system and monitored with identical software in terms of fleet performance
- All Test Vessels have been kept with only original spare parts during their engine planned maintenance and routine overhauls operations.
- All Test Vessels steamed between the same routes and same waters in Mediterranean Sea. Example of vessels track have been shown in figure 22:

Figure 12 Mediterranean Sea. Example of vessels track

2.1 Limitations and Assumptions

• The geographical area where the Test Vessels are operated in Sea of Marmara, Aegean and Adriatic Sea. The liner route is Istanbul-Trieste- İstanbul, Istanbul-Toulon- İstanbul and Mersin-Trieste -Mersin ports and the duration of the one round trip is almost one week (between 64- 72 hours in normal circumstances for each vessels)

- As one for the crucial parameter of the analysis, the speed over ground is derived as the average speed over ground calculated for each leg of the trip from distance sailed divided by duration of each leg of routes in respectively.
- Measurement sensors have not been installed to the Test Vessels such as sensors for torque measurement, hence power produced for thrust can be measured from fuel consumption result of the test vessel and engine recognition of the factory.
- SFOC curve made in manufacturing plant acknowledgment test of the engine was done with a fuel of 42274 kJ/kg. And the real LCV of the fuel that all vessels in address are expending is 40200 kJ/kg. In this manner, SFOC Curve redressed agreeing to Lower Calorific Value of the fuel which vessels are devouring.
- Due to all "Test Vessels" are the sisters vessels with particular specialized arrangements and working beneath same sailing conditions and due to data of tall number of voyages has been monitored which is able to covering related seasons of the assumed years, the other uncontrollable factors such as wind and sea states ignored. In this manner, other measurement parameters such as wind and water profundity are not included in this study.
- The used data of the test vessels belongs to two periods. The first period is called "Pre-period in which all vessels have a dry dock hull and propeller maintenance painted with same hull coating technology at the same of the month of the same year. This period also where the data collection and analysing made without Trim optimization. The second period is called "post-period" in which all vessel have dry dock hull and machinery maintenance with same hull coating technology one year later after "Pre-period "where the all vessel has started to use trim optimization methods. Thus, it is provided that the critical operational factors of the energy efficiency operations of the vessels such as propulsion system and vessel total resistance minimized to see the effect of the trim optimization on fuel-saving results of the test vessel.

2.2 Application of the Methodology.

In this study, three-vessel have been selected among the twelve-sister Ro-Ro vessels. The reason why three vessels deeply are focused among of those twelve sister Ro-Ro vessels is the dataset used in analysing to determine the effect of the trim optimization.

A specific Trim optimization software has been developed for the 12-sister roro vessel based on computational fluid dynamic method and installed to all of those 12 sister vessel with a user -friendly interface. Since November 2017, 2465 Trim optimization event have been created by the all vessels.

Those 2465 of entries made by vessels have been investigated and analysed and best three of the 12 sister vessels have been selected accordingly due to their dry docking and trim optimization starting periods are matched.

The used dataset of the test vessels belongs to two periods. The first period is called "Preperiod in which all vessels have a dry dock hull and propeller maintenance painted with same hull coating technology at the same of the month of the same year. This period also where the data collection and analysing made without Trim optimization. The second period is called "post-period" in which all vessel has dry dock hull and machinery maintenance with same hull coating technology one year later after "Pre-period "where the all vessel has started to use trim optimization methods. Thus, it is provided that the critical operational factors of the energy efficiency operations of the vessels such as propulsion system and vessel total resistance minimized to see the effect of the trim optimization on fuel-saving results of the Test Vessel.

Speed and displacement corrections defined by ITTC Admiral formula [34] have been applied to all data belong to the Pre-Period and Post-periods for increasing accuracy of the tested vessels' statistical results while the data set gathered.

In order to obtain any meaningful development on loss of speed and consumption of fuel decrease by Trim optimization method, the following procedure is used:

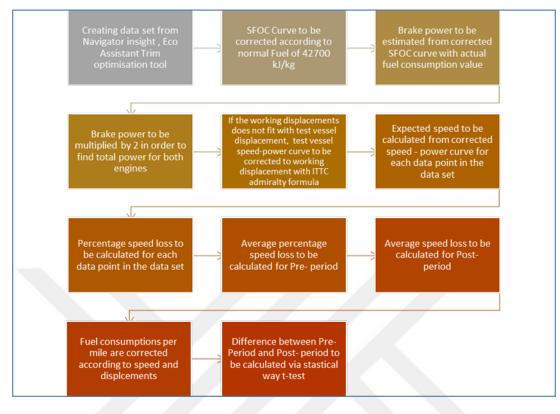


Figure 13 Methodology overview

2.3 Ship Particulars of "Test Vessels"

PARTICULAR	VESSEL 1	VESSEL 2	VESSEL 3
BUILT YEAR	2005	2005	2005
GROSS TONNAGE	29004	29004	29004
NET TONNAGE	8702	8702	8702
DWT SUMMER LOAD	11636	11636	11636
DWT DESIGN DRAUGHT	9481	9481	9481
LIGHT SHIP	9041	9041	9041
BREADTH	26 mtrs	26 mtrs	26 mtrs
LENGTH OVER ALL	193 mtrs	193 mtrs	193 mtrs
LENGTH BETWEEN PERP.	182,39 mtrs	182,39 mtrs	182,39 mtrs
DEPTH TO MAIN DECK	8.6 mtrs	8.6 mtrs	8.6 mtrs
DEPTH TO UPPER DECK	16.7 mtrs	16.7 mtrs	16.7 mtrs
DRAUGHT(SUMMER LOAD)	7,00 mtrs	7,00 mtrs	7,00 mtrs
DRAUGHT(DESIGNED)	6,45 mtrs	6,45 mtrs	6,45 mtrs
SERVICE SPEED	21.5 KN	21,5 KN	21,5 KN
MAIN ENGINES	MCR 16200 KW	MCR 16200 KW	MCR 16200 KW
LANE METERS	3735	3735	3735
CLASSIFICATION	DNV + 1 A1 GENERAL CARGO CARRIER RO-RO	DNV + 1 A1 GENERAL CARGO CARRIER RO-RO	DNV + 1 A1 GENERAL CARGO CARRIER RO-RO
BOW THRUSTER	1400KW(1900 HP)	1400KW(1900 HP)	1400KW(1900 HP)

Table 5 Ship particulars of the "Test Vessels"

3 RESEARCH AND FINDINGS

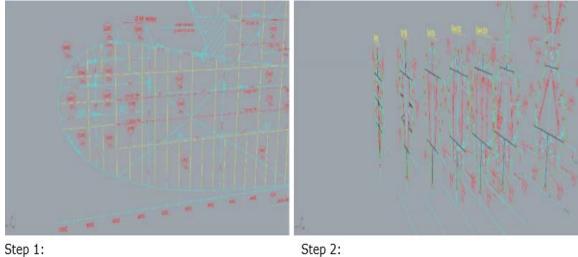
3.1 Software for Trim Optimization (Eco-Assistant)

DNV GL's Eco-Assistant Trim optimization tool has been installed to Test Vessels studied in this Thesis.

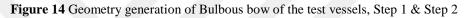
"The ECO-Assistant "is a friendly user software tool that delivers the optimum trim angle for a specific ship associated with the operational input of speed, displacement, and optionally depth of sea. The essential element of the "ECO-Assistant" is the complete information of vessels particular resistance information based on computational fluid dynamic

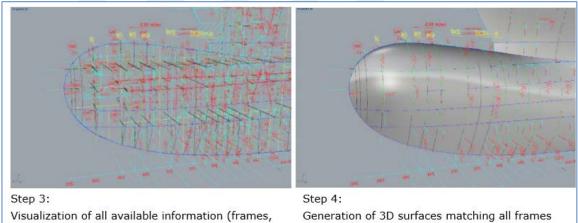
The ECO-Assistant can be seen as a product consisting of two parts:

1. A comprehensive database of ship-specific data for the different operating conditions.


2. A user interface that makes the optimum trim information available to the crew on board the vessel in a simple format.

This ECO Assistant can be installed on any computer on the vessel, which makes the installation by very nature much more cost-effective than sensor-based trim optimization tools.


The Eco-Assistance software was installed all reference Model Test Vessels, which are the main real field data sources in order to understand whether CFD calculations work on Fuel Saving.


Below are the steps of the CFD calculations used on Eco-Assistant software developed according to the studied Test Vessels in this thesis.

Visualization of geometry generation at the example of the bulbous bow of the Model Ro-Ro Vessel

Step 2: Preparation of frames

Visualization of all available information (frames, waterlines and CPC) for geometry generation

Preparation of CPC

Figure 15 Geometry generation of Bulbous bow of the test vessels, Step 3 & Step 4

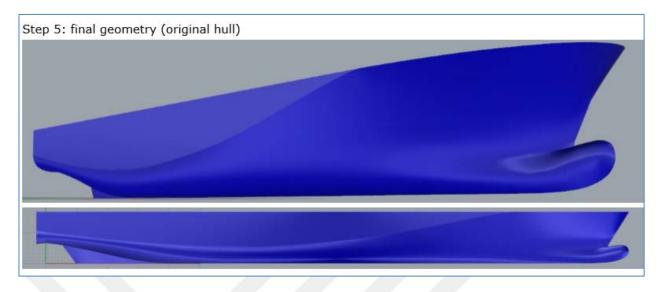


Figure 16 Final Geometry of the original hull

3.1.1.1 Domain size and grid generation:

An unstructured full-hexahedral meshing tool is used for grid generation. All calculations are carried out for a half model only, i.e. symmetry in the y-Plane was applied. The domain size was chosen to account for unrestricted and deep water. Standardized grid setup was used, i.e. cells are clustered around the ship hull with a base cell size relative to the length on the hull surfaces. Near areas with expected large changes in flow, the grid is refined. To accurately capture the surface, the grid is further refined in z-direction close to the expected interface location. For accurate capturing of flow gradients in the boundary layer, extrusion cell layers normal to the ship hull surfaces are generated with a target y+ within the acceptable limit. The following pictures show the resulting mesh discretization of the 3D hull surface

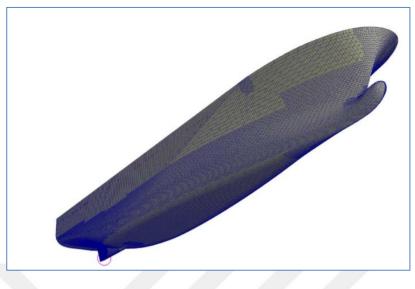


Figure 17 mesh discretization of the 3D hull surface

3.1.2 Computational setup:

- 3.1.2.1 Ship motions:
 - For all CFD computations the ship model is free to heave and trim, i.e. the heave and pitch motions are solved.
 - Heel, yaw and sway motion are fixed, and the forward translation is imposed by the computational setup.
 - To deal with start-up problems as sloshing, spray and wave reflections a sinusoidal start-up ramp is used.

3.1.2.2 Free surface effects:

- The free surface is captured by a Volume of Fluid (VoF) approach. This requires the solving of an additional transport equation for the fraction of fluid in each cell. A value of one means that the cell is occupied completely by the higher density fluid (e.g. water in a water and air mixture).
- Fluid properties such as density and viscosity are calculated as a weighted average based on the volume fraction of each fluid in each cell. If not otherwise specified all calculations are carried out as 2nd phase-calculations considering free surface effects.

3.1.2.3 Effects of the working propeller:

- The effects of a working propeller are captured by a so-called Body Force or Actuator Disk method. Hereby the thrust of the propeller is modelled by volume forces which are applied in the propeller disk or rather a cylinder with the diameter and approximate thickness of the propeller. As a result, effects such as the stream contraction and flow acceleration (both axial and rotational components) can be captured, while effects such as hub or tip vortices cannot. Parameters such as the propeller torque and the relative rotative efficiency (ηR) cannot be determined.
- The Body Force method (without considering rotational flow components) is the standard method. Symmetry about the x-z-plane is maintained and self-propulsion is achieved by balancing the integrated forces.
 - 1. Fluid properties:
 - 2. For full scale calculations and predictions in case of sea going vessels: 15° C, sea water (pWater = 1025 kg/m³, v = 1.1873e-6 m²/s) o Turbulence closure
 - A k-ω-SST turbulence model with wall functions is applied as standard turbulence model. Depending on the respective implementation, the required dimensionless wall distance y+ is determined.
 - 4. For accurate capturing of flow gradients in the boundary layer, extrusion cell layers normal to the ship hull surfaces are generated with a target y+ within the acceptable limits.

3.1.3 Fuel savings potentials:

The following samples are valid for the original hull configuration. Slow steaming with 13kn (usage of 1 ME only): At 5.5 m draft:

 Retrim by 0.5m from level draft to -0.5m bow down saves 5.4% power and 0.6 t/day fuel per vessel Retrim by 1m from 0.5m stern down to -0.5m bow down saves 10.4% power and 1.2 t/day fuel per vessel.

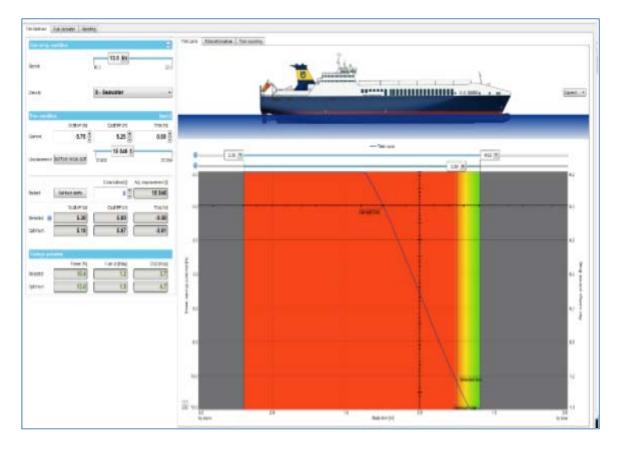


Figure 18 Sample of screen shot of Eco-Assistant software user screen for Test roro vessels

Normal operation at 19.5 kn (both ME operating) At 5.5 m draft: Retrim by 0.5m from level draft to 0.5m stern down saves 1.2% power and 0.5 t/day fuel per vessel

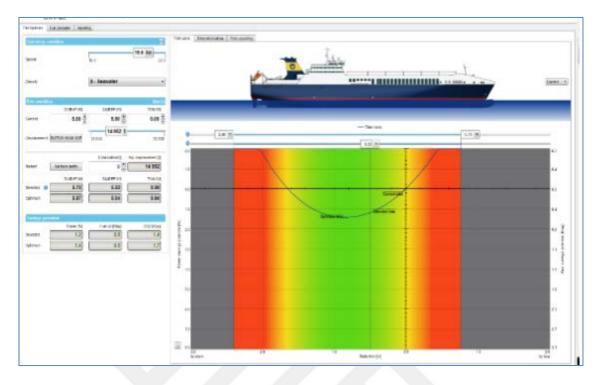


Figure 19 Sample of screen shot of Eco-Assistant software user screen for reference roro vessels

3.1.4 Results: Plausibility check:

The comparison of the calculated bow wave shape with real pictures at below shows a very good agreement.

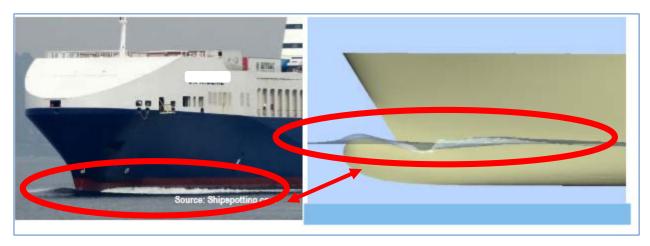


Figure 20 Calculated bow wave via CFD vs Real Bow wave shape

This study based on evaluating CFD calculations of Trim Optimization with real-field data. In order to carry out analysis, easy to use software installed to all vessels and trim optimization trainings carried out on all vessels in order to be sure that the idea of trim optimization and using of software tool well understood by crew. Below methodology followed to carry out if implementation of CFD calculations created extra efficiency through fuel saving.

 Chief Officer reads draughts values at the end of the loading operation and enters to Trim Optimization Software.

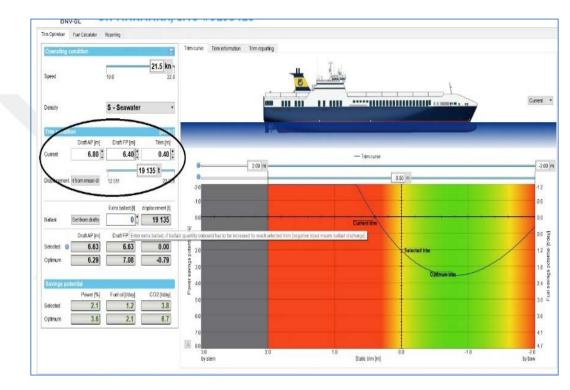


Figure 21 Sample of screen shot of Eco-Assistant software user screen for reference roro vessel

2- Trim optimization software calculates optimum draughts and inform user how much fuel saving potential is possible if vessel's draughts can be changed to optimum draughts.

3- Chief Officer uses Stability Software to test how vessel can be trimmed under current loading and stability conditions. In most cases it is not possible to reach optimum draughts

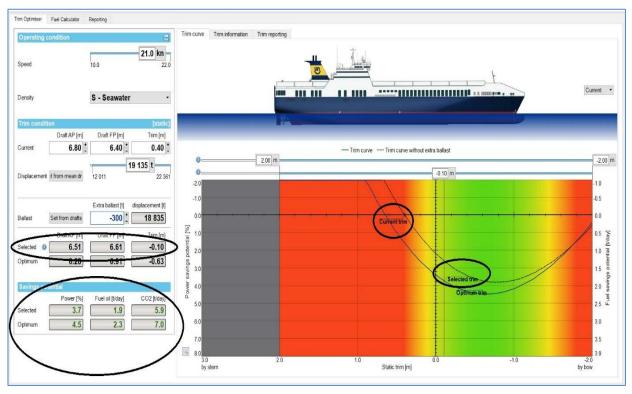


Figure 22 Sample of screen shot of Eco-Assistant software user screen for reference roro vessels

But Chief Officer tries to approach optimum draughts as practicable as possible. In below sample, even optimum draughts requires to trim vessel 80 cm to forward but vessel could

Only trimmed 10 cm to forward. If vessel could be able to reach optimum draughts, it would be possible to save 2, 1 tons of fuel daily. But vessel could trim vessel to 10 cm forward by discharging 300 tons of ballast water and created 1,9 tons of fuel saving daily which is a result of CFD calculation.

- 4- Vessel reports actual draughts with Navigator Insight reporting software for every events like departure, noon, and arrival reports.
- 5- Draught information which are received with event reporting, compared with CFD results to evaluate how trim optimization could be implemented and how much trim potential remaining.

3.2 Navigator insight fleet performance manager software

The Navigator Insight system has been formed by DNV GL to support ship owners and managers to provide quality of data of each vessel in the fleet for particular fleet performance review. "The integrated system" presents an integrated module for structured and set on reporting of data with smart validation that immediately alerts officers of possible reporting mistakes or unreasonable data. The event-based reports are logged on the onshore server for later evaluation. [33]

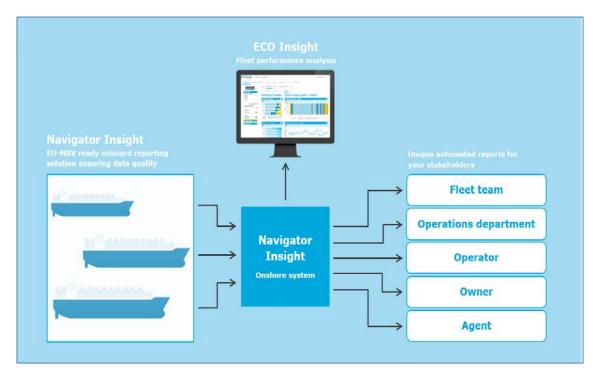


Figure 23 Navigator Insight and ECO Insight for streamlined reporting and unique operational insight [33]

On thesis data of the test vessels such as Distance sailed, voyage number, duration of voyage, consumption of the relevant voyages etc. have been gathered throughout of this software.

3.3 ISO 10930 Dry docking Performance

Below methodology has been followed which is taken from ISO 19030 dry docking performance indicator calculation methodology and adapted to analyse effect of the trim optimization.

"The intention of ISO 19030 is to guide practical approaches for measuring the changes in vessel-specific hull and propeller performance and to determine a set of appropriate performance indicators for hull and propeller maintenance, renovation, retrofit projects. The practices are not designated for correlating the performance of vessels of various types and sizes (including sister ships) nor to be used in a supervisory structure" [12]

ISO 19030 consist of three parts:

The primary section describes common sources on measuring differences in the performance of the hull and propeller and describes the gathering of performance information.

The second section explains the default approach to measure variations in the performance of the hull and propellers and for determining the performance KPIs. It additionally leads to the essential efficiency of individual performance indicator.

The third section paints options to the default method. Some of the methods have a result in lower efficiency but improve the applicability. On the other hand, some other method may outcome in the identical or bigger total accuracy but involve factors which are not yet broadly accepted in industrial shipping.

3.3.1.1 Data retrieval

Section two of the ISO 19030, defines that the data shall be tracked concurrently at a repetition if one signal every 15 seconds (0.07Hz) or settled by a data acquisition system (e.g. data logger),

The section 3 of the standard grants the determinations to be recorded short periodically (e.g., noon data) if a system for data collection at this frequency is not available. Section 3 of the standard needs the following specifications:

The data sampling rate shall remain constant over the full measurement period (Pre-Period and Post- Period), but for changes created by time-zone change; Primary measurement parameters (speed, power from either shaft torque and rpm or fuel consumption) shall be averaged over the period;

Average values are used for a specific time of period such as speed, power from both for shaft and torque as the primary measurement

Secondary measurement parameters shall, to the extent possible, be collected at the same sampling rate as the primary measurement parameters, or no less frequently than one signal per day. Except for wind and draught, those values shall be short-term average values (e.g., averages over one minute) held at the point in time the observation is obtained.

Where there is no opportunity to collect the data automatically, the alternative way of gathering data could be possible as well as manually. It introduces an uncertainty partly due to the increased possibility of human error against error possibility in automated data collection systems, but also due to the necessity of reducing sampling frequency.

3.3.1.2 Performance Indicators

The Standard defined the performance indicator shows effects and determinations of vesselspecific varieties of the "hull and propeller" maintenance or any other new design or application such as retrofits or trim optimization.

3.3.1.3 Performance Indicator 1 - Dry-docking performance

The following figure 23 presents the varieties in performance of "hull and propeller" after dry docking in comparison by components of first dry dockings' performance. Where data or measurements are available to determine the effectiveness of the dry-docking

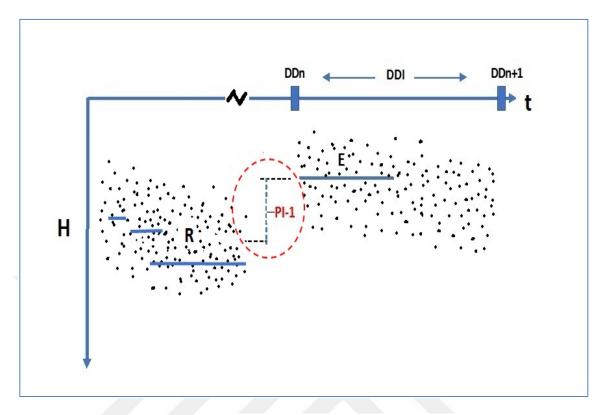


Figure 24 Dry-docking Performance (Source: ISO 19030)

Where:

Н	"Hull and propeller performance"
t	Time
DDn	Current dry-docking
DDn+1	Next dry-docking
DDI	Dry-docking interval

R Pre- period: average "hull and propeller" performance following past out-dockings

E Post- period: hull and propeller performance following present out-docking

PI-1 Performance Indicator 1: "Dry-docking performance

The cycle following directly following the latest "dry-docking" is the "Post- period". The periods following directly after pervious dry-dockings are the Pre- periods. All periods are to be of the same length of one year.

3.3.1.4 Indicator 2 – In-service performance

To circumscribe solutions for the effectiveness of the "hull and propeller" remains below the waterline, so as hull layers or any new method (e.g., Trim optimization) used over the time of dry-docking period, the average variation in performance of "hull and propeller" belongs to the period remain "out-docking" to the end of" dry-docking" period.

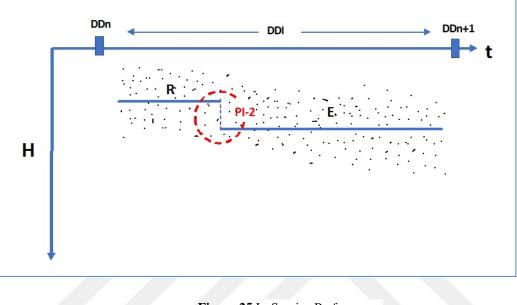


Figure 25 In-Service Performance

Where:

Н	"Hull and propeller performance"
t	"Time"
DDn	"Current dry-docking"
DDn+1	"Next dry-docking"
DDI	"Dry-docking interval"

R "Pre- period": "hull and propeller" performance following current out-dockings

E "Post- period": avg. "hull and propeller" performance over remainder of dry-docking interval

PI-2 Performance Indicator 2: In-service performance

The cycle succeeding directly afterwards the latest dry-docking is the "Pre-period". The period following the reference period until the end of the same dry-docking period is the "Post-period". The "Pre-period" and the "Post-period" shall both be of minimum one year.

3.3.1.5 Indicator 3 – Maintenance

The determined variation in hull and propeller performance from the commencement of the dry-docking period to a successful average at a favoured course when the identical interval can be used as a starter for underwater maintenance of hull and propellers, including propeller and hull brushing.

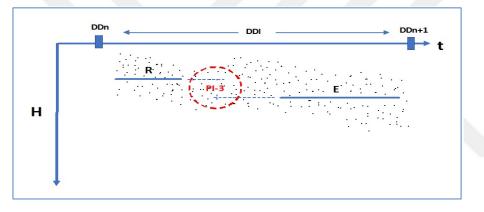


Figure 26 Maintenance Trigger (Source: ISO 19030)

Where:

Н	"Hull and propeller performance"
t	"Time"
DDn	"Current dry-docking"
DDn+1	"Next dry-docking"
DDI	"Dry-docking interval"

R "Pre- period": hull and propeller performance following present out-docking

E "Post -period": moving average hull and propeller performance at any chosen time

PI-3 Performance Indicator 3: Maintenance trigger

3.3.1.6 Indicator 4 – Maintenance Effect

The change in hull and propeller performance estimated before and after a preservation event can be used to ascertain the effectiveness of a specific maintenance project which has taken place during period within the measures, covering propeller and/or hull brushing.

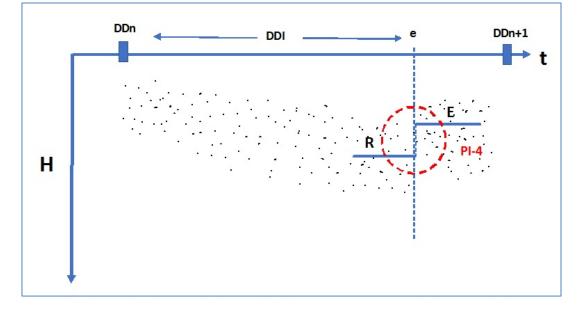


Figure 27 Maintenance Effect (Source: ISO 19030)

Where:

Н	"Hull and propeller performance"
t	"Time"
DDn	"Current dry-docking"
DDn+1	"Next dry-docking"
DDI	"Dry-docking interval"
E	"Maintenance event"

R "Pre -period": "hull and propeller" performance before maintenance event

E "Post -period": "hull and propeller "performance after maintenance event

PI-4 Performance Indicator 4: Maintenance effect

3.3.2 Performance Values, (PVs)

For each individual information spot at the adjusted information set, a performance value shall be calculated. The whole of the corrected data set and performance value PVs are related to the provided data set.

The loss rate of the speed matched to a specific speed, and power relationship is named as Performance value (PVs)

3.3.3 Determination of reference conditions

The reference conditions are identical for all performance indicators, and all are met when concurrently.

Delivered power, within the scope of power values included by the available speed-power reference curves. Displacement has to be within +-5% for the available speed. power reference. curves,

Absolute rudder angle value is smaller than 5 degrees, in case that delivered power is determined by the method described in Annex C of the standard, the expected transmitted power must be within the scope of the values included by the available SFOC reference. curve.

3.4 Dry-Dock History of Test Vessels

Three ships used for trial purposes were dry-docked in the same shipyard and similar periods (see Table 6).

Vessel Name		DDn+1	DDn+2
	Date of Drydock	29.03.2015	29.12.2017
	Shipyard	GEMAK	GEMAK
VESSEL 1	Blasting	SA 2 %100	Spot %5
VESSEL I	Hull Coating	Foul Release Coating - Advanced	1 Full layer Foul Release
	Trim Optimization in use after DryDock	NO	YES
	Engine Overhaul	NO	NO
	Date of Drydock	16.05.2015	15.01.2018
	Shipyard	BESIKTAS	GEMAK
VESSEL 2	Blasting	SA 2 %100	Spot %5
VESSEE 2	Hull Coating	Foul Release Coating - advanced	1 Full layer Foul Release
	Trim Optimization in use after DryDock	NO	YES
	Engine Overhaul	NO	NO
	Date of Drydock	2.06.2015	19.02.2018
	Shipyard	BESIKTAS	GEMAK
VESSEL 3	Blasting	SA 2 %100	Spot %5
VESSEL 5	Hull Coating	Foul Release Coating - Advanced	1 Full layer Foul Release
	Trim Optimization in use after DryDock	NO	YES
	Engine Overhaul	NO	NO

Table 6 Dry-docking History of Test vessels

Dataset is created by means of gathering unprocessed data of all test vessel from the company's particular software reports such as noon report, arrival, and departure reports "Energy Efficiency Operational Index" reports by using Navigator Insight Only and Eco Assistants Trim optimization software's data of the voyages performed in routine circumstances involved in the study. Some trip on which had engine breakdown or any unforeseen suspension on program producing irregular consumptions of fuel are not included.

Dataset includes following information:

Vessel name: Mentioned as test vessel in this thesis

Voyage Number: Voyages are consisting of two trips completed by each test vessel (e.g., steaming on Pendik-Trieste-Pendik line; the First trip of the specific voyage is performed from Pendik to Trieste and second trip is the Trip completed from Trieste to Pendik)

Docking cycle: Data referring to dry-docking period for intended voyage (e.g. DDN refers the dry-docking in which coating applied but trim optimization has not done after out docking, DDN+1 refers to the dry-docking in which coating applied and Trim optimization has been started to apply by all test vessels)

Voyage between ports: Report on voyage between which ports in order to recognize travelled distance.

Displacement: Real loaded displacement of vessel for each trip of the voyage

Total fuel consumption for a specific voyage: Sum of the fuel consumption of each trip of the voyage.

Duration of voyage: the sum of the duration of each trip for the intended voyage

Average fuel consumption per hour for the voyage: Sum of the average fuel consumption per hour for each trip of the specific voyage Calculated by means of dividing the average consumptions of each trip by the duration of the associated duration of subject trip.

Total sailed distance in Nm: Sum of the sailed distance of each trip of the voyage.

Average speed for the voyage (in knots and m/s): Average speed in knot calculated by dividing sailed distance to duration, and average speed in m/s calculated by multiplying knots to 0,5144 as a conversion factor.

Average fuel consumption per mile of the voyage: Calculated by total consumption to sailed distance in Nm

Average consumption per engine in kg: All test vessels have two engines and average consumption per hour divided by two in order to find each engine's consumption. Due to the company's reporting system for fuel consumption in metric tons, it multiplied with 1000 to find consumption in kg. Then corrected to normal fuel of 42700 kJ/kg due to actual fuel's lower calorific value was 40200 kJ/kg.

Data filtered according to the +- 5% for the displacement differences in order to evaluate the identical value of displacements as an operational factor o displacement for any voyage which is not within the range specified above, have not included.

The engines' Specific Fuel Oil Consumptions curves based on the actual test is corrected inshop test record since through "ISO 346-1:2002" afterward it adjusted for standard fuel of "42.700 KJ/Kg" according to following formula and derived new SFOC Curve.

$$SFOC_{LCV \text{ corr.}} = \left(\frac{SFOC \times LCV_{\text{nor.fuel}}}{LCV_{\text{test bed}}}\right)$$
(10)

Where;

SFOC (LCV CORRECTED) : "Corrected SFOC acc. to standard fuel of 42700 kJ/kg"

SFOC : "SFOC value given is shop test report of the relevant engine" LCV (NORMAL FUEL) : "42,7 MJ/kg"

LCV (TEST BED) : "42,274 MJ/kg"

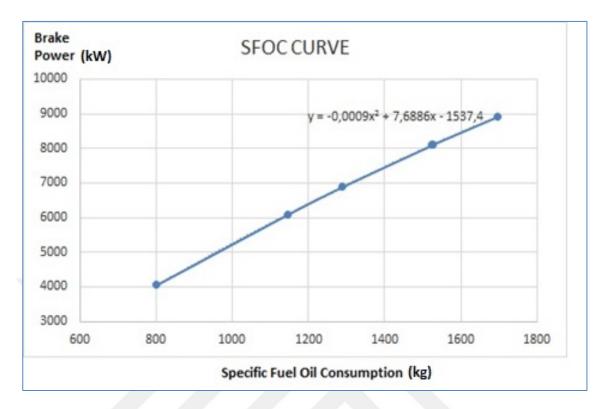


Figure 28 SFOC Curve of MAK 9M43 engines

Transported power of single engine approximated for individual input point based on predictions for "brake power" " $P_{B"}$ from an engine specific SFOC reference curve prescribed in "Annex D" of Part 2 of the standard.

$$P_{\rm B} = f\left(M_{\rm FOC} \ge \frac{\rm LCV}{42,4}\right) \tag{11}$$

Where:

- M_{FOC} : "Mass of consumed fuel oil by main engine (kg/hour)"
- LCV : Lower calorific value of fuel oil (mJ/kg)

f : SFOC reference curve (Corrected with ISO and normal fuel of 42,7 MJ/kg

To be able to calculate exact transmitted power of both engines, the power is multiplied by two

Test forecasts is available for "18.557,6" tons displacement value. For all vessels, a adjusting factor " $(\Delta Voyage / \Delta ModelTest)2/3$ " is applied to the Speed and Power curve, according to ITTC displacement reconstruction methodology.

On the adjusted transmitted power of engines, predicted speed measured for any data spot from speed and power reference curve

 $V_{e} = f x P_{b}$ (12)

Where;

- Ve : Expected Speed
- F : Speed-Power Curve
- P_b : Delivered power of both engine

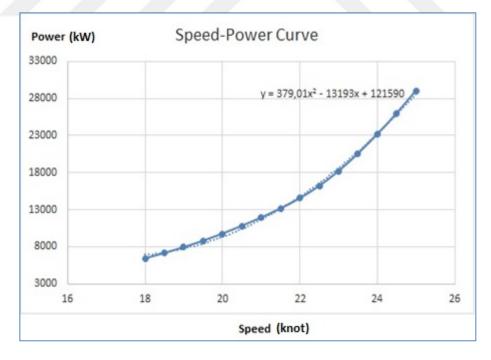


Figure 29 Speed-Power Curve of test vessels from model test report

The rate of speed loss that is prescribed by the "ISO19030" as a performance value, estimated for every single data point on the adjusted data set..

The portion of the speed loss is determined as the corresponding variance in percentage among the estimated speed and required speed with the following formula:

$$V_{d=100 x} \left(\frac{v_m - v_e}{v_e}\right) \tag{13}$$

Where;

V_d : Percentage speed loss

V_m : Measured Speed

Ve : Expected Speed

The average percentage speed loss over the reference period(s) calculated as:

$$V_{d,ref} = \frac{1}{k} \sum_{j=1}^{k} \frac{1}{n} V_{d,j,i}$$
 (14)

Where

k "number of reference periods"

j "reference period counter"

n "number of data points in the processed data set under reference conditions in the reference period "*j*"

i counter of data points in reference period "*j*"

V_{d,j,i} "percentage speed loss for data point i in reference period "j"

 $V_{d,ref}$ "average percentage speed loss over the reference period(s)"

average rate of loss of speed overhead the evaluation period $V_{d,eval}$ determined as:

$$V_{d,eval} = \frac{1}{k} \sum_{i}^{j} \frac{1}{n} \sum_{i}^{n} V_{d,eval,i}$$
(15)

Where

n "number of data points in the processed data set under reference conditions of the Post period"

V_{d,eval}, "percentage speed loss for data point i in a data set of the evaluation period"

V_{d,eval} "average percentage speed loss in data set of the evaluation period"

The difference in the average speed loss in the "Pre- period(s)" and the average speed loss in the" Post period(s)" is described as a performance indicator, PI, and is determined according to following equalization:

$$k_{\rm HP} = V_{\rm d, eval-} V_{\rm d, ref} \tag{16}$$

Where

V _{d,eval}		"average percentage speed loss in data set of the evaluation period "
V _{d,ref}		"average percentage speed loss over the reference period(s)"
$k_{HP} = V$	/d,eval -	V _{d,ref} "Performance indicator, PI"

To be able to assess differences in fuel consumption, average fuel consumption per mile value of "Pre-period(s)", and "Post period(s) measured from the data set.

New table created for each indicator from the data set in order to make fuel consumption comparisons between Pre-Period and Post period as shown on the below table 7

	Unit	Reference	Evaluation	SPEED CORRECTION TO POST-PERIOD	DISPLACEMENT CORRECTION TO POST-PERIOD
Sample Size	pcs	46	44	44	44
disp total	tons	1605593,50	1609669,60	1609669,60	1609669,60
disp avr.	tons	34904,20652	36583,4	36583,4	34904,20652
fuel total	tons	13071,80	12591,95	12954,96	12437,77
fuel avr	tons	284,1695652	286,1806818	294,4308934	282,676539
mile total	miles	112189,00	104371,26	104371,26	104371,26
hours total	hrs	5815,596667	5769,75	5297,475044	5297,475044
speed avr	knots	19,70	19,52	19,70	19,70
cons per Nm	tons	0,116572129	0,120816085	0,124123822	0,119168515

Table 7 Sample result table

Speed influences the consumption therefore consumption of the of "Post period" normalized corresponding to the average speed of "Pre- period". That is performed by changing the below equation for the Fuel Oil Consumption (FOC) of Post period

$$FOC_{Normalized} = FOC_{Evaluation} x \left(\frac{Average Speed Reference Period}{Average Speed Evaluation Period}\right)^3$$
(17)

Above stated equation transforms the main engine fuel oil consumption for data entry of post- period to a normalized value according the pre-period's average speed.

Then data statistically examined. If the variation was significant between "*the average fuel consumption per mile*" value of "Pre-period" and corrected-normalized "*average fuel consumption per mile*" value of the "Post period". Following equation is used to examine the difference among two means for the samples:

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

(18)

Results to be displayed at the confidence level of 95%

4 DISCUSSING AND RESULTS

According to the Trim optimization software entries, all Test Vessels have achieved certain amount of fuel savings on their "Post -period(s) "as shown below figure 30 as percentage. Statistically compared actual "average fuel consumption per mile" results of the vessels belong to the "Pre-period" and "Post-period" correspondingly. These cycles can also be compared with saving potential of shown on the figure 30

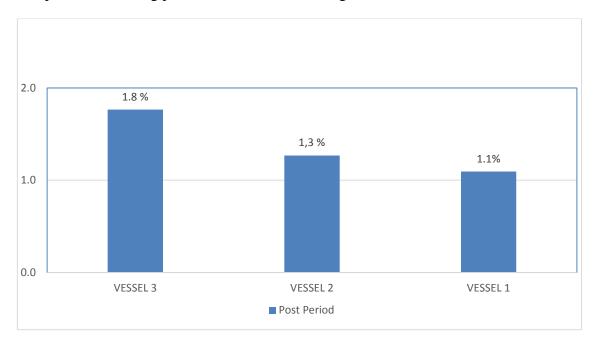


Figure 30 Fuel saving results according to Trim optimization Software

4.1 Results of Test Vessel 1

Vessel 1 was built in 2005. She entered dry-dock in March 3rd, 2015 and had a hull maintenance with fully blasted and coated with foul Release coating advance technology.

After this dry dock period vessel have completed in 44 round-trip voyages in the first year after out- docking which is so called as Pre-period in the analysis. In pre-period vessel could not be used for trim optimization method.

In December 29th, 2017 vessel had a dry dock and had a hull maintenance with full layer foul release coating.

In this period vessel has started to use Trim optimization methods with completed 46 roundtrip voyages in the first year after last dry docking which is so called as "Post-period"

Vessel Name		DDn+1	DDn+2
	Date of Drydock	29.03.2015	29.12.2017
	Shipyard	GEMAK	GEMAK
VESSEL 1	Blasting	SA 2 %100	Spot %5
VESSEL I	Hull Coating	Foul Release Coating - Advanced	1 Full layer Foul Release
	Trim Optimization in use after DryDock	NO	YES
	Engine Overhaul	NO	NO

Table 8 Dry Dock history of Test Vessel 1

To determine the effect of the trim optimization methods, the fuel oil consumption per mile of the vessel 1 gathered at both "Pre-Period" and "Post-Period" have been compared with paired sample t-test and below results has obtained.

			Paired	Sample	s St	atistics	5			
			Mean	N		Std. De	viation	Std. Er	ror Mea	n
Pair 1	VAR00	0002	.11657	2	46	.(038310		.000564	19
	VAR00	0003	.12067	' 4	46	.(060875		.000897	′ 5
			Paire	ed Samples C	correla	tions				
				_	N	Correlation	Sig.			
		Pair 1	VAR00002 & VA	AR00003	46	,092	,542			
			F	aired Sampl	es Tes	st				
				Paired Differenc	es					
				Std. Error	95%(Confidence In Differen				
	1	lean	Std. Deviation	Mean	Lo	wer	Upper	t	df	Sig. (2-taile
VAR00002 - VAR		041023	.0068868	.0010154		061475	0020572	-4.040	45	.00

Table 9 Paired Samples Statistic of Test Result of Test Vessel 1

According to paired sample t-test, A significant difference between "Pre-period" and "Post period" can be seen easily for the fuel consumptions of Pre and Post periods. However according to Trim optimization software results, fuel consumption of post-period should be 1,1 % lower than pre-period, but in reality, fuel consumption of post period was 2,23 %

higher than pre-period. Therefore, results did not confirm calculations of Trim Optimization Software and vessel consumed more fuel during post period.

4.1 Results of Test Vessel 2

Vessel 2 was also built in 2005 She has the same specification with the test vessel. She entered dry-dock in May 16Th 2015 and her hull fully blasted and coated with same technology applied on Test Vessel 1.

We have evaluated 47 round-trip voyages of the Test Vessel 2 in the first year after completion of her dry-docking period in 2015 which is called Pre-period in the analysis. In pre-period, trim optimization method is not used.

As the Post-period of the Vessel 2, 47 voyages evaluated in the first year after last dry docking held in January 18Th 2018. It is important that vessel has started to use Trim optimization just after this dry-dock.

Vessel Name		DDn+1	DDn+2
	Date of Drydock	16.05.2015	15.01.2018
	Shipyard	BESIKTAS	GEMAK
VESSEL 2	Blasting	SA 2 %100	Spot %5
VESSEL 2	Hull Coating	Foul Release Coating - advanced	1 Full layer Foul Release
	Trim Optimization in use after DryDock	NO	YES
	Engine Overhaul	NO	NO

 Table 10 Dry Docking History of the Test Vessel 3

Analysing fuel consumptions per mile of Test Vessel 2 on both "Pre-period" and "Postperiod" via sample paired t-test show us below finding.

Table 11 Paired Samples Statistic of Test Result of Test Vessel 2

Std. Error Mean		npies St	Paired Sa		
Stu. Entri Mean	Std. Deviation	Ν	Mean		
,00070	,00477	47	,1152	VAR00001	Pair 1
5 ,00109	,00745	47	,1203	VAR00002	
,			,		Pair 1

Paired Samples Test										
Paired Differences										
				Std. Error	95% Confidence Interval of the Difference					
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)	
Pair 1	VAR00001 - VAR00002	-,00504	,00899	,00131	-,00768	-,00240	-3,845	46	,000	

As shown on the table 11, the statistical results confirmed that significant difference between exists for "Pre-period" and "Post-period" for the Vessel 2. however, "average fuel consumption per mile" of Post Period was higher than pre period and according to Trim Optimization software "Post period's fuel consumption needed to be %1,3 lower than "Pre period". The vessel consumed %4,49 higher fuel consumption in post period compared with pre period. Results didn't confirmed calculations of Trim Optimization software.

4.2 Results of Test Vessel 3

Vessel 3 was built at the same shipyard on the same year with Test Vessel 1 and Test Vessel 2. She entered dry dock on 2nd June 2015 and hull of vessel fully blasted and coated with foul release coating same as the other sample Test Vessels. After this dry dock period 47 round -trip voyages have been evaluated derived without Trim optimization method.

The Vessel 3 entered the dry dock again in February 19th of 2018 and bottom of the vessel coated with same technology applied on the last dry dock period of the Test Vessel 1 and Test Vessel 2. After this period Test Vessel 3 has started to use trim optimization method via Eco-Assistant Trim optimization tool and 42 of round-trip voyages have been considered at the first year of the dry docking held in 2018.

Vessel Name		DDn+1	DDn+2	
	Date of Drydock	2.06.2015	19.02.2018	
	Shipyard	BESIKTAS	GEMAK	
VESSEL 3	Blasting	SA 2 %100	Spot %5	
VESSEL 5	Hull Coating	Foul Release Coating - Advanced	1 Full layer Foul Release	
	Trim Optimization in use after DryDock	NO	YES	
	Engine Overhaul	NO	NO	

To determine the effect of the trim optimization methods used on Test Vessel 3, "average the fuel oil consumptions per mile" of the Test Vessel 3 gathered at both Pre-Period and Periods have been compared with method of paired sample t-test via SPSS program and results shows us as below calculation as shown on the table 13;

		F	Paired Samples	Statistics				
			Mean N	Std. Deviati	on Std. Error Mea	in		
	Pair 1	VAR00002	,1167	42 ,00	615 ,000	95		
		VAR00003	,1151	42 ,00	444 ,000	69		
		Pa	ired Samples (Correlations				
				N Correla	ation Sig.			
	Pair '	1 VAR00002 &	VAR00003	42	,134 ,397			
					<u> </u>			
			D · 10	·				
			Paired Samp	les Test				
			Paired Differen	ces				
			Std. Error		ce Interval of the erence			
	Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1 VAR00002 - VAR0000	,00166	,00709	,00109	-,00055	,00387	1,516	41	,137

Table 13 Paired Samples Statistic of Test Result of Test Vessel 3

As differently, the paired samples result of the Vessel 3 shows us that existing of a significant difference between the "average fuel consumption per mile" values at "Pre-period" and "Post-period"

While Trim optimization software results the post -period should be 1,8 % lower than preperiod, the real fuel consumption of post period is 1,8 % as same with "Pre-period". Therefore, it seems that fuel savings obtained by means of Trim optimization software is confirmed by the real field data results, but t-test results didn't confirmed difference between pre and post period significantly.

5 CONCLUSION

Increasing fuel prices and environmental matters and also international regulations are forcing shipping owners /operators to find a way on how the fuel efficiency of vessels can be improved in order to reduce costs and GHG. Considering the fuel cost is by far the biggest part of the operating cost of a ship, a fractional savings in fuel consumption can result in considerable savings among the operational costs. Moreover, fuel savings have environmental benefits in the reduction of greenhouse gas emissions and CO2.

The trim optimization method is identified by the IMO as among the fuel-efficient operations can provide energy efficiency by reducing fuel consumption. [9]

A close relationship exists between fuel consumption and ship trim so that vessel owners and operators should strictly be able to decrease fuel consumption by means of optimizing trim of the vessel. Thus, they may be able to save 5% of fuel costs in annually. [20] however this results mainly outcomes from the calculations generated by CFD analysis in the literature.

But in actual life, it is very hard to measure the effect of the trim optimization due to operational factors influence the energy efficiency such as Hull resistance, Propulsion systems, wind, wave, cargo carried, speed and duration of the voyage.

In this thesis, three test vessels selected among the twelve sisters high-speed RO-RO vessels. All those three-vessel built in the same shipyard with the same arrangement as sister vessel and launched into the two months interval in 2005.

Dnv GL Eco assistant trim optimization software, which is based on CFD calculations and specially design for the test vessel, has been installed. Also, the dataset used in the study were obtained Navigator insight software used by the Test vessel.

To also eliminate the hull and propeller resistance, two periods of the test vessels analysed. The first period is the period so-called Pre-Period all the test vessels enter dry dock in the same month where fully hull coating applied with the same coating technology and polishing the propeller blades. In this period, all data monitored belongs to an interval as one year after dry docking. Test vessels did not use Trim optimization software in this interval. The second period is the period called Post-Period, in which all the test vessels had dry dock maintenance where fully hull coating applied with the same coating technology and polishing the propeller blades. Evaluate data belong to an interval as one year after dry-docking with usage of Eco Assistant Trim optimization software.

Actual fuel consumptions evaluated by ISO 19030 standards to minimize the controllable operational factors such as hull resistance, propulsion systems and ITTC formula applied in order to provide speed and displacements correction to data gathered.

At the test vessel 1 "average fuel consumption per mile" of 44 roundtrip at the pre-period and 46 "average fuel oil consumption per mile" of 46 voyages have been compared with paired sample t-test statistically and results did not match the outcome from trim optimization software. However according to Trim optimization software results, fuel consumption of post-period should be 1,1 % lower than pre-period, but in real field data, fuel consumption of post-period was 2,23 % higher than pre-period

At the test vessel 2, 47 of the voyage results have been included in the statistical test and compared with 47 samples in the Post-period of vessel 2. Trim Optimization software post period's fuel consumption needed to be %1,3 lower than the pre-period. In reality, the vessel consumed %4,49 higher fuel consumption in the post-period compared pre-period. Results didn't confirm the calculations of Trim Optimization software.

Vessel 3 is the only vessel in which statistically tested of the vessel average fuel consumption per mile significantly decreased in Post -period and confirmed as the fuel-saving results of trim optimization software. While Trim optimization software results in the post-period should be 1,8 % lower than the pre-period, the real fuel consumption of the post-period is 1,8 % the as same "Pre-period". Therefore, it seems that fuel savings obtained by means of Trim optimization software is confirmed by the real field data results

As a conclusion, it has been clearly seen that observation of the effect of trim optimization is quite difficult on the real-life even if the operational factors of the energy efficiency are minimized or eliminated. The reason lying of this difficulty could be human error as the crew might not log and report the data correctly or might not adjust the trim of the vessel according to optimum trim value given by trim optimization software. Other possibility is that chief engineers could calculate the consumption the fuel wrongly. Another reason could be the effect of uncontrollable operational factors such as wind and wave resistance, which are ignored in this study. Also, the usage of the rudder might be another factor that might affect the result of the study.

As future proposal to evaluating of the effect of the trim optimization precisely, an integrated sensor system (Consisting of draught gauges, wind wave and engine sensors, flow meters, or tank sensors) which is able to log and report the data automatically should be installed to the test vessels. Thus, human error on the reporting and error on trim adjusting can be avoided. And, data can be evaluated with other variables such as wind and sea states or on calculating remained fuel oil on board that can be provided.

6 REFERENCES

- [1] UNCTAD, "United Nations Conference on Trade and Development (UNCTAD) Maritime Review Report," 2017.
- [2] United Nation -Kyoto Protocol, "Kyoto Protocol To The United Nations Framework," United Nation, 1998.
- [3] D. CE, "Technical Support for European Action to reducing Greenhouse Gas Emmisions from International Maritime Transport.," 2009.
- [4] Hennings K, "Influences of different measures for the energy efficient ship design and operation," 2016.
- [5] "IMO MEPC, "Amendments To The Annex Of The Protocol Of 1997" To Amend The International Convention For The Prevention Of Pollution From Ships, 1973, As Modified By The Protocol Of 1978 Relating Thereto Inclusion of regulations on energy efficiency for ships in MARPOL A," IMO MEPC, 2011.
- [6] "International Maritime Organization", "Technical and operational measures to improve the energy efficiency of," IMO, international shipping and assessment of their effect on future emissions.
- [7] "IMO Resolution MEPC.292(71) Annex 16", "Resolution MEPC.292(71) Annex 16 -2017 Guidelines for Administration Verification of ship Fule Oil Consumption Data," IMO MPEC, 2017.
- [8] "IMO Resolution MEPC.292(71) Annex 17", "Resolution MEPC.292(71) Annex 17 -2017 Guidelines for Development and Management of the IMO Ship Fuel oil Consumption Databse," IMO MEPC, 2017.
- [9] "IMO Resolution MEPC.213(63)," "Resolution MEPC.213(63) 2012 Guidlenie for the Development of a Ship Energy Effecieny Management Plan (SEEMP)," 2012.
- [10] DNV GL, "Energy Efficiency Design Index (EEDI) and Energy Efficiency Operational Indicator (EEOI)," DNV GL. [Online].
- [11] "International Maritime Organization", "Guidelines For Voluntary Use Of The Ship Energy Efficiency Operational Indicator (EEOI)," "MEPC.1/Circ.684, 2009".
- [12] ISO, "Ship and Marine technology Measurement of changes in hull and propeeller performance," 2016.

[13] MAN &BV, "Basic Principles of Ship Propulsion," 2005.

- [14] G. Hasan, "Increasing Operational Efficiency Of High Speed Ro-Ro Vessels viaNew Hull Coating Technologies," 2017.
- [15] R. R., "Delivered power trim and sinkage ship hull forms: ananalysis of the effects of the trim variations on the power performance of a class of modern container ships. In Transactions on the Built Environment, volume 5,," "1994."
- [16] "J. JMJ", "Review of the 1985 full-scale calm water performance tests onboard m.v.mighty servant 3.Technical Report 1361, revision 07-11-2003," Ship "Hydromechanics Delft University of Technology," "2003."
- [17] "J. J. Meijers JHC," "Transactions IME, Conference on Operation of Ships in Rough WeatherShip routeing for optimum performance.Number 529-P.," 1980.
- [18] "E. Gheriani", "Fuel Consumption Prediction Methodology for Early Stages of Naval Ship Design Eran Gheriani," "MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 2012".
- [19] V. Bertram, "4th Hull Performance & Insigth Conference," Gubbio, 6-8 May 2019.
- [20] S. Peterson, "Predicting Optimal Trim Configuration of Marine Vessels with respect to Fuel Usage," Reykjavik,, June 2009.
- [21] S. Renato and M. Odd, "A unified Seakeeping and maneuvering analysis of ships in regular waves," 28 August 2008.
- [22] "T. Tezdogan, A. Incecik and O. Turan", "A numerical investigation of the squat and resistance of ships," 28 July 2015.
- [23] K. Hennings, Influences of different measures for "the energy efficient ship design and operation", "2016".
- [24] A. &. A. E. Abouelfadl, "The Impact of Optimizing Trim on Reducing Fuel Consumption," "Journal of Shipping and Ocean Engineering", pp. 179-184., 2016.
- [25] H. &. B. V. Schneekluth, "Ship design for efficiency and economy.," 2012.
- [26] H. H. &. F. M., "Assistance Tools for Operational Fuel Efficiency," Gubio, Italy, 2010.
- [27] T. Illus, "Taking the guesswork out of trim.," BIMCO bulletin, 2012.

- [28] M. M. A. &. L. N. Reichel, "Trim Optimisation Theory and Practice," pp. 8(3), 391-392, 2014.
- [29] "O. S. Olanrewaju", "Marine technology and sustainable development: Green innovations," 2014.
- [30] World Maritime University, "Energy efficient operation of ships," International Maritime Organization"., London, 2014.
- [31] K. &. M. M. Hochkirch, "On the Importance of Full-Scale CFD Simulations for Ships.," Engineering Science, 2016.
- [32] W. K. G. S. J. & R. S. Seok, "Application of the Design of Experiments and Computational Fluid Dynamics to Bow Design Improvement," pp. 7(226), 1-13, 2019.
- [33] DNV GL, Navigator Insight, DNV GL, 2018.
- [34] ITTC, "ITTC Quality System Manual Recommended Procedures and guidelines," 2017.

7 CURRICULUM VITAE

Name: Uğur Surname: Demir Address: Sancaktepe/ İSTANBUL / TURKEY Mobile: 0532 612 60 99 E-mail: ugurddemir@gmail.com Date of Birth: 18/12/1982 Civil status: Married Military Service: Completed

EDUCATION

Suleyman Demirel Anatolian High School 1997 – 2001 Turkish Maritime Education Foundation Deck Department (TUDEV) 2001 -2005 Anatolian University Business Administration Faculty 2003-2007 Piri Reis University Gradute School of Science and Engineeering - Maritime Transportation and Management Engineering Still Continue...

PROFESSIONAL EXPERIENCE

HR Business Partner & Crewing Superintendent DFDS Denizcilik ve Taşımacılık.A.Ş June 2018 - continue

Crewing Superintendent "U.N Ro-Ro Isletmeleri A.S". January 2015 – June 2018

Master "U.N Ro-Ro Isletmeleri A.S". July 2012 – January 2015 Chief Officer "U.N Ro-Ro Isletmeleri A.S". May 2010 – July 2012

Deck Officer "U.N Ro-Ro Isletmeleri A.S". May 2005 – May 2010

Deck Cadet Karahasan Denizcilik. July 2004 – November 2004

Deck Cadet "UND Ro-Ro Isletmeleri A.S". May 2004 – July 2004

Deck Cadet "UND Ro-Ro Isletmeleri A.S". November 2002 – March 2003

LANGUAGE Advanced writing and speaking English

8 APPENDIX -A

Table A 1 Dataset of Test Vessel 1

														ISO AN CORRI) 18557,6 SP	ACC TO 18557,6 DISP	ACC TO 18557,6 DISP
Ship	Year	Voya ge	Ports	Round Trip Displace ment	Rou nd Trip Con s	Round trip duration	Round trip av. Cons per hour	Total Dist	Total Av speed	Av speed in m/s	Total av cons/mil e	Av.Cons per engine	Av.cons per engine in kg	Brake Power for one engine	brake power for 2 engine	expected speed in knots	expected speed in m/s	speed loss	speed loss
Vessel 1	DDN +1	34	PEN - TOU - PEN	35745,4	309, 6	144,5	2,142560554	2732	19,552331 6	10,05771 937	0,113323 572	1,071280 277	1071,280277	1008,5589 49	5301,534 298	10603,06 86	20,40879 669	10,49828 502	-4,196548716
Vessel 1	DDN +1	37	PEN - TOU - PEN	34711,4	300	141,6	2,118644068	2732	19,552331 6	10,05771 937	0,109809 663	1,059322 034	1059,322034	997,30083 75	5235,299 155	10470,59 831	20,35027 398	10,46818 094	-3,92104001
Vessel 1	DDN +1	38	PEN - TOU - PEN	37323,1	308, 3	145,8	2,114540466	2732	19,552331 6	10,05771 937	0,112847 731	1,057270 233	1057,270233	995,36916 57	5223,911 569	10447,82 314	20,34013 782	10,46296 69	-3,873160722
Vessel 1	DDN +1	38	PEN - TOU - PEN	36827,9	311, 5	142,9	2,179846046	2732	19,552331 6	10,05771 937	0,114019 034	1,089923 023	1089,923023	1026,1102	5404,338 954	10808,67 791	20,49819 81	10,54427 311	-4,614388566
Vessel 1	DDN +1	39	PEN - TRI - MER	35892,9	290, 8	123,0666 667	2,362946912	2535	19,808687 68	10,18958 894	0,114714 004	1,181473 456	1181,473456	1112,3005 37	5901,142 673	11802,28 535	20,90756 8	10,75485 298	-5,255897395
Vessel 1	DDN +1	40	MER - TRI - MER	36012,8	310, 1	139,9	2,216583274	2694	19,808687 68	10,18958 894	0,115107 647	1,108291 637	1108,291637	1043,4033 68	5505,089 604	11010,17 921	20,58417 833	10,58850 133	-3,767411233
Vessel 1	DDN +1	40	MER - TRI - MER	34840,8	305, 7	133,6	2,288173653	2694	19,808687 68	10,18958 894	0,113474 388	1,144086 826	1144,086826	1077,1028 2	5699,877 306	11399,75 461	20,74603 666	10,67176 126	-4,518207474
Vessel 1	DDN +1	41	MER - TRI - MER	31050	313, 4	138,2	2,267727931	2694	19,808687 68	10,18958 894	0,116332 591	1,133863 965	1133,863965	1067,4784 87	5644,455 808	11288,91 162	20,70055 429	10,64836 512	-4,30841897
Vessel 1	DDN +1	43	MER - TRI - MER	34588,8	319, 5	134,3	2,379002234	2694	19,808687 68	10,18958 894	0,118596 882	1,189501 117	1189,501117	1119,8581 94	5944,067 575	11888,13 515	20,94130 518	10,77220 739	-5,408533485
Vessel 1	DDN +1	43	MER - TRI - PEN	34251	306	126,7	2,415153907	2531	19,982187 1	10,27883 705	0,120900 83	1,207576 953	1207,576953	1136,8757 27	6040,344 936	12080,68 987	21,01609 752	10,81068 056	-4,91961182

Vessel 1	DDN +1	44	PEN - TRI - PEN	34900.2	282	121.2	2,326732673	2372	19,982187	10,27883 705	0,118887	1,163366 337	1163,366337	1095,2535 53		11607,88		10,71508 475	-4,07134159
Vessel 1	DDN +1	46		33318	282 281, 9	121,2	2,320732073	2372	19,982187	10,27883	015	1,152493		1085,0176	159 5745,329 700	832 11490,65	806 20,78300	10,69077	-3,853252448
Vessel 1	DDN +1	47	PEN - TRI - PEN	34141,9	277, 5	122,3	2,304987733	2372	19,982187	705 10,27883 705	857 0,116989 882	868 1,140098 603	1152,493868	46 1073,3480 99	709 5678,275	942 11356,55 134	89 20,72836 181	978 10,66266 931	-3,599776525
Vessel 1	DDN +1	47	PEN - TRI - PEN		282,				19,868240	10,22022	0,118929	1,179347		1110,2993	669 5889,759	11779,51	20,89858	10,75022	-4,930189324
Vessel 1	DDN +1	48	PEN - TRI - PEN	34240,5	278,	119,6	2,358695652	2372	53 19,868240	293 10,22022 202	0,117411	826 1,170168	1179,347826	59 1101,6570	5840 517	89 11681,03	009 20,85949	96 10,73012	-4,752069168
Vessel 1	DDN +1	49	PEN - TRI - PEN	34797 36103,7	287,	119	2,340336134	2372	53 19,868240	293 10,22022	467 0,121121	067 1,147364	1170,168067	56 1080,1883	5840,517 5717,609	4	831 20,76049	593 10,67919	-4,297851184
Vessel 1	DDN +1	50	PEN - TRI - PEN	34124,4	280,	125,2 118,6133 333	2,294728435	2372	53 19,868240	293 10,22022 202	417 0,118296 706	217 1,182834 982	1147,364217	26 1113,5823	827 5908,430	965 11816,86 032	574 20,91331 292	901 10,75780	-4,997163293
Vessel 1	DDN +1	50	PEN - TRI - PEN PEN - TRI - PEN	33818	276,	121,4	2,365669964 2,277594728	2372	53 19,868240 53	293 10,22022 293	796 0,116568 297	1,138797 364	1182,834982	48 1072,1230 45	162 5671,222 205	11342,44 441	292 20,72257 597	817 10,65969 308	-4,122728006
Vessel 1	DDN +1	51	PEN - TRI - PEN	33185,8	269,	121,4	2,217394728	2372	19,896462 76	10,23474 044	0,113785 835	1,098941 368	1098,941368	1034,6005 39	5453,871 254	10907,74 251	20,54066 726	10,56611 924	-3,136239408
Vessel 1	DDN +1	52	PEN - TRI - PEN	30505,2	274,	122,8 123,8833 333	2,197882730	2372	19,896462 76	10,23474 044	0,115682 968	1,107493 61	1107,49361	1042,6520 63	5500,723 662	11001,44 732	20,58048 518	10,58660 158	-3,323645761
Vessel 1	DDN +1	53	PEN - TRI - PEN	34574,8	280,	126	2,223015873	2372	19,896462 76	10,23474 044	0,118086 003	1,111507 937	1111,507937	1046,4313 59	5522,675 419	11045,35 084	20,59902 454	10,59613 822	-3,410655587
Vessel 1	DDN +1	54	PEN - TRI - PEN	34546,7	288,	123,4	2,338735818	2372	19,896462 76	10,23474 044	0,121669 477	1,169367 909	1169,367909	1100,9037 46	5836,218 389	11672,43 678	20,85607 105	10,72836 295	-4,60109813
Vessel 1	DDN +1	55	PEN - TRI - PEN	34708,1	282,	120,2	2,346921797	2372	19,855281 92	10,21355 702	0,118929 174	1,173460 899	1173,460899	1104,7570 99	5858,196 007	11716,39 201	20,87356	10,73736 298	-4,87834826
Vessel 1	DDN +1	57	PEN - TRI - PEN	34652,4	275,	120,2	2,264802632	2372	19,855281 92	10,21355 702	0,116104	1,132401 316	1132,401316	1066,1014 73	5636,512 669	11273,02 534	20,69399 908	10,64499 313	-4,052948679
Vessel 1	DDN +1	58	PEN - TRI - PEN	33791,6	265,	120,7	2,198011599	2372	19,855281 92	10,21355 702	0,111846 543	1,099005	1099,0058	1034,6611 98	5454,224 67	10908,44 934	20,54096 889	10,56627 44	-3,338143271
Vessel 1	DDN +1	58	PEN - TRI - PEN	36058	271,	119,6	2,269230769	2372	19,855281 92	10,21355 702	0,114418 212	1,134615	1134,615385	1068,1859 12	5648,535 177	11297,07 035	20,70391 727	10,65009 504	-4,098911988
Vessel 1	DDN +1	59	PEN - TRI - PEN	34561	268,	122,0333 333	2,20021852	2372	19,855281 92	10,21355 702	0,113195	1,100109 26	1100,10926	1035,7000 53	5460,276 285	10920,55 257	20,54613 077	10,56892 967	-3,362427979
Vessel 1	DDN +1	59	PEN - TRI - PEN	34521,4	280,	122,9	2,27908869	2372	19,584379 2	10,07420 466	0,118086	1,139544 345	1139,544345	1072,8262 92	5675,271 601	11350,54 32	20,72589 85	10,66140 219	-5,507695135
Vessel 1	DDN +1	60	PEN - TRI - PEN	36705,5	282	122,9	2,27900009	2372	19,584379 2	10,07420 466	0,118887 015	1,175	1133,344343	1106,2060 89	5866,453 416	11732,90 683	20,88012 391	10,74073 574	-6,205637087
Vessel 1	DDN +1	60	PEN - TRI - PEN	35053	286, 4	124,1	2,307816277	2372	19,584379 2	10,07420 466	0,120741 99	1,153908 139	1153,908139	1086,3491 14	5752,964 841	11505,92 968	20,78919 082	10,69395 976	-5,795375296

Vessel 1	DDN +1	61	PEN - TRI - PEN	36229	287, 5	126,4	2,274525316	2372	19,584379 2	10,07420 466	0,121205 734	1,137262 658	1137,262658	1070,6781 93	5662,899 744	11325,79 949	20,71573 993	10,65617 662	-5,461358082
Vessel 1	DDN +1	61	PEN - TRI - PEN	34945	274	121,8	2,249589491	2372	19,528857	10,04564 435	0,115514 334	1,124794 745	1124,794745	1058,9402 52	5595,149 011	11190,29 802	20,65971 305	10,62735 639	-5,473722934
Vessel 1	DDN +1	62	PEN - TRI - PEN	36333	277,	121,0	2,29338843	2372	19,528857	10,04564 435	0,116989 882	1,146694 215	1146,694215	1079,5575 51	5713,986 133	11427,97 227	20,75754 463	10,67768 096	-5,91923107
Vessel 1	DDN +1	62	PEN - TRI - PEN	35025	279,	119,7	2,333333333	2372	19,528857 6	10,04564 435	0,117748 735	1,166666 667	1166,666667	1098,3606 56	5821,699 221	11643,39 844	20,84447 63	10,72239 861	-6,311593954
Vessel 1	DDN +1	63	PEN - TRI - PEN	36724	291, 3	123,9	2,351089588	2372	19,528857 6	10,04564 435	0,122807 757	1,175544 794	1175,544794	1106,7189 87	5869,375 376	11738,75 075	20,88244 184	10,74192 808	-6,481925123
Vessel 1	DDN +1	64	PEN - TRI - PEN	35657,2	274, 7	123	2,233333333	2372	19,583277 09	10,07363 773	0,115809 444	1,116666 667	1116,666667	1051,2880 56	5550,847 43	11101,69 486	20,62270 954	10,60832 178	-5,040232205
Vessel 1	DDN +1	64	PEN - TRI - PEN	35923	278, 6	122,3	2,278004906	2372	19,583277 09	10,07363 773	0,117453 626	1,139002 453	1139,002453	1072,3161 27	5672,334 084	11344,66 817	20,72348 85	10,66016 249	-5,502024496
Vessel 1	DDN +1	65	PEN - TRI - PEN	34049	274	142,8	1,918767507	2372	19,583277 09	10,07363 773	0,115514 334	0,959383 753	959,3837535	903,21374 45	4672,833 635	9345,667 269	19,82120 584	10,19602 828	-1,200374748
Vessel 1	DDN +1	66	PEN - TRI - PEN	32361	266, 5	124	2,149193548	2372	19,583277 09	10,07363 773	0,112352 445	1,074596 774	1074,596774	1011,6812 72	5319,863 533	10639,72 707	20,42486 253	10,50654 929	-4,120397097
Vessel 1	DDN +1	66	PEN - TRI - PEN	31872,9	243, 3	127	1,915748031	2372	19,583277 09	10,07363 773	0,102571 669	0,957874 016	957,8740157	901,79239 89	4664,214 461	9328,428 921	19,81261 181	10,19160 752	-1,1575189
Vessel 1	DDN +1	67	PEN - ANC - TRI - PEN	37115	290, 7	122,5	2,373061224	2381	19,584343 18	10,07418 613	0,122091 558	1,186530 612	1186,530612	1117,0616 07	5928,195 9	11856,39 18	20,92885 918	10,76580 516	-6,424220182
Vessel 1	DDN +1	68	PEN - ANC - TRI - PEN	35229,4	263, 8	124,2	2,123993559	2381	19,584343 18	10,07418 613	0,110793 784	1,061996 779	1061,996779	999,81898 2	5250,134 028	10500,26 806	20,36344 557	10,47495 64	-3,825985045
Vessel 1	DDN +1	69	PEN - TRI - PEN	35708	272, 8	122,1	2,234234234	2372	19,584343 18	10,07418 613	0,115008 432	1,117117 117	1117,117117	1051,7121 34	5553,305 34	11106,61 068	20,62477 026	10,60938 182	-5,044551124
Vessel 1	DDN +1	69	PEN - TRI - ANC - PEN	36251	294, 6	141	2,089361702	2381	19,262722 63	9,908744 52	0,123729 525	1,044680 851	1044,680851	983,51686 68	5153,892 898	10307,78 58	20,27732 399	10,43065 546	-5,003625527
Vessel 1	DDN +1	70	PEN - TRI - PEN	36045	278	124,5	2,232931727	2372	19,262722 63	9,908744 52	0,117200 675	1,116465 863	1116,465863	1051,0990 1	5549,751 63	11099,50 326	20,62179 052	10,60784 904	-6,590445608
Vessel 1	DDN +1	70	PEN - TRI - PEN	36574,7	279, 7	122,6	2,281402936	2372	19,262722 63	9,908744 52	0,117917 369	1,140701 468	1140,701468	1073,9156 68	5681,542 629	11363,08 526	20,73103 92	10,66404 657	-7,082696437
Vessel 1	DDN +2	71	PEN-BARI-TRI- PEN	35763,4	269, 63	130,7	2,06296863	2385	19,7	10,13368	0,113052 411	1,031484 315	1031,484315	971,09296 19	5080,225 96	10160,45 192	20,21030 93	10,39618 31	-2,524994991
Vessel 1	DDN +2	73	PEN-BARI-TRI- PEN	37946,8	266, 9	127,3333 333	2,096073298	2385	19,7	10,13368	0,111907 757	1,048036 649	1048,036649	986,67618 97	5172,581 639	10345,16 328	20,29417 278	10,43932 248	-2,927799949
Vessel 1	DDN +2	74	PEN-BARI-TRI- PEN	38121,2	283, 3	133,7666 667	2,117866932	2395,3	19,7	10,13368	0,118273 285	1,058933 466	1058,933466	996,93501 97	5233,143 103	10466,28 621	20,34835 656	10,46719 461	-3,186284635
Vessel 1	DDN +2	75	PEN-BARI-TRI- PEN	37754,2	280, 84	129,5666 667	2,167532802	2385,1	19,7	10,13368	0,117747 684	1,083766 401	1083,766401	1020,3140 35	5370,449 835	10740,89 967	20,46891 661	10,52921 07	-3,756508569

Vessel 1	DDN +2	75	PEN-BARI-TRI- PEN	27024.0	288, 74	120.2	0.017((510)	2260.6	19,247543	9,900936 138		1,108832	1109 922575	1043,9126	5508,048 402	11016,09 68	20,58667 95	10,58978 794	-6,504868674
Vessel 1	DDN +2	76	PEN-BARI-TRI- PEN	37084,2 36957,6	275, 7	130,2 128,6666 667	2,217665131	2369,6 2387,5	04 19,247543 04	9,900936 138	789 0,115476 44	565 1,071373 057	1108,832565	26 1008,6462 97	5302,047 303	10604,09 461	20,40924 71	10,49851 671	-5,692047628
Vessel 1	DDN +2	77	PEN-BARI-TRI- MER	35288,4	283, 88	134,5333 333	2,142740114	2554,5	19,247543 04	9,900936 138	0,111129 38	1,055054 509	1055,054509	993,28316 81	5211,606 66	10423,21 332	20,32916 029	10,45732 005	-5,320521035
Vessel 1	DDN +2	78	MER-TRI-PEN	36897,1	294, 45	133,6	2,203967066	2529,7	19,247543 04	9,900936 138	0,116397 201	1,101983 533	1101,983533	1037,4645 91	5470,550 753	10941,10 151	20,55488 155	10,57343 107	-6,360233751
Vessel 1	DDN +2	79	PEN-AMB-TRI- PEN	37431	287,	130,2166 667	2,208626648	2373,9	19,280743 25	9,918014 33	0,121150 849	1,104313 324	1104,313324	1039,6579 77	5483,314 484	10966,62 897	20,56572 958	10,57901 13	-6,248192262
Vessel 1	DDN +2	79	PEN-AMB-TRI- PEN	37505,2	280, 8	129,35	2,170854271	2375,7	19,280743 25	9,918014 33	0,118196 742	1,085427 136	1085,427136	1021,8775 38	5379,597 304	10759,19 461	20,47683 854	10,53328 574	-5,841210692
Vessel 1	DDN +2	80	PEN-AMB-TRI- PEN	36963,1	293, 11	132,1333 333	2,218289606	2374,3	19,280743 25	9,918014 33	0,123451 122	1,109144 803	1109,144803	1044,2065 83	5509,756 084	11019,51 217	20,58812 246	10,59053 019	-6,350162354
Vessel 1	DDN +2	81	PEN-AMB-TRI- PEN	38719,4	287, 2	128,9833 333	2,226644269	2377,5	19,280743 25	9,918014 33	0,120799 159	1,113322 135	1113,322135	1048,1393 4	5532,587 66	11065,17 532	20,60737 179	10,60043 205	-6,437640591
Vessel 1	DDN +2	82	PEN-AMB-TRI- PEN	37776,1	290, 4	127,3333 333	2,280628272	2346,957 143	19,342288 23	9,949673 067	0,123734 684	1,140314 136	1140,314136	1073,5510 13	5679,443 721	11358,88 744	20,72931 925	10,66316 182	-6,691155632
Vessel 1	DDN +2	1	PEN-AMB-TRI- PEN	37921,4	290, 82	129,9333 333	2,238224731	2327,514 286	19,342288 23	9,949673 067	0,124948 75	1,119112 365	1119,112365	1053,5905 64	5564,188 642	11128,37 728	20,63388 396	10,61406 991	-6,25958605
Vessel 1	DDN +2	2	PEN-AMB-TRI- PEN	37012,9	283, 36	127,35	2,225049077	2308,071 429	19,342288 23	9,949673 067	0,122769 164	1,112524 539	1112,524539	1047,3884 42	5528,230 479	11056,46 096	20,60370 438	10,59854 553	-6,122278426
Vessel 1	DDN +2	3	PEN-AMB-TRI- PEN	34885,2	281, 23	125,2	2,246246006	2288,628 571	19,342288 23	9,949673 067	0,122881 451	1,123123 003	1123,123003	1057,3663 87	5586,045 895	11172,09 179	20,65213 352	10,62345 748	-6,342421155
Vessel 1	DDN +2	4	PEN-AMB-TRI- PEN	36349,9	281, 3	128,4	2,190809969	2269,185 714	19,390498 55	9,974472 455	0,123965 173	1,095404 984	1095,404984	1031,2712 03	5434,463 507	10868,92 701	20,52407 313	10,55758 322	-5,52314626
Vessel 1	DDN +2	4	PEN-AMB-TRI- PEN	37994,9	279, 9	129,5	2,161389961	2249,742 857	19,390498 55	9,974472 455	0,124414 219	1,080694 981	1080,694981	1017,4224 41	5353,520 598	10707,04 12	20,45421 982	10,52165 067	-5,200497859
Vessel 1	DDN +2	5	PEN-AMB-TRI- PEN	36651,8	283, 44	128,4333 333	2,206903711	2230,3	19,390498 55	9,974472 455	0,127086 042	1,103451 856	1103,451856	1038,8469 46	5478,595 95	10957,19 19	20,56172 219	10,57694 99	-5,696135902
Vessel 1	DDN +2	5	PEN-AMB-TRI- PEN	37449,5	291, 02	129,2666 667	2,251315111	2210,857 143	19,390498 55	9,974472 455	0,131632 205	1,125657 555	1125,657555	1059,7525 46	5599,845 514	11199,69 103	20,66361 868	10,62936 545	-6,161167347
Vessel 1	DDN +2	6	PEN-AMB-TRI- PEN	36631,8	285, 23	128,6666 667	2,216813472	2191,414 286	19,390498 55	9,974472 455	0,130157 954	1,108406 736	1108,406736	1043,5117 28	5505,719 217	11011,43 843	20,58471 067	10,58877 517	-5,80145205
Vessel 1	DDN +2	6	PEN-AMB-TRI- PEN	36912,7	284, 79	129,1333 333	2,205394941	2171,971 429	19,506925 88	10,03436 267	0,131120 509	1,102697 47	1102,69747	1038,1367 28	5474,462 97	10948,92 594	20,55820 927	10,57514 285	-5,113691483
Vessel 1	DDN +2	7	PEN-AMB-TRI- PEN	37132,6	291, 36	130,1	2,239508071	2152,528 571	19,506925 88	10,03436 267	0,135357 088	1,119754 035	1119,754035	1054,1946 66	5567,687 352	11135,37 47	20,63680 999	10,61557 506	-5,475090955
Vessel 1	DDN +2	10	PEN-AMB-TRI- PEN	36853,4	282, 46	128,5833 333	2,196707712	2133,085 714	19,506925 88	10,03436 267	0,132418 495	1,098353 856	1098,353856	1034,0474 24	5450,648 358	10901,29 672	20,53791 569	10,56470 383	-5,019934016

Vessel 1	DDN +2	11	PEN-AMB-TRI- PEN	37720,2	313, 13	134,3166 667	2,331281797	2439,3	19,506925 88	10,03436 267	0,128368 794	1,165640 898	1165,640898	1097,3949 44	5816,182 67	11632,36 534	20,84006	10,72012 856	-6,396993176
Vessel 1	DDN +2	12	PEN-AMB-TRI- PAT-PEN	37776,2	295, 41	135,2166 667	2,184715888	2439,3	19,596670 61	10,08052 736	0,120925 949	1,092357 944	1092,357944	1028,4025 61	5417,725 285	10835,45 057	20,50971 385	10,55019 68	-4,451760019
Vessel 1	DDN +2	13	PEN-AMB-TRI- PAT-PEN	37199,3	304, 25	132,1333 333	2,302598385	2444,7	19,596670 61	10,08052 736	0,124452	1,151299 193	1151,299193	1083,8929 17	5738,877 611	11477,75 522	20,77777 844	10,68808 923	-5,684476001
Vessel 1	DDN +2	14	PEN-AMB-TRI- PAT-PEN	36310,9	276, 88	128,1	2,161436378	2381,4	19,596670 61	10,08052 736	0,116267 742	1,080718 189	1080,718189	1017,4442	5353,648 575	10707,29 715	20,45433 109	10,52170 791	-4,193050748
Vessel 1	DDN +2	15	PEN-AMB-TRI- PAT-PEN	37734,8	291, 3	131,1333 333	2,221403152	2378,5	19,596670 61	10,08052 736	0,122472 146	1,110701 576	1110,701576	1045,6722	5518,268 019	11036,53 604	20,59530 819	10,59422 653	-4,848859607
Vessel 1	DDN +2	18	PEN-AMB-TRI- PAT-PEN	33870,2	264, 95	125,6333 333	2,108914832	2383,8	19,825512 97	10,19824 387	0,111146 069	1,054457 416	1054,457416	992,72103 31	5208,289 391	10416,57 878	20,32619 643	10,45579 544	-2,463242217
Vessel 1	DDN +2	19	PEN-AMB-TRI- PAT-PEN	29750,8	257, 9	126,8	2,033911672	2408,6	19,825512 97	10,19824 387	0,107074 649	1,016955 836	1016,955836	957,41509 62	4998,802 409	9997,604 817	20,13509 833	10,35749 458	-1,537540819
Vessel 1	DDN +2	20	PEN-AMB-TRI- PEN	37907,4	270, 95	145,2166 667	1,865832664	2377,1	19,825512 97	10,19824 387	0,113983 425	0,932916 332	932,9163319	878,29593 78	4521,202 768	9042,405 537	19,66765 184	10,11704 011	0,802643531
Vessel 1	DDN +2	21	PEN-AMB-TRI- PEN	35266,1	277, 56	125,4	2,213397129	2370,7	19,825512 97	10,19824 387	0,117079 344	1,106698 565	1106,698565	1041,9035 67	5496,373 025	10992,74 605	20,57680 207	10,58470 698	-3,651146032
Vessel 1	DDN +2	22	PEN-AMB-TRI- PEN	36764	287, 26	125,6	2,287101911	2372,8	19,721531 93	10,14475 603	0,121063 722	1,143550 955	1143,550955	1076,5983 23	5696,976 314	11393,95 263	20,74366 691	10,67054 226	-4,9274556
Vessel 1	DDN +2	22	PEN-TRI-PEN	36127,7	283, 97	125,45	2,263611	2385,4	19,721531 93	10,14475 603	0,119045 024	1,131805 5	1131,8055	1065,5405 41	5633,276 024	11266,55 205	20,69132 534	10,64361 775	-4,686956442
Vessel 1	DDN +2	23	PEN-TRI-PAT- PEN	35873,2	297, 45	128,6	2,312986003	2429,1	19,721531 93	10,14475 603	0,122452 76	1,156493 002	1156,493002	1088,7826 38	5766,911 324	11533,82 265	20,80046 17	10,69975 75	-5,187047178
Vessel 1	DDN +2	24	PEN-TRI-PAT- PEN	36633,8	288, 87	130,3333 333	2,216393862	2436,6	19,557224 52	10,06023 63	0,118554 543	1,108196 931	1108,196931	1043,3142 07	5504,571 529	11009,14 306	20,58374 024	10,58827 598	-4,987022296
Vessel 1	DDN +2	24	PEN-TRI-PAT- PEN	35743,6	285, 02	131,4	2,169101979	2438,9	19,557224 52	10,06023 63	0,116864 16	1,084550 989	1084,550989	1021,0526 88	5374,771 964	10749,54 393	20,47266 136	10,53113 7	-4,471508688
Vessel 1	DDN +2	25	PEN-TRI-PAT- PEN	36413,6	290, 36	129,4666 667	2,242739444	2437,8	19,557224 52	10,06023 63	0,119107 392	1,121369 722	1121,369722	1055,7157 57	5576,493 985	11152,98 797	20,64416 702	10,61935 951	-5,265131271
Vessel 1	DDN +2	25	PEN-TRI-PAT- PEN	37261,8	294, 17	130,5333 333	2,253600613	2440,4	19,557224 52	10,06023 63	0,120541 714	1,126800 306	1126,800306	1060,8283 92	5606,063 983	11212,12 797	20,66878 494	10,63202 298	-5,377966938
Vessel 1	DDN +2	27	PEN-TRI-PAT- PEN	34268,5	304, 04	134,8666 667	2,254374691	2437,2	19,557224 52	10,06023 63	0,124749 713	1,127187 346	1127,187346	1061,1927 7	5608,169 647	11216,33 929	20,67053 302	10,63292 219	-5,385968976
Vessel 1	DDN +2	28	PEN-TRI-PAT- PEN	37606,3	296, 43	132,1	2,243981832	2436	19,741473 15	10,15501 379	0,121687 192	1,121990 916	1121,990916	1056,3005 81	5579,878 823	11159,75 765	20,64699 161	10,62081 248	-4,385716219
Vessel 1	DDN +2	29	PEN-TRI-PAT- PEN	35470	270, 18	158,6	1,703530895	2434,9	19,741473 15	10,15501 379	0,110961 436	0,851765 448	851,7654477	801,89627 63	4049,325 836	8098,651 671	19,15455 315	9,853102 139	3,064127854
Vessel 1	DDN +2	30	PEN- MARSEILLES- PEN	33967,4	324, 41	147,9	2,193441515	2721,8	19,531893 37	10,04720 595	0,119189 507	1,096720 757	1096,720757	1032,5099 4	5441,686 827	10883,37 365	20,53025 617	10,56076 377	-4,86288525

	Unit	Pre-Period	Post- Period	SPEED CORRECTION TO POST-PERIOD	DISPLACEMENT CORRECTION TO POST-PERIOD
Sample Size	pcs	46	44	44	44
disp total	tons	1605593,50	1609669,60	1609669,60	1609669,60
disp avr.	tons	34904,20652	36583,4	36583,4	34904,20652
fuel total	tons	13071,80	12591,95	12954,96	12437,77
fuel avr	tons	284,1695652	286,1806818	294,4308934	282,676539
mile total	miles	112189,00	104371,26	104371,26	104371,26
hours total	hrs	5815,596667	5769,75	5297,475044	5297,475044
speed avr	knots	19,70	19,52	19,70	19,70
cons per Nm	tons	0,116572129	0,120816085	0,124123822	0,119168515

Table A 2 Speed and Displacement Corrections calculation of Test Vessel 1

	Speed loss	
Apolycic 1	Pre-Period	-4,60344824
Analysis I	Post-Period	-4,760340417
	Performance	-0,16%

	Fuel Consumption changes for the same period of anaylsis 1	
Analysis 2	Pre-Period	0,116572129
Analysis 2	Speed and Displacement Corrected Post- period	0,119168515
	Performance	2,23%

Table A 3 Dataset of Test Vessel 2

	_																		
																ND LCV ECTED	ACC TO 18	3557,6 DISP	ACC TO 18557,6 DISP
Ship	Year	Voya ge	Ports	Round Trip Displacem ent	Roun d Trip Cons	Round trip duration	Round trip av. Cons per hour	Total Dist	Total Av speed	Av speed in m/s	Total av cons/mile	Av.Cons per engine	Av.cons per engine in kg	LCV corrected	Brake Power for one engine	brake power for 2 engine	expected speed in knots	expected speed in m/s	speed loss
Vessel 2	DDN+ 1	16	PEN - TOU - PEN	33575,6	306,9	147,3	2,0835030 55	2732	19,7508036 6	10,1598134	0,1123352 86	1,0417515 27	1041,7515 27	980,759049 3	5137,56454 5	10275,129 09	20,262553 11	10,423057 32	2,52559217 6
Vessel 2	DDN+ 1	17	PEN - TOU - PEN	35735,3	316,4	138,8	2,2795389 05	2732	19,7508036 6	10,1598134	0,1158125 92	1,1397694 52	1139,7694 52	1073,03822	5676,49173 8	11352,983 48	20,726899 16	10,661916 93	4,70931755
Vessel 2	DDN+ 1	18	PEN - TOU - PEN	35084	304	143,6	2,1169916 43	2732	19,8456707 1	10,20861301	0,1112737 92	1,0584958 22	1058,4958 22	996,522998 4	5230,71444 8	10461,428 9	20,346195 76	10,466083 1	2,46004243
Vessel 2	DDN+ 1	19	PEN - TOU - PEN	36135,1	310,1	143,7	2,1579679 89	2732	19,8456707 1	10,20861301	0,1135065 89	1,0789839 94	1078,9839 94	1015,81162 9	5344,08335 4	10688,166 71	20,446006 87	10,517425 93	2,93620246
Vessel 2	DDN+ 1	20	PEN - TOU - PEN	36413,4	311,6	143,4	2,1729428 17	2732	19,8456707 1	10,20861301	0,1140556 37	1,0864714 09	1086,4714 09	1022,86067	5385,34699 5	10770,693 99	20,481811 02	10,535843 59	3,10587919 3
Vessel 2	DDN+ 1	21	PEN - TOU - PEN	35741,5	308,1	142,4	2,1636235 96	2732	19,8456707 1	10,20861301	0,1127745 24	1,0818117 98	1081,8117 98	1018,47387	5359,67807 8	10719,356 16	20,459570 68	10,524403 16	3,00055159 3
Vessel 2	DDN+ 1	22	PEN - TOU - PEN	35380,9	307	144,6	2,1230982 02	2732	19,8236935 8	10,19730798	0,1123718 89	1,0615491 01	1061,5491 01	999,397514 3	5247,65187 6	10495,303 75	20,361244	10,473824 07	2,64006816 9
Vessel 2	DDN+ 1	23	PEN - TOU - PEN	34938,1	305	142	2,1478873 24	2732	19,8236935 8	10,19730798	0,1116398 24	1,0739436 62	1073,9436 62	1011,06639 8	5316,25537 5	10632,510 75	20,421704	10,504924 7	2,92830961
Vessel 2	DDN+ 1	24	PEN - TOU - PEN	35324,5	310,1	141,5	2,1915194 35	2732	19,8236935 8	10,19730798	0,1135065 89	1,0957597 17	1095,7597 17	1031,60516 7	5436,41118 9	10872,822 38	20,525741 12	10,558441 23	3,42032737 9
Vessel 2	DDN+ 1	25	PEN - TOU - PEN	33998,5	300,5	146,3	2,0539986 33	2732	19,8236935 8	10,19730798	0,1099926 79	1,0269993 16	1026,9993 16	966,870550 9	5055,12612 2	10110,252 24	20,187253 86	10,384323 39	- 1,80093977 1
Vessel 2	DDN+ 1	26	PEN - TOU - PEN	34362,9	301,2	148,6	2,0269179	2732	19,8236935 8	10,19730798	0,1102489 02	1,0134589 5	1013,4589 5	954,122946 1	4979,15414 7	9958,3082 93	20,116765 76	10,348064 31	- 1,45685534 9
Vessel 2	DDN+ 1	27	PEN - TOU - PEN	32514,1		147	2,0034013	2732	20,0432494	10,31024753	0,1077964 86	1,0017006		943,053099 5	4912,94382 7	9825,8876	20,054451	10,316010 1	0,05586037 9

I											l	l	I			I	l	l	
Vessel 2	DDN+ 1	28	PEN - TOU - PEN	33915,1	303,8	144,4	2,1038781 16	2732	20,0432494 8	10,31024753	0,1112005 86	1,0519390 58	1051,9390 58	990,350120 3	5194,29191	10388,583 82	20,313669 36	10,449351 52	1,33122123 1
Vessel 2	DDN+ 1	29	PEN - TOU - PEN	35180,6	315,4	145,5	2,1676975 94	2732	20,0432494 8	10,31024753	0,1154465 59	1,0838487 97	1083,8487 97	1020,39160 8	5370,90378 5	10741,807 57	20,469310 06	10,529413 09	2,08146036 2
Vessel 2	DDN+ 1	30	PEN - TRI - PEN	30740,9	262,8	117,2	2,2423208 19	2372	20,0432494 8	10,31024753	0,1107925 8	1,1211604 1	1121,1604 1	1055,51869 9	5575,35332	11150,706 64	20,643214 77	10,618869 68	2,90635587 1
Vessel 2	DDN+ 1	31	PEN - TRI - PEN	35178	272,5	119,91666 67	2,2724113 97	2372	19,8299264 5	10,20051417	0,1148819 56	1,1362056 98	1136,2056 98	1069,68311 7	5657,16583 7	11314,331 67	20,711024 28	10,653750 89	4,25424553 9
Vessel 2	DDN+ 1	32	PEN - TOU - PEN	36732	311,2	145,9	2,1329677 86	2732	19,8299264 5	10,20051417	0,1139092 24	1,0664838 93	1066,4838 93	1004,04338 4	5274,99515 8	10549,990 32	20,385436 04	10,486268 3	2,72503167 7
Vessel 2	DDN+ 1	33	PEN - TOU - PEN	35727,3	315,5	138,8	2,2730547 55	2732	19,8299264 5	10,20051417	0,1154831 63	1,1365273 78	1136,5273 78	1069,98596 2	5658,91110 4	11317,822 21	20,712460 12	10,654489 48	4,26088288
Vessel 2	DDN+ 1	34	PEN - TOU - PEN	35997,3	324,7	142,6	2,2769985 97	2732	19,8299264 5	10,20051417	0,1188506 59	1,1384992 99	1138,4992 99	1071,84243 1	5669,60613 9	11339,212 28	20,721249 32	10,659010 65	4,30149195
Vessel 2	DDN+ 1	35	PEN - TOU - PEN	35156,1	309,5	143,2	2,1613128 49	2732	19,6659588 5	10,11616923	0,1132869 69	1,0806564 25	1080,6564 25	1017,38614 2	5353,30798 6	10706,615 97	20,454034 95	10,521555 58	3,85291265 4
Vessel 2	DDN+ 1	36	PEN - TOU - PEN	35907,6	315,2	143,8	2,1919332 41	2732	19,6659588 5	10,11616923	0,1153733 53	1,0959666 2	1095,9666 2	1031,79995 6	5437,54710 9	10875,094 22	20,526713 65	10,558941 5	4,19333954 5
Vessel 2	DDN+ 1	37	PEN - TOU - PEN	36268	311,5	142,6	2,1844319 78	2732	19,6659588 5	10,11616923	0,1140190 34	1,0922159 89	1092,2159 89	1028,26891 7	5416,94512 5	10833,890 25	20,509043 49	10,549851 97	4,11079455 8
Vessel 2	DDN+ 1	38	PEN - TOU - PEN	36072	335,6	142	2,3633802 82	2732	19,6659588 5	10,11616923	0,1228404 1	1,1816901 41	1181,6901 41	1112,50453 5	5902,30266 4	11804,605 33	20,908482 93	10,755323 62	5,94267927 1
Vessel 2	DDN+ 1	39	PEN - TOU - PEN	36098	324,2	166,1	1,9518362 43	2732	19,6659588 5	10,11616923	0,1186676 43	0,9759181 22	975,91812 16	918,780058 3	4766,99124	9533,9824 8	19,914069 59	10,243797 4	1,24590678
Vessel 2	DDN+ 1	40	PEN - TRI - PEN	36200	277,4	120,5	2,3020746 89	2372	19,7823682 9	10,17605025	0,1169477 23	1,1510373 44	1151,0373 44	1083,64639 9	5737,46313 8	11474,926 28	20,776630 99	10,687498 98	- 4,78548568 5
Vessel 2	DDN+ 1	41	PEN - TRI - PEN	34832	268,7	120,4	2,2317275 75	2372	19,7823682 9	10,17605025	0,1132799 33	1,1158637 87	1115,8637 87	1050,53218 4	5546,46566 7	11092,931 33	20,619033 57	10,606430 87	4,05773275
Vessel 2	DDN+ 1	42	PEN - TOU - PEN	30692	303,6	141,9	2,1395348 84	2732	19,7823682 9	10,17605025	0,1111273 79	1,0697674 42	1069,7674 42	1007,13468 8	5293,16750 8	10586,335 02	20,401444 61	10,494503 1	3,03447292 9
Vessel 2	DDN+ 1	43	PEN - TOU - PEN	32686	307,9	142,1	2,1667839 55	2732	19,7823682 9	10,17605025	0,1127013 18	1,0833919 77	1083,3919 77	1019,96153 4	5368,38687 2	10736,773 74	20,467128 17	10,528290 73	- 3,34565684 2

	1											1						1	
Vessel 2	DDN+ 1	44	PEN - TOU - PEN	31497	296,8	145,6	2,0384615 38	2732	19,8650940 3	10,21860437	0,1086383 6	1,0192307 69	1019,2307 69	959,556836 6	5011,57430 4	10023,148 61	20,146976 39	10,363604 66	1,39912982 4
Vessel 2	DDN+ 1	45	PEN - TOU - PEN	31610	302,3	144,6	2,0905947 44	2732	19,8650940 3	10,21860437	0,1106515 37	1,0452973 72	1045,2973 72	984,097291 7	5157,32770 6	10314,655 41	20,280425 21	10,432250 73	2,04794115
Vessel 2	DDN+ 1	46	PEN - TOU - PEN	33365	307,2	148,8	2,0645161 29	2732	19,8650940 3	10,21860437	0,1124450 95	1,0322580 65	1032,2580 65	971,821409 7	5084,55292 3	10169,105 85	20,214272 31	10,398221 68	1,72738484 9
Vessel 2	DDN+ 1	47	PEN - ANC - TRI - PEN	37060	261,2	117,4	2,2248722 32	2381	19,8650940 3	10,21860437	0,1097018 06	1,1124361 16	1112,4361 16	1047,30519 6	5527,74737 2	11055,494 74	20,603297 58	10,598336 27	3,58293879 4
Vessel 2	DDN+ 1	2	PEN - TRI - PEN	34364	292,3	132,8	2,2010542 17	2372	19,5128227 3	10,03739601	0,1232293 42	1,1005271 08	1100,5271 08	1036,09343 7	5462,56735	10925,134 7	20,548083 5	10,569934 15	5,03823514 9
Vessel 2	DDN+ 1	3	PEN - TRI - PEN	36386,6	289,9	145,5	1,9924398 63	2372	19,5128227 3	10,03739601	0,1222175 38	0,9962199 31	996,21993 13	937,893237 4	4882,00659 3	9764,0131 86	20,025046 98	10,300884 17	2,55791784 2
Vessel 2	DDN+ 1	4	PEN - ANC - TRI - PEN	36789	280,2	117,3	2,3887468 03	2381	19,5128227 3	10,03739601	0,1176816 46	1,1943734 02	1194,3734 02	1124,44521 6	5970,07015 1	11940,140 3	20,961623 83	10,782659 3	- 6,91168349 4
Vessel 2	DDN+ 1	5	PEN - ANC - TRI - MER	35319	305,8	127,7	2,3946750 2	2544	19,5128227 3	10,03739601	0,1202044 03	1,1973375 1	1197,3375 1	1127,23578 2	5985,87057 6	11971,741 15	20,973927 24	10,788988 17	6,96628958
Vessel 2	DDN+ 1	6	MER - TRI - PEN	36665	310,1	126,2	2,4572107 77	2531	19,8350782 4	10,20316425	0,1225207 43	1,2286053 88	1228,6053 88	1156,67298 8	6151,69277 7	12303,385 55	21,101124 73	10,854418 56	- 5,99990051 7
Vessel 2	DDN+ 1	7	PEN - ANC - TRI - PEN	37026	311,7	124,9	2,4955964 77	2381	19,8350782 4	10,20316425	0,1309113 82	1,2477982 39	1247,7982 39	1174,74213 6	6252,70520 7	12505,410 41	21,176938 67	10,893417 25	- 6,33642309 9
Vessel 2	DDN+ 1	8	PEN - TRI - MER	35732	293,9	129,13333 33	2,2759421 79	2535	19,8350782 4	10,20316425	0,1159368 84	1,1379710 89	1137,9710 89	1071,34514 7	5666,74191 7	11333,483 83	20,718897 13	10,657800 68	4,26576222
Vessel 2	DDN+ 1	9	MER - TRI - MER	32380	298,7	137	2,1802919 71	2694	19,8350782 4	10,20316425	0,1108760 21	1,0901459 85	1090,1459 85	1026,32010 8	5405,56511 5	10811,130 23	20,499254 11	10,544816 31	3,24000017 9
Vessel 2	DDN+ 1	10	MER - TRI - MER	33848	320,3	132,2	2,4228441 75	2694	19,9618583 7	10,26837995	0,1188938 38	1,2114220 88	1211,4220 88	1140,49573 6	6060,75804 4	12121,516 09	21,031802 05	10,818758 98	- 5,08726583 9
Vessel 2	DDN+ 1	11	MER - TRI - MER	32247,5	310,8	136,8	2,2719298 25	2694	19,9618583 7	10,26837995	0,1153674 83	1,1359649 12	1135,9649 12	1069,45642 8	5655,85934 6	11311,718 69	20,709949 13	10,653197 83	3,61222885 9
Vessel 2	DDN+ 1	12	MER - TRI - PEN	36128,2	317,9	130,5	2,4360153 26	2531	19,9618583 7	10,26837995	0,1256025 29	1,2180076 63	1218,0076 63	1146,69573 9	6095,66485 2	12191,329 7	21,058534 94	10,832510 37	5,20775339 7
Vessel 2	DDN+ 1	13	PEN - TRI - PEN	33118,5	279,4	119,3	2,3419949 71	2372	19,9618583 7	10,26837995	0,1177908 94	1,1709974 85	1170,9974 85	1102,43791 4	5844,97172 4	11689,943 45	20,863047 38	10,731951 57	4,31954639

1	1	1									I	1	I	1	1	I	I	ı	
Vessel 2	DDN+ 1	14	PEN - TRI - PEN	32388,9	270	119,8	2,2537562 6	2372	19,5188578 5		0,1138279 93	1,1268781 3	1126,8781 3	1060,90165 9	5606,48739 8	11212,974 8	20,669136 51	10,632203 82	-5,5651994
Vessel 2	DDN+ 1	15	PEN - TRI - PEN	32281,2	270,5	125,2	2,1605431 31	2372	19,5188578 5	10,04050048	0,1140387 86	1,0802715 65	1080,2715 65	1017,02381 6	5351,18561 2	10702,371 22	20,452189 1	10,520606 07	4,56347849 4
Vessel 2	DDN+ 1	16	PEN - ANC - TRI - PEN	37687	286,9	118,6	2,4190556 49	2381	19,5188578 5		0,1204955 9	1,2095278 25	1209,5278 25	1138,71237 8	6050,70469 9	12101,409 4	21,024074 28	10,814783 81	- 7,15948969 1
Vessel 2	DDN+ 2	1	PEN-AMB-TRI-PEN	36104,1	290,7	133,9	2,1710231 52	2414,1	19,2584593 2	9,906551476	0,1204175 47	1,0855115 76	1085,5115 76	1021,95703 4	5380,06229	10760,124 58	20,477240 87	10,533492 7	- 5,95188360 9
Vessel 2	DDN+ 2	2	PEN-AMB-TRI-PEN	37055,7	275,4	130,13333 33	2,1162909 84	2387,6	19,2584593 2	9,906551476	0,1153459 54	1,0581454 92	1058,1454 92	996,193179 6	5228,77011 5	10457,540 23	20,344465 14	10,465192 87	- 5,33808980 9
Vessel 2	DDN+ 2	3	PEN-AMB-TRI-PEN	38917,8	298,3 5	130,41666 67	2,2876677 32	2382,7	19,2882411 1	9,921871229	0,1252150 92	1,1438338 66	1143,8338 66	1076,86467	5698,50793 6	11397,015 87	20,744918 2	10,671185 92	7,02185024
Vessel 2	DDN+ 2	4	PEN-AMB-TRI-PEN	37093,9	291,0 9	134,25	2,1682681 56	2382,7	19,2882411 1	9,921871229	0,1221681 29	1,0841340 78	1084,1340 78	1020,66018 6	5372,47541 3	10744,950 83	20,470671 97	10,530113 66	5,77621905 5
Vessel 2	DDN+ 2	5	PEN-AMB-TRI-PEN	36990,3	276,9 2	130,76666 67	2,1176650 52	2384,6	19,2882411 1	9,921871229	0,1161284 91	1,0588325 26	1058,8325 26	996,839989 5	5232,58297 5	10465,165 95	20,347858 3	10,466938 31	-5,2075121
Vessel 2	DDN+ 2	6	PEN-AMB-TRI-MER	36959,4	291,0 7	164,33333 33	1,7712170 39	2547,6	19,2882411 1	9,921871229	0,1142526	0,8856085 19	885,60851 93	833,757903 4	4247,39399 9	8494,7879 97	19,376848 88	9,9674510 64	0,45728677 4
Vessel 2	DDN+ 2	7	MER-TRI-MER	37325	337,6 4	135,31666 67	2,4951841 36	2694,7	19,3877231 1	9,973044766	0,1252978 07	1,2475920 68	1247,5920 68	1174,54803 6	6251,62324 9	12503,246 5	21,176133 13	10,893002 88	8,44540412 5
Vessel 2	DDN+ 2	8	MER-TRI-PEN	35706,4	316,9 8	127,55	2,4851430 81	2690,9	19,3877231 1	9,973044766	0,1177970 2	1,2425715 41	1242,5715 41	1169,82145	6225,2552	12450,510 4	21,156458 2	10,882882 1	8,36026087 3
Vessel 2	DDN+ 2	9	PEN-BARI-TRI-MER	37662	299,1 6	150,08333 33	1,9932926 15	2539,5	19,3877231 1	9,973044766	0,1178027 17	0,9966463 08	996,64630 76	938,294650 3	4884,41508 2	9768,8301 65	20,027342 87	10,302065 17	3,19373250 8
Vessel 2	DDN+ 2	10	MER-TRI-MER	36860,3	342,8 4	137,58333 33	2,4918715 93	2550,4	19,3877231 1	9,973044766	0,1344259 72	1,2459357 96	1245,9357 96	1172,98873 6	6242,92887 7	12485,857 75	21,169654 87	10,889670 47	8,41738695 2
Vessel 2	DDN+ 2	11	MER-TRI-MER	33896,7	314,6 4	138,18333 33	2,2769750 33	2695,4	19,4482504 4	10,00418002	0,1167322	1,1384875 17	1138,4875 17	1071,83133 9	5669,54225 5	11339,084 51	20,721196 87	10,658983 67	6,14320902 9
Vessel 2	DDN+ 2	12	MER-TRI-PEN	37405,9	359,0 5	159,95	2,2447639 89	2697,1	19,4482504 4	10,00418002	0,1331244 67	1,1223819 94	1122,3819 94	1056,66876 3	5582,00946 3	11164,018 93	20,648768 71	10,621726 62	5,81399448 6
Vessel 2	DDN+ 2	13	PEN-AMB-TRI-PEN	37399,4	274,7 4	131,71666 67	2,0858408 2	2535	19,4482504 4	10,00418002	0,1083786 98	1,0429204 1	1042,9204 1	981,859496	5144,08165 8	10288,163 32	20,268454 21	10,426092 85	- 4,04670119 1

Vassal	DDN												1			l	I		.
Vessel 2	DDN+ 2	14	PEN-AMB-TRI-PEN	36853,1	281,2 6	127,26666 67	2,2100052 38	2378,1	19,4482504 4	10,00418002	0,1182708 89	1,1050026 19	1105,0026 19	1040,30691 5	5487,08912	10974,178 24	20,568932 84	10,580659 05	5,44842270 9
Vessel 2	DDN+ 2	15	PEN-AMB-TRI-MER	37276,6	314,5 8	134,91666 67	2,3316615 19	2380	19,4482504 4	10,00418002	0,1321764 71	1,1658307 6	1165,8307 6	1097,57368 9	5817,20386 6	11634,407 73	20,840880 53	10,720548 95	6,68220372 6
Vessel 2	DDN+ 2	16	MER-TRI-MER	35008,4	326,2 9	137,68333 33	2,3698583 71	2548,8	19,8210769 2	10,19596197	0,1280171 06	1,1849291 85	1184,9291 85	1115,55394	5919,63349 1	11839,266 98	20,922131	10,762344 19	5,26262872 8
Vessel 2	DDN+ 2	17	MER-TRI-MER	35137,3	321,0 6	141,9	2,2625792 81	2709,1	19,8210769 2	10,19596197	0,1185116 83	1,1312896 41	1131,2896 41	1065,05488 4	5630,47326 6	11260,946 53	20,689008 78	10,642426 12	4,19513505
Vessel 2	DDN+ 2	18	MER-TRI-MER	34435,4	311,9	137,95	2,2609641 17	2697,6	19,8210769 2	10,19596197	0,1156212 93	1,1304820 59	1130,4820 59	1064,29458 5	5626,08467 6	11252,169 35	20,685379 17	10,640559 05	4,17832442 8
Vessel 2	DDN+ 2	19	MER-TRI-MER	34940,1	311,6	143,05	2,1782593 5	2708,6	19,8210769 2	10,19596197	0,1150409 81	1,0891296 75	1089,1296 75	1025,36330 1	5399,97536 4	10799,950 73	20,494438 11	10,542338 96	3,28558013 9
Vessel 2	DDN+ 2	20	MER-TRI-MER	34002,1	320,3 5	141,78333 33	2,2594334 08	2697,4	19,9886937 9	10,28218409	0,1187625 12	1,1297167 04	1129,7167 04	1063,57404	5621,92459 8	11243,849 2	20,681935 94	10,638787 85	3,35192098 6
Vessel 2	DDN+ 2	21	MER-TRI-MER	34343,6	314,8	136,21666 67	2,3110241 04	2705,6	19,9886937 9	10,28218409	0,1163512 71	1,1555120 52	1155,5120 52	1087,85912 1	5761,61992	11523,239 84	20,796188 65	10,697559 44	3,88289832 2
Vessel 2	DDN+ 2	22	MER-TRI-MER	30495,6	301,9 6	148,73333 33	2,0302106 68	2703,4	19,9886937 9	10,28218409	0,1116963 82	1,0151053 34	1015,1053 34	955,672937 3	4988,40725 9	9976,8145 18	20,125408 26	10,352510 01	0,67931275 4
Vessel 2	DDN+ 2	23	MER-TRI-MER	34642,1	311,8	139,6	2,2335243 55	2701,9	19,9886937 9	10,28218409	0,1154002 74	1,1167621 78	1116,7621 78	1051,37797 5	5551,36861 8	11102,737 24	20,623146 58	10,608546 6	3,07641118 6
Vessel 2	DDN+ 2	24	MER-TRI-MER	34662,3	321,7	138,3	2,3261026 75	2681,3	19,7341877 6	10,15126618	0,1199791 15	1,1630513 38	1163,0513 38	1094,95699 7	5802,24862 5	11604,497 25	20,828898 01	10,714385 13	5,25572809 1
Vessel 2	DDN+ 2	25	MER-TRI-PEN	36242,3	281	163,6	1,7176039 12	2691,5	19,7341877 6	10,15126618	0,1044027 49	0,8588019 56	858,80195 6	808,520811	4090,65779 6	8181,3155 92	19,201825 43	9,8774190 01	2,77245689 8
Vessel 2	DDN+ 2	26	PEN-AMB-TRI-PEN	37977	298,8 7	135,98333 33	2,1978428 73	2529,9	19,7341877 6	10,15126618	0,1181351 04	1,0989214 36	1098,9214 36	1034,58177 4	5453,76192 5	10907,523 85	20,540573 95	10,566071 24	3,92582108 4
Vessel 2	DDN+ 2	27	PEN-AMB-TRI-MER	36949,3	325,3 7	134,66666 67	2,4161138 61	2397,5	19,7341877 6	10,15126618	0,1357122	1,2080569 31	1208,0569 31	1137,32760 2	6042,89433 5	12085,788 67	21,018061 76	10,811690 97	6,10843195
Vessel 2	DDN+ 2	28	MER-TRI-MER	34103,4	311,0 9	140,01666 67	2,2218069 28	2551	19,7341877 6	10,15126618	0,1219482 56	1,1109034 64	1110,9034 64	1045,86227 7	5519,37159 3	11038,743 19	20,596239 01	10,594705 35	4,18547894
Vessel 2	DDN+ 2	29	MER-TRI-MER	33551,1	316,4 7	139,13333 33	2,2745807 38	2705	20,0143793 5	10,29539674	0,1169944 55	1,1372903 69	1137,2903 69	1070,70428 2	5663,05004 8	11326,100 1	20,715863 48	10,656240 17	3,38621720 3

I	1										I	ı	1	I	1	I	1	ı	
Vessel 2	DDN+ 2	30	MER-TRI-MER	31285,8	306,9 8	146,65	2,0932833 28	2700,5	20,0143793 5	10,29539674	0,1136752 45	1,0466416 64	1046,6416 64	985,362877 9	5164,81502 2	10329,630 04	20,287178 21	10,435724 47	1,34468607 5
Vessel 2	DDN+ 2	31	MER-TRI-PEN	34302,7	291,2	135,45	2,1498708 01	2687	20,0143793 5	10,29539674	0,1083736 51	1,0749354 01	1074,9354 01	1012,00007 3	5321,73402 6	10643,468 05	20,426498 93	10,507391 05	- 2,01757327 6
Vessel 2	DDN+ 2	32	PEN-BARI-TRI-PAT- PEN	32478	276,3	123,35	2,2399675 72	2538,9	20,0143793 5	10,29539674	0,1088266 57	1,1199837 86	1119,9837 86	1054,41096 5	5568,93990 9	11137,879 82	20,637857 08	10,616113 68	- 3,02103911 9
Vessel 2	DDN+ 2	33	PEN-TRI-PAT-PEN	35935,5	297,9	127,68333 33	2,3331157 81	2386	19,8761866 5	10,22431041	0,1248533 11	1,1665578 91	1166,5578 91	1098,25824 8	5821,11430 6	11642,228 61	20,844008 6	10,722158 02	4,64316612 8
Vessel 2	DDN+ 2	34	PEN-AMB-TRI-PAT	37595,3	309,5	134,7	2,2976985 89	2447	19,8761866 5	10,22431041	0,1264814 06	1,1488492 95	1148,8492 95	1081,58645 5	5725,63928 7	11451,278 57	20,767028 21	10,682559 31	4,28969204 7
Vessel 2	DDN+ 2	35	PEN-AMB-TRI-PEN	37422,8	290,7	125,7	2,3126491 65	2447,2	19,8761866 5	10,22431041	0,1187888 2	1,1563245 82	1156,3245 82	1088,62408	5766,00295 2	11532,005 9	20,799728 42	10,699380 3	- 4,44016265 7
Vessel 2	DDN+ 2	36	PEN-AMB-TRI-PEN	36381,5	274,7 5	131,15	2,0949294 7	2372,3	19,8761866 5	10,22431041	0,1158158 75	1,0474647 35	1047,4647 35	986,137759 9	5169,39786 8	10338,795 74	20,291306 76	10,437848 2	- 2,04580276 8
Vessel 2	DDN+ 2	37	PEN-AMB-TRI-PEN	36817,5	284,6	131,73333 33	2,1604251 01	2370,7	19,2958201 1	9,925769866	0,1200489 31	1,0802125 51	1080,2125 51	1016,96825 6	5350,86014 3	10701,720 29	20,451905 97	10,520460 43	5,65270473 3
Vessel 2	DDN+ 2	38	PEN-AMB-TRI-PEN	36126,6	283,7	128,78333 33	2,2029248 09	2370,1	19,2958201 1	9,925769866	0,1196995 91	1,1014624 05	1101,4624 05	1036,97397 3	5467,69457 2	10935,389 14	20,552450 59	10,572180 58	6,11426102 2
Vessel 2	DDN+ 2	39	PEN-AMB-TRI-PEN	36204,6	284,5	134,16666 67	2,1204968 94	2380	19,2958201 1	9,925769866	0,1195378 15	1,0602484 47	1060,2484 47	998,173011 2	5240,43859	10480,877 18	20,354841 4	10,470530 42	5,20279804
Vessel 2	DDN+ 2	40	PEN-AMB-TRI-PEN	36631,1	290,2	132,3	2,1934996 22	2382,3	19,2958201 1	9,925769866	0,1218150 53	1,0967498 11	1096,7498 11	1032,53729 3	5441,84629 5	10883,692 59	20,530392 58	10,560833 94	- 6,01338947 6
Vessel 2	DDN+ 2	41	PEN-AMB-TRI-PEN	34324,4	271,9 5	128,46666 67	2,1168915 41	2376,1	19,2958201 1	9,925769866	0,1144522 54	1,0584457 71	1058,4457 71	996,475877 7	5230,43667 6	10460,873 35	20,345948 56	10,465955 94	- 5,16136391 5
Vessel 2	DDN+ 2	42	PEN-AMB-TRI-PEN	36907,7	285,4	131,53333 33	2,1697921 95	2386,6	19,3176420 2	9,936995056	0,1195843 46	1,0848960 97	1084,8960 97	1021,37759	5376,67277 8	10753,345 56	20,474307 29	10,531983 67	- 5,64934996 1
Vessel 2	DDN+ 2	43	PEN-AMB-TRI-PEN	37277,4	298,0 5	131,45	2,2674020 54	2381,9	19,3176420 2	9,936995056	0,1251311 98	1,1337010 27	1133,7010 27	1067,32508 9	5643,57111 6	11287,142 23	20,699824 64	10,647989 79	6,67726727 2
Vessel 2	DDN+ 2	44	PEN-AMB-TRI-PEN	39482,5	293,3	131,58333 33	2,2290057	2394,9	19,3176420 2	9,936995056	0,1224685 79	1,1145028 5	1114,5028 5	1049,25092 7	5539,03591 8	11078,071 84	20,612793 93	10,603221 2	6,28324291 3
Vessel 2	DDN+ 2	45	PEN-AMB-TRI-PEN	36500,4	304,2	127,83333 33	2,3796610 17	2379,5	19,7165887 8		0,1278419 84	1,1898305 08	1189,8305 08	1120,16830 1	5945,82667 7	11891,653 35		10,772915 91	- 5,85452115 3

Vessel 2	DDN+ 2	46	PEN-TOU-PEN	34752,3	332,4 5	137,76666 67	2,4131381 56		19,7165887 8		0,1394914 61	1,2065690 78	1206,5690 78	1135,92686	6034,99041	12069,980 82	21,011969 31	10,808557 01	- 6,16496487 8
Vessel 2	DDN+ 2	47	PEN-TOU-PEN	33678,4	312,6	142,5	2,1936842 11	2385	19,7165887 8	10,14221327	0,1310691 82		1096,8421 05	1032,62418 3	5442,35286 3	10884,705 73	20,530825 87		- 3,96592469 1
Vessel 2	DDN+ 2	48	PEN-TOU-PEN	33400,6	304	152,68333 33	1,9910490 12		19,7165887 8	10,14221327	0,1114655 52	0,9955245 06		937,238528	4878,07769 4	9756,1553 87	20,021299 35	10,298956 38	1,52193202

	Unit	Pre-Period	Post-Period	SPEED CORRECTION TO POST-PERIOD	DISPLACEMENT CORRECTION TO POST-PERIOD
Sample Size	pcs	47	48	48	48
disp total	tons	1632479,70	1717501,70	1717501,70	1717501,70
disp avr.	tons	34733,6106	35781,28542	35781,28542	34733,61064
fuel total	tons	14140,80	14530,96	14940,92	14588,90
fuel avr	tons	300,868085	302,7283333	311,269243	303,9355195
mile total	miles	122859,00	121185,60	121185,60	121185,60
hours total	hrs	6425,45	6580,466667	6123,046209	6123,046209
speed avr	knots	19,79	19,61	19,79	19,79
cons per Nm	tons	0,11521607	0,120073508	0,123289596	0,120384806

Table A 4 Speed and Displacement Corrections calculation o	of Test Vessel 2
--	------------------

	Speed loss	
Analysis 1	Pre-Period	-3,682089051
Analysis 1	Post-Period	-4,591029819
	Performance	-0,91%

	Fuel Consumption changes for the same period of analysis 1	
Analysis 2	Pre-Period	0,115216067
Allalysis Z	Speed and Displacement Corrected Post- period	0,120384806
	Performance	4,49%

Table A 5 Dataset of Test Vessel 3

															ISO AN CORRI			18557,6 SP	ACC TO 18557,6 DISP
Ship	Year	Voya ge	Ports	Round Trip Displacem ent	Round Trip Cons	Round trip duration	Round trip av. Cons per hour	Total Distance	Total Av speed	Av speed in m/s	Total av cons/mile	Av.Cons per engine	Av.cons per engine in kg	LCV corrected	Brake Power for one engine	brake power for 2 engine	expected speed in knots	expected speed in m/s	speed loss
Vessel 3	DDN +1	18	PEN - TRI - MER	34784	296,5	126,65	2,341097 513	2535	19,814252 72	10,1924516	0,116962 525	1,170548 756	1170,548 756	1102,015 457	5842,561 781	11685,12 356	20,86112 772	10,73096 41	- 5,0183049 11
Vessel 3	DDN +1	19	MER - TRI - MER	32923,3	315	136,7	2,304316 02	2694	19,814252 72	10,1924516	0,116926 503	1,152158 01	1152,158 01	1084,701 452	5743,516 069	11487,03 214	20,78153 925	10,69002 379	- 4,6545470 64
Vessel 3	DDN +1	20	MER - TRI - MER	33433,3	308	137,7	2,236746 55	2694	19,814252 72	10,1924516	0,114328 137	1,118373 275	1118,373 275	1052,894 746	5560,157 934	11120,31 587	20,63051 072	10,61233 471	- 3,9565573 65
Vessel 3	DDN +1	21	MER - TRI - MER	35005,8	329,3	133,2	2,472222 222	2694	19,814252 72	10,1924516	0,122234 595	1,236111 111	1236,111 111	1163,739 266	6191,265 55	12382,53 11	21,13097 299	10,86977 251	- 6,2312335 11
Vessel 3	DDN +1	22	MER - TRI - MER	35044	334	131,8	2,534142 64	2694	19,964562 7	10,2697710 5	0,123979 213	1,267071 32	1267,071 32	1192,886 817	6353,548 517	12707,09 703	21,25141 37	10,93172 721	- 6,0553665 83
Vessel 3	DDN +1	23	MER - TRI - MER	34561	312,1	153,5	2,033224 756	2694	19,964562 7	10,2697710 5	0,115850 037	1,016612 378	1016,612 378	957,0917 468	4996,873 454	9993,746 908	20,13330 174	10,35657 041	- 0,8381091 26
Vessel 3	DDN +1	24	MER - TRI - MER	35279,7	321,1	138,2	2,323444 284	2694	19,964562 7	10,2697710 5	0,119190 794	1,161722 142	1161,722 142	1093,705 623	5795,092 262	11590,18 452	20,82315 321	10,71143 001	- 4,1232492 94
Vessel 3	DDN +1	25	MER - TRI - MER	32413,2	303,6	136,2	2,229074 89	2694	19,964562 7	10,2697710 5	0,112694 878	1,114537 445	1114,537 445	1049,283 496	5539,224 819	11078,44 964	20,61295 268	10,60330 286	- 3,1455463 7
Vessel 3	DDN +1	26	MER - TRI - MER	33376	303,8	140	2,17	2694	19,964562 7	10,2697710 5	0,112769 117	1,085	1085	1021,475 41	5377,245 024	10754,49 005	20,47480 269	10,53223 851	- 2,4920386 52
Vessel 3	DDN +1	27	MER - TRI - MER	32978,1	299,2	138,2	2,164978 292	2694	19,916658 84	10,2451293 1	0,111061 618	1,082489 146	1082,489 146	1019,111 561	5363,411 614	10726,82 323	20,46281 215	10,52607 057	- 2,6690041 45
Vessel 3	DDN +1	28	MER - TRI - MER	32704	304,7	133,3	2,285821 455	2694	19,916658 84	10,2451293 1	0,113103 192	1,142910 728	1142,910 728	1075,995 58	5693,509 775	11387,01 955	20,74083 36	10,66908 48	- 3,9736819 39
Vessel 3	DDN +1	29	MER - TRI - MER	32967,8	308,1	140,8	2,188210 227	2694	19,916658 84	10,2451293 1	0,114365 256	1,094105 114	1094,105 114	1030,047 437	5427,324 775	10854,64 955	20,51795 442	10,55443 575	- 2,9305824 66

		I									L	L	L	I	I			L	1 1
Vessel 3	DDN +1	30	MER - TRI - MER	33789,5	328,3	131,4	2,498477 93	2694	19,916658 84	10,2451293 1	0,121863 4	1,249238 965	1249,238 965	1176,098 51	6260,264 071	12520,52 814	21,18256 256	10,89631 018	- 5,9761594 73
Vessel 3	DDN +1	31	MER - TRI - MER	34575,9	331,9	132,2	2,510590 015	2694	20,254548 35	10,4189396 7	0,123199 703	1,255295 008	1255,295 008	1181,799 984	6292,001 273	12584,00 255	21,20610 155	10,90841 864	- 4,4871670 25
Vessel 3	DDN +1	32	MER - TRI - MER	35342,2	372,9	131,2	2,842225 61	2694	20,254548 35	10,4189396 7	0,138418 708	1,421112 805	1421,112 805	1337,909 479	7138,249 224	14276,49 845	21,79349 571	11,21057 419	- 7,0614984 22
Vessel 3	DDN +1	33	MER - TRI - MER	33581	343,4	131,5	2,611406 844	2694	20,254548 35	10,4189396 7	0,127468 448	1,305703 422	1305,703 422	1229,257 086	6553,900 346	13107,80 069	21,39593 376	11,00606 833	- 5,3345902 95
Vessel 3	DDN +1	34	MER - TRI - MER	34093,9	300,7	137,3	2,190094 683	2694	20,254548 35	10,4189396 7	0,111618 411	1,095047 342	1095,047 342	1030,934	5432,499 645	10864,99 929	20,52239 068	10,55671 776	- 1,3051224 26
Vessel 3	DDN +1	35	MER - TRI - MER	35210,2	326,3	130,9	2,492742 552	2694	20,080735 96	10,3295305	0,121121	1,246371	1246,371 276	1173,398 719	6245,215 291	12490,43 058	21,17135 937	10,89054 726	- 5,1514094 83
Vessel 3	DDN +1	36	MER - TRI - MER	34087	309,7	132,6	2,335595 777	2694	20,080735 96	10,3295305	0,114959 169	1,167797 888	1167,797 888	1099,425 647	5827,780 95	11655,56 19	20,84933 658	10,72489 874	- 3,6864512 07
Vessel 3	DDN +1	37	MER - TRI - MER	34438	303	135,75	2,232044 199	2694	20,080735 96	10,3295305	0,112472	1,116022 099	1116,022 099	1050,681 227	5547,329 746	11094,65 949	20,61975 87	10,60680 387	2,6141078 77
Vessel 3	DDN +1	38	MER - TRI - MER				2,552851		20,080735	10,3295305	0,124610	1,276425	1276,425	1201,693	6402,281	12804,56	21,28698	10,95002	- 5,6665862
Vessel 3	DDN +1	39	MER - TRI - MER	35034	335,7	131,5	2,302420	2694	96 20,080735	10,3295305	0,114736	856 1,151210	856 1151,210	663 1083,809	001 5738,398	2 11476,79	20,77738	309 10,68788	97 - 3,3529406
Vessel 3	DDN +1	40	MER - TRI - MER	34476	309,1	134,25	857 2,578039	2694	96 20,054125	8 10,3158423	451	428	428	349 1213,550	128 6467,667	626 12935,33	95 21,33428	916 10,97435	79 - 6,0004588
Vessel 3	DDN +1	41	MER - TRI - MER	34459	328,7	127,5	216 2,229337	2694	91 20,054125	7 10,3158423	878 0,111135	608 1,114668	608 1114,668	076 1049,407	705 5539,941	541 11079,88	063 20,61355	396 10,60361	32 - 2,7138879
Vessel 3	DDN +1	42	MER - TRI - MER	34545	299,4	134,3	305 2,340568	2694	91 20,054125	7 10,3158423	857 0,116072	652 1,170284	652 1170,284	022	239 5841,142	248 11682,28	469 20,85999	253 10,73038	68 - 3,8632343
Vessel 3	DDN +1	43	MER - TRI - MER	34131	312,7	133,6	862 2,327109	2694	91 20,054125	7 10,3158423	754 0,115664	431 1,163554	431 1163,554	607 1095,431	046 5804,959	409	645 20,83107	217 10,71550	2 - 3,7297457
Vessel 3	DDN +1	44	MER - TRI - MER	35202	311,6	133,9	783 2,212076	2694	91 19,952090	7 10,2633554	439 0,111507	892 1,106038	892	069	013 5492,759	803	193 20,57374	34 10,58313	6
Vessel	DDN	45	MER - TRI - MER	35433	300,4	135,8	583 2,229472	2694	77 19,952090	9	053	292 1,114736	292	951	119 5540,309	824	043 20,61386	208	12 3,2103307
3 Vessel	+1 DDN	46	MER - TRI - MER	35062	304,1	136,4	2,234010	2694	19,952090	10,2633554	0,110207	1.117005	1117,005	492 1051,606	345 5552,695	11105,39	20,62425	163	3,2591130
3	+1			33264	296,9	132,9	2,234010	2694	19,952090 77	10,2633554	0,110207 869	267	267	832	5552,695 054	011	20,62425 868	867	3,2591130 93

Vessel	DDN	47	MER - TRI - MER				2 061151		10.052000	10 2622554	0,106347	1,030575	1020 575	970,2373	E07E 140	10150,28	20 20564	10 20279	-
3	+1 DDN			30138	286,5	139	2,061151 079	2694	19,952090 77	10,2633554 9	0,106347 439	1,030575 54	1030,575 54	970,2373 932	5075,142 682	10150,28 536	20,20564 927	10,39378 598	1,2548891 6
Vessel 3	+1	48	MER - TRI - MER	32917	294,9	138,9	2,123110 151	2694	19,952090 77	10,2633554 9	0,109465 479	1,061555 076	1061,555 076	999,4031 391	5247,685 004	10495,37 001	20,36127 369	10,47383 919	2,0096136 12
Vessel 3	DDN +1	1	MER - TRI - MER	31888	296,5	138,2	2,145441 389	2694	19,785275 07	10,1775454 9	0,110059 391	1,072720 695	1072,720 695	1009,915 033	5309,497 188	10618,99 438	20,41578 309	10,50187 882	- 3,0883362 35
Vessel 3	DDN +1	2	MER - TRI - MER	31408	299,2375	141,3	2,117745 931	2694	19,785275 07	10,1775454 9	0,111075 538	1,058872 965	1058,872 965	996,8780 61	5232,807 378	10465,61 476	20,34805 792	10,46704 099	- 2,7657816 64
Vessel 3	DDN +1	3	MER - TRI - MER	33868	299,575	133,4	2,245689 655	2694	19,785275 07	10,1775454 9	0,111200 817	1,122844 828	1122,844 828	1057,104 498	5584,530 716	11169,06 143	20,65087 074	10,62280 791	- 4,1915698 43
Vessel 3	DDN +1	4	MER - TRI - PEN	36260	302,4796 875	124,9	2,421774 92	2531	19,785275 07	10,1775454 9	0,119509 952	1,210887 46	1210,887 46	1139,992 41	6057,921 216	12115,84 243	21,02962 275	10,81763 794	- 5,9171184 15
Vessel 3	DDN +1	5	PEN - TRI - PEN	36550	272,1	122,1	2,228501 229	2372	19,544919 1	10,0539063 8	0,114713 322	1,114250 614	1114,250 614	1049,013 459	5537,658 567	11075,31 713	20,61163 629	10,60262 571	- 5,1753154 39
Vessel 3	DDN +1	6	PEN - TRI - MER	35464	306,4	152,7	2,006548 788	2535	19,544919 1	10,0539063 8	0,120867 85	1,003274 394	1003,274 394	944,5346 756	4921,818 129	9843,636 258	20,06285 258	10,32033 137	- 2,5815545 72
Vessel 3	DDN +1	7	MER - TRI - PEN	35772	309,9490 234	128,9	2,404569 615	2531	19,544919 1	10,0539063 8	0,122461 092	1,202284 808	1202,284 808	1131,893 426	6012,211 338	12024,42 268	20,99436 614	10,79950 194	- 6,9039809 92
Vessel 3	DDN +1	8	PEN - TRI - PEN	36761	293,8	125,5	2,341035 857	2372	19,544919 1	10,0539063 8	0,123861 72	1,170517 928	1170,517 928	1101,986 434	5842,396 204	11684,79 241	20,86099 58	10,73089 624	- 6,3087913 78
Vessel 3	DDN +1	9	PEN - TRI - PEN	36615	290,9	127,8	2,276212 833	2372	19,234539 47	9,89424710 4	0,122639 123	1,138106 416	1138,106 416	1071,472 551	5667,475 772	11334,95 154	20,71949 991	10,65811 075	- 7,1669704 44
Vessel 3	DDN +1	10	PEN - TOU - PEN	36646,1	312,1426 514	144	2,167657 301	2732	19,234539 47	9,89424710 4	0,114254 265	1,083828 651	1083,828 651	1020,372 641	5370,792 791	10741,58 558	20,46921 386	10,52936 361	- 6,0318603 11
Vessel 3	DDN +1	11	PEN - TOU - PEN	35681,9	307,2051 514	150	2,048034 342	2732	19,234539 47	9,89424710 4	0,112446 981	1,024017 171	1024,017 171	964,0630 043	5038,419 086	10076,83 817	20,17184 408	10,37639 66	- 4,6465985 35
Vessel 3	DDN +1	12	PEN - TRI - PEN	36605	290,9	122,9	2,366965 012	2372	19,234539 47	9,89424710 4	0,122639 123	1,183482 506	1183,482 506	1114,191 961	5911,894 959	11823,78 992	20,91604 183	10,75921 192	- 8,0392952 53
Vessel 3	DDN +1	13	PEN - TRI - PEN	33711	275,1	124,2	2,214975 845	2372	19,234539 47	9,89424710 4	0,115978 078	1,107487 923	1107,487 923	1042,646 709	5500,692 546	11001,38 509	20,58045 885	10,58658 803	- 6,5397928 57
Vessel 3	DDN +1	14	PEN - TRI - PEN	32504	267,8	123,3	2,171938 362	2372	19,232303 78	9,89309706 5	0,112900 506	1,085969 181	1085,969 181	1022,387 847	5382,581 982	10765,16 396	20,47942 043	10,53461 387	- 6,0896090 82
Vessel 3	DDN +1	15	PEN - TRI - PEN	36376,9	282	125,7	2,243436 754	2372	19,232303 78	9,89309706 5	0,118887 015	1,121718 377	1121,718 377	1056,043 999	5578,393 856	11156,78 771	20,64575 264	10,62017 516	- 6,8461968 04

Vessel 3	DDN +1	16	PEN - TRI - PEN	37507	277,8	123,6	2,247572 816	2372	19,232303 78	9,89309706 5	0,117116 358	1,123786 408	1123,786 408	1057,990 951	5589,658 857	11179,31 771	20,65514 326	10,62500 569	- 6,8885480 94
Vessel 3	DDN +2	17	PEN - TRI - PEN	32673	272,7	124,2	2,195652 174	2372	19,232303 78	9,89309706 5	0,114966 273	1,097826 087	1097,826 087	1033,550 555	5447,752 722	10895,50 544	20,53544 214	10,56343 144	- 6,3458013 13
Vessel 3	DDN +2	18	PEN - TRI - AMB - PEN	33661,4	292,5	125,2	2,336261 981	2391	19,339457 23	9,9482168	0,122333 752	1,168130 99	1168,130 99	1099,739 246	5829,571 4	11659,14 28	20,85076 647	10,72563 427	- 7,2482191 05
Vessel 3	DDN +2	6	PEN-AMB-TRI- PEN	38408,8	275,65	131,2166 667	2,100723 993	2382,5	18,990598 4	9,76876381 7	0,115697 796	1,050361 997	1050,361 997	988,8653 927	5185,521 17	10371,04 234	20,30580 276	10,44530 494	- 6,4769877 59
Vessel 3	DDN +2	7	PEN-AMB-TRI- PEN	38501,8	274,6	130,1333 333	2,110143 443	2385,5	18,990598 4	9,76876381 7	0,115112 136	1,055071 721	1055,071 721	993,2993 723	5211,702 275	10423,40 455	20,32924 569	10,45736 398	- 6,5848350 13
Vessel 3	DDN +2	8	PEN-TRI-PEN	38048,5	277,4	129,1	2,148721 921	2388,1	19,277152 68	9,91616733 9	0,116159 29	1,074360 96	1074,360 96	1011,459 265	5318,560 844	10637,12 169	20,42372 253	10,50596 287	- 5,6139122 11
Vessel 3	DDN +2	9	PEN-TRI-PEN	36881,3	271,2	126,5333 333	2,143308 746	2376,6	19,277152 68	9,91616733 9	0,114112 598	1,071654 373	1071,654 373	1008,911 143	5303,602 688	10607,20 538	20,41061 244	10,49921 904	- 5,5532863 84
Vessel 3	DDN +2	11	PEN-TRI-PEN	36259,5	267,9	122,7833 333	2,181892 222	2369,2	19,277152 68	9,91616733 9	0,113076 144	1,090946 111	1090,946 111	1027,073 388	5409,964 681	10819,92 936	20,50304 117	10,54676 438	- 5,9790568 65
Vessel 3	DDN +2	12	PEN-TRI-PEN	37380,2	276,6	125,9833 333	2,195528 509	2382,7	19,496007 89	10,0287464 6	0,116086 792	1,097764 255	1097,764 255	1033,492 343	5447,413 446	10894,82 689	20,53515 223	10,56328 231	- 5,0603196 45
Vessel 3	DDN +2	13	PEN-TRI-PEN	36991,9	274,01	124,6666 667	2,197941 176	2365,3	19,496007 89	10,0287464 6	0,115845 77	1,098970 588	1098,970 588	1034,628 048	5454,031 532	10908,06 306	20,54080 405	10,56618 961	- 5,0864424 04
Vessel 3	DDN +2	14	PEN-TRI-PEN	37481,5	271,1	125,4333 333	2,161307 467	2377,2	19,496007 89	10,0287464 6	0,114041 73	1,080653 734	1080,653 734	1017,383 609	5353,293 148	10706,58 63	20,45402 204	10,52154 894	- 4,6837446 19
Vessel 3	DDN +2	15	PEN-TRI-PEN	36269,4	272,7	123,1166 667	2,214972 249	2373,5	19,496007 89	10,0287464 6	0,114893 617	1,107486 124	1107,486 124	1042,645 016	5500,682 705	11001,36 541	20,58045 052	10,58658 375	- 5,2692852 08
Vessel 3	DDN +2	16	PEN-TRI-PEN	36954,5	281,5	126,0166 667	2,233831 504	2385,7	19,524047 83	10,0431702	0,117994 719	1,116915 752	1116,915 752	1051,522 558	5552,206 618	11104,41 324	20,62384 92	10,60890 803	- 5,3326678 18
Vessel 3	DDN +2	17	PEN-TRI-PEN	37800	271,3	125,6666 667	2,158885 942	2391,4	19,524047 83	10,0431702	0,113448 189	1,079442 971	1079,442 971	1016,243 734	5346,615 377	10693,23 075	20,44821 183	10,51856 017	- 4,5195345 62
Vessel 3	DDN +2	18	PEN-TRI-PEN	37506,5	279,3	124,6333 333	2,240973 522	2377,5	19,524047 83	10,0431702	0,117476 341	1,120486 761	1120,486 761	1054,884 492	5571,681 742	11143,36 348	20,64014 833	10,61729 23	- 5,4074247 92
Vessel 3	DDN +2	19	PEN-TRI-PEN	37411,1	263,8	123,9666 667	2,127991 396	2384,1	19,524047 83	10,0431702	0,110649 721	1,063995 698	1063,995 698	1001,700 868	5261,213 126	10522,42 625	20,37325 822	10,48000 403	- 4,1682600 8
Vessel 3	DDN +2	20	PEN-TRI-PEN	36948,8	274,1	121,4333 333	2,257205 6	2372,2	19,524047 83	10,0431702	0,115546 75	1,128602 8	1128,602 8	1062,525 353	5615,868 314	11231,73 663	20,67691 869	10,63620 698	- 5,5756415 11

Vessel 3	DDN +2	21	PEN-TRI-PEN	37282,7	272,9	123,3166 667	2,213001 757	2370,1	19,665843 35	10,1161098 2	0,115142 821	1,106500 878	1106,500 878	1041,717 455	5495,291 092	10990,58 218	20,57588 568	10,58423 56	- 4,4228586 11
Vessel 3	DDN +2	22	PEN-TRI-PEN	37589,9	284,2	122,65	2,317162 658	2373,8	19,665843 35	10,1161098 2	0,119723 65	1,158581 329	1158,581 329	1090,748 698	5778,170 992	11556,34 198	20,80954 134	10,70442 807	- 5,4960269 1
Vessel 3	DDN +2	23	PEN-PAT-TRI-PEN	37572,4	293,2	129,5666 667	2,262927 708	2438,5	19,665843 35	10,1161098 2	0,120237 851	1,131463 854	1131,463 854	1065,218 898	5631,419 846	11262,83 969	20,68979 129	10,64282 864	- 4,9490491 21
Vessel 3	DDN +2	24	PEN-PAT-TRI-PEN	37323,3	283,38	136,1833 333	2,080871 374	2445,7	19,665843 35	10,1161098 2	0,115868 667	1,040435 687	1040,435 687	979,5202 488	5130,225 459	10260,45 092	20,25589 877	10,41963 433	- 2,9130053 47
Vessel 3	DDN +2	26	PEN-TOU-PEN	36114	311,77	147,7333 333	2,110356 498	2727,1	19,906443 29	10,2398744 3	0,114322 907	1,055178 249	1055,178 249	993,3996 631	5212,294 048	10424,58 81	20,32977 421	10,45763 585	- 2,0823198 28
Vessel 3	DDN +2	27	PEN-TOU-PEN	35196,1	316,64	140,1666 667	2,259024 97	2732,4	19,906443 29	10,2398744 3	0,115883 472	1,129512 485	1129,512 485	1063,381 778	5620,814 411	11241,62 882	20,68101 663	10,63831 495	- 3,7453349 32
Vessel 3	DDN +2	28	PEN-TOU-PEN	34520,6	309,19	143,7333 333	2,151136 364	2726	19,906443 29	10,2398744 3	0,113422 597	1,075568 182	1075,568 182	1012,595 806	5325,228 873	10650,45 775	20,42955 486	10,50896 302	- 2,5605627 42
Vessel 3	DDN +2	29	PEN-TOU-PEN	34057,6	301,5	144,1	2,092297 016	2723,7	20,074650 23	10,3264000 8	0,110695 01	1,046148 508	1046,148 508	984,8985 953	5162,068 621	10324,13 724	20,28470 23	10,43445 086	- 1,0355195 76
Vessel 3	DDN +2	30	PEN-TOU-PEN	33235	300,27	144,6	2,076556 017	2727	20,074650 23	10,3264000 8	0,110110 011	1,038278 008	1038,278 008	977,4888 977	5118,185 048	10236,37 01	20,24496 108	10,41400 798	- 0,8412505 61
Vessel 3	DDN +2	31	PEN-TOU-PEN	33819,2	294,13	141,9	2,072797 745	2731,2	20,074650 23	10,3264000 8	0,107692 589	1,036398 872	1036,398 872	975,7197 816	5107,692 93	10215,38 586	20,23540 889	10,40909 433	- 0,7944423 37
Vessel 3	DDN +2	32	PEN-TRI-MER	29326,2	266,32	130,1	2,047040 738	2536,5	20,074650 23	10,3264000 8	0,104995 072	1,023520 369	1023,520 369	963,5952 888	5035,634 445	10071,26 889	20,16927 069	10,37507 285	- 0,4691317 87
Vessel 3	DDN +2	33	MER-TRI-MER	32746,7	295,73	136,8666 667	2,160716 025	2695,5	19,948628 41	10,2615744 5	0,109712 484	1,080358 013	1080,358 013	1017,105 202	5351,662 361	10703,32 472	20,45260 379	10,52081 939	- 2,4641135 69
Vessel 3	DDN +2	34	MER-TRI-MER	32790,7	292,64	141,5	2,068127 208	2695,5	19,948628 41	10,2615744 5	0,108566 129	1,034063 604	1034,063 604	973,5212 387	5094,646 154	10189,29 231	20,22350 349	10,40297 019	- 1,3591862 55
Vessel 3	DDN +2	35	MER-TRI-MER	32710,7	297,38	139,9666 667	2,124648 726	2696,8	19,948628 41	10,2615744 5	0,110271 433	1,062324 363	1062,324 363	1000,127 386	5251,950 112	10503,90 022	20,36505 547	10,47578 454	- 2,0448118 36
Vessel 3	DDN +2	36	MER-TRI-MER	33562,7	308,45	142,8	2,160014 006	2701,2	19,948628 41	10,2615744 5	0,114189 99	1,080007 003	1080,007 003	1016,774 743	5349,726 497	10699,45 299	20,45091 967	10,51995 308	- 2,4560815 14
Vessel 3	DDN +2	37	MER-TRI-MER	33193,4	305,73	135,9666 667	2,248565 825	2696,1	19,948628 41	10,2615744 5	0,113397 129	1,124282 912	1124,282 912	1058,458 386	5592,362 407	11184,72 481	20,65739 415	10,62616 355	- 3,4310510 56
Vessel 3	DDN +2	41	MER-TRI-MER	34529,6	326,1	140,9666 667	2,313312 84	2690	20,214218 56	10,3981940 3	0,121226 766	1,156656 42	1156,656 42	1088,936 489	5767,792 68	11535,58 536	20,80117 305	10,70012 342	- 2,8217374 61

Vessel 3	DDN +2	42	MER-TRI-PEN	35200,3	309,2	127,7	2,421299 922	2541,4	19,662274 38	10,1142739 4	0,121665 224	1,210649 961	1210,649 961	1139,768 816	6056,660 858	12113,32 172	21,02865 419	10,81713 971	- 6,4977044 99
Vessel 3	DDN +2	43	PEN-AMB-PAT- TRI-PEN	37651,7	308,4	137,8666 667	2,236943 907	2462,9	19,662274 38	10,1142739 4	0,125218 239	1,118471 954	1118,471 954	1052,987 647	5560,696 137	11121,39 227	20,63096 127	10,61256 648	- 4,6953066 33
Vessel 3	DDN +2	44	PEN-AMB-PAT- TRI-PEN	36004,3	293,5	133,5666 667	2,197404 542	2454,4	19,662274 38	10,1142739 4	0,119581 16	1,098702 271	1098,702 271	1034,375 44	5452,559 713	10905,11 943	20,53954 772	10,56554 335	- 4,2711424 47
Vessel 3	DDN +2	45	PEN-TOU-PEN	36284,9	336,45	157,7333 333	2,133030 431	2820,6	19,662274 38	10,1142739 4	0,119283 131	1,066515 216	1066,515 216	1004,072 873	5275,168 589	10550,33 718	20,38558 908	10,48634 702	- 3,5481667 98
Vessel 3	DDN +2	46	PEN-MARSEILLES- PEN	37123,8	347,8	144,9833 333	2,398896 425	2821,1	19,671559 87	10,1190504	0,123285 243	1,199448 212	1199,448 212	1129,222 907	5997,113 308	11994,22 662	20,98266 193	10,79348 13	- 6,2485020 41
Vessel 3	DDN +2	48	PEN-AMB-PAT- TRI-PEN	36298,3	290,5	134,2833 333	2,163336 229	2452,2	19,671559 87	10,1190504	0,118465 052	1,081668 115	1081,668 115	1018,338 6	5358,886 005	10717,77 201	20,45888 272	10,52404 927	- 3,8483178 95
Vessel 3	DDN +2	49	PEN-AMB-PAT- TRI-PEN	31849,6	267,3	144,45	1,850467 29	2443,4	19,671559 87	10,1190504	0,109396 742	0,925233 645	925,2336 449	871,0630 568	4476,979 654	8953,959 308	19,62189 686	10,09350 374	0,2530999 53
Vessel 3	DDN +2	50	PEN-AMB-TRI- PEN	34630,7	269,91	133,7666 667	2,017767 256	2422,1	19,671559 87	10,1190504	0,111436 357	1,008883 628	1008,883 628	949,8155 001	4953,416 918	9906,833 836	20,09264 22	10,33565 515	- 2,0957040 93
Vessel 3	DDN +2	48	PEN-TOU-PEN	33400,6	304	152,6833 333	1,991049 012	2727,3	19,716588 78	10,1422132	0,111465 552	0,995524 506	995,5245 061	937,2385 28	4878,077 694	9756,155 387	20,02129 935	10,29895 638	- 1,5219320 22

Table A 6 Speed and Displacement Corrections calculation of Test Vessel 3

	Unit	Pre-Period	Post-Period	SPEED CORRECTION TO POST	DISPLACEMENT CORRECTION TO POST
Sample Size	pcs	47	42	42	42
disp total	tons	1618866,80	1493193,20	1493193,20	1493193,20
disp avr.	tons	34443,97447	35552,21905	35552,21905	34443,97447
fuel total	tons	14415,49	12182,95	12476,46	12150,63
fuel avr	tons	306,7125322	290,0702381	297,0585333	289,3008212
mile total	miles	123474,00	105927,00	105927,00	105927,00
hours total	hrs	6295,65	5619,233333	5345,622561	5345,622561
speed avr	knots	19,82	19,66	19,82	19,82
cons per Nm	tons	0,116805063	0,115064212	0,117783553	0,114707624

	Speed loss	
Analysis 1	Pre-Period	-4,44613652
Analysis I	Post-Period	-3,93489474
	Performance	0,519

	Fuel Consumption changes for the same period of anaylsis 1	
Analysis 2	Pre-Period	0,116805063
	Speed and Displacement Corrected Post- period	0,114707624
	Performance	-1,80%