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1 Introduction

The standard model (SM) of electroweak (EW) interactions [1-3] posits the existence of
the Higgs boson, a scalar particle associated with the field responsible for spontaneous
EW symmetry breaking [4-9]. The mass of the boson is not predicted by the theory. In
2012 the ATLAS and CMS collaborations at the CERN LHC reported the observation of
a new boson with a mass of about 125GeV [10-14]. Throughout this paper, we denote
the observed Higgs boson as h(125). Subsequent studies of the production and decay
rates [15-25] and of the spin-parity quantum numbers [18, 19, 26, 27] of the new boson
show that its properties are compatible with those expected for the SM Higgs boson.

The observation of a Higgs boson with a mass of 125 GeV is also consistent with the
unitarity constraints on diboson scattering at high energies [28-37]. Nevertheless, there is
a possibility that the newly discovered particle is part of a larger Higgs boson sector and



thus only partially responsible for EW symmetry breaking. This can be realized in several
scenarios, such as two-Higgs-doublet models [38, 39], or models in which the SM Higgs
boson mixes with a heavy EW singlet [40-63], which predict the existence of additional
resonances at high mass, with couplings similar to those of the SM Higgs boson.

Previous searches at the LHC for heavy SM-like Higgs bosons have been reported by
ATLAS and CMS. Based on a dataset of 4.7fb~! at \/s = 7TeV and up to 5.9fb~! at
Vs = 8TeV, and combining all channels listed in ref. [10], ATLAS excludes a SM-like
heavy Higgs boson of 131 < my < 559GeV at 95% CL [10]. The CMS collaboration
reported a search in the WW and ZZ decay channels using an initial dataset of 5.1fb~! at
Vs =T7TeV and 5.3fb~! at /s = 8 TeV, searching in the mass range 145 < my < 1000 GeV,
and excluding Higgs boson masses up to 710 GeV at 95% CL [64]. In this paper, we report
on an extension of this search using the complete 7 and 8 TeV dataset. In addition, the
search is interpreted in the context of the SM expanded by an additional EW singlet. Both
the SM-like heavy Higgs boson as well as the EW singlet are denoted as H here.

The analysis uses proton-proton collision data recorded with the CMS detector, corre-
sponding to integrated luminosities of up to 5.1fb~! at V5 =T7TeV and up to 19.7fb~ ! at
/s = 8TeV . The analysis is performed in a mass range 145 < my < 1000 GeV exploiting
both the H - WW and H — ZZ decay channels, with the lower boundary being chosen to
reduce contamination from h(125). In the case of a Higgs boson decaying into a pair of W
bosons, the fully leptonic (H - WW — ¢vfr) and semileptonic (H - WW — frqq) final
states are considered in the analysis. For a Higgs boson decaying into two Z bosons, final
states containing four charged leptons (H — ZZ — 2¢2('), two charged leptons and two
quarks (H — ZZ — 2¢2q), and two charged leptons and two neutrinos (H — ZZ — 202v)
are considered, where £ =e or p and ¢/ = e, pu, or 7.

2 CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap
sections. Muons are measured in gas-ionization detectors embedded in the steel flux-
return yoke outside the solenoid. Extensive forward calorimetry complements the coverage
provided by the barrel and endcap detectors. The first level of the CMS trigger system,
composed of custom hardware processors, uses information from the calorimeters and the
muon detectors to select the most interesting events in a fixed time interval of less than
4 pus. The high level trigger processor farm further decreases the event rate from around
100 kHz to less than 1 kHz, before data storage. A more detailed description of the detector
as well as the definition of the coordinate system and relevant kinematic variables can be
found in ref. [65].

3 Signal model and simulations

Several Monte Carlo event generators are used to simulate the signal and background event
samples. The Higgs boson signal samples from gluon fusion (ggF, gg — H), and vector



boson fusion (VBF, qq — qqH), are generated with POWHEG 1.0 [66—-70] at next-to-leading
order (NLO) and a dedicated program [71] used for angular correlations. Samples of WH,
ZH, and ttH events are generated using the leading-order (LO) PYTHIA 6.4 [72] program. At
the generator level, events are weighted according to the total cross section o(pp — H) [73],
which contains contributions from ggF computed to next-to-next-to-leading order (NNLO)
and next-to-next-to-leading-log (NNLL), and from weak-boson fusion computed at NNLO.
The WW(ZZ) invariant mass, mww (mzz), lineshape is affected by interference between
signal and SM background processes. The simulated my lineshape is therefore corrected
to match theoretical predictions [74-76] using the complex-pole scheme for the Higgs bo-
son propagator. The procedure for including lineshape corrections and uncertainties from
interference of the signal with background processes for both ggF and VBF production are
described below in the discussion of the lineshape corrections applied for the EW singlet
interpretation.

The background contribution from qq — WW production is generated using MAD-
GRAPH 5.1 [77], and the subdominant gg — WW process is generated at LO with cG2ww
3.1 [78]. The qq — ZZ production process is simulated at NLO with POWHEG, and the
gg — ZZ process is simulated at LO using GG2zz 3.1 [79]. Other diboson processes (WZ,
7y, W), Z4jets, and W+jets are generated with PyTHIA and MADGRAPH. The
tt and tW events are generated at NLO with POWHEG. For all samples, PYTHIA is used
for parton showering, hadronization, and underlying event simulation. For LO generators,
the default set of parton distribution functions (PDF) used to produce these samples is
CTEQG6L [80], while CT10 [81] is used for NLO generators. The tau lepton decays are
simulated with TAUOLA [82]. The detector response is simulated using a detailed descrip-
tion of the CMS detector, based on the GEANT4 package [83], with event reconstruction
performed identically to that of recorded data. The simulated samples include the effect
of multiple pp interactions per bunch crossing (pileup). The PYTHIA parameters for the
underlying events and pileup interactions are set to the Z2 (Z2*) tune [84] for the 7 (8) TeV
simulated data sample, with the pileup multiplicity distribution matching the one observed
in data.

The data are analysed to search for both a beyond the standard model (BSM) case in
the form of an EW singlet scalar mixed with the recently discovered Higgs boson, h(125),
as well as a heavy Higgs boson with SM-like couplings. The couplings of the two gauge
eigenstates (h(125) and EW singlet) are phenomenologically constrained by unitarity and
the coupling strength of the light Higgs boson is therefore reduced with respect to the SM
case. The unitarity constraint is ensured by enforcing C2? + C'2 = 1, where C and C’ are
defined as the scale factors of the couplings with respect to the SM of the low- and high-
mass Higgs boson, respectively. The EW singlet production cross section is also modified
by a factor y/ and the modified width is I''; they are defined as

t = C" (1 = Buew), (3.1)
Cl2

where Bpey is the branching fraction of the EW singlet to non-SM decay modes. An upper



limit at 95% CL can be set indirectly as C'? <0.28 using the signal strength fits to the
h(125) boson as obtained in ref. [85].

This paper focuses on the case where C'? < (1 — Bpew). In this regime the new state
is expected to have an equal or narrower width with respect to the SM case. Results are
presented distinguishing between the Bhew = 0 and Bpew > 0 cases. Under this hypothesis,
signal samples with different Higgs boson widths are generated, scanning the C'? and
Bhew space. We follow the recommendations of the “LHC Higgs Cross section Working
Group” [73] described below.

The SM signal mass lineshape generated with POWHEG is weighted in order to sim-
ulate the narrow scalar singlet lineshape. For the ggF production mode, the weights are
calculated using either the GG27z generator for the ZZ channel, or the POWHEG and MCFM
6.2 [86] generators for the interference calculation for the WW channel. For the VBF
production mode, the interference weights are computed using the PHANTOM 1.2 [87] gen-
erator, where the signal-only lineshape at LO is weighted based on results obtained with
MADGRAPH generator predictions. The weights are defined as the ratio of the sum of
a narrow resonance signal plus interference and the standard model signal lineshape as
generated. The contribution from the interference term between the BSM Higgs boson
and the background is furthermore assumed to scale according to the modified coupling
of the Higgs boson as (u + I)gsm = psmC’™? + IsyC’, where u(I) is the signal strength
(interference) in the BSM or SM cases. This assumption is based on the hypothesis that
the couplings are similar to the SM case and simply rescale due to unitarity constraints.
Systematic uncertainties considered for this procedure are detailed later.

If the new resonance has a very small width, its production will tend to interfere
less with the background continuum. Thus in the most interesting region of low-C'?, the
effect of the interference and its exact modeling is of limited importance. Any possible
interference between h(125) and its EW singlet partner [88, 89] is assumed to be covered
by a conservative systematic uncertainty. In addition to the EW singlet, the analysis
searches for a heavy Higgs boson that gets produced and decays like the SM Higgs boson,
but has a higher mass and interferes with h(125).

4 FEvent reconstruction

CMS uses a particle-flow (PF) reconstruction algorithm [90, 91] to provide an event descrip-
tion in the form of particle candidates, which are then used to build higher-level objects,
such as jets and missing transverse energy, as well as lepton isolation quantities. Not all the
channels considered here use the same selection criteria for their objects, but the common
reconstruction methods are listed below.

The high instantaneous luminosity delivered by the LHC provides an average of about
9 (21) pileup interactions per bunch crossing in 7 (8) TeV data, leading to events with
several possible primary vertices. The vertex with largest value of the sum of the square of
the transverse momenta (pr) for the associated tracks is chosen to be the reference vertex.
According to simulation, this requirement provides the correct primary vertex in more than
99% of both signal and background events.



Muon candidates are reconstructed by using one of two algorithms: one in which tracks
in the silicon tracker are matched to hits in the muon detectors, and another in which a
combined fit is performed to signals in both the silicon tracker and the muon system.
Other identification criteria based on the number of measurements in the tracker and in
the muon system, the fit quality of the muon track, and its consistency with its origin from
the primary vertex are also imposed on the muon candidates to reduce the misidentification
rate [92]. In some of the channels, vetos are imposed on additional low-pr muons in the
event, whose tracks in the silicon tracker fulfill more stringent requirements, but whose
primary vertex association can be more relaxed. We call these muons soft muons.

Electron candidates are reconstructed from superclusters, which are arrays of energy
clusters along the ¢ direction in the ECAL, matched to tracks in the silicon tracker. A
complementary algorithm reconstructs electron candidates by extrapolating measurements
in the innermost tracker layers outward to the ECAL. Trajectories from both algorithms are
reconstructed using the Gaussian sum filter algorithm [93], which accounts for the electron
energy loss by bremsstrahlung. Additional requirements are applied to reject electrons
originating from photon conversions in the tracker material. Electron identification relies
on a multivariate discriminant that combines observables sensitive to the bremsstrahlung
along the electron trajectory, the geometrical and momentum-energy matching between
the electron trajectory and the associated supercluster, as well as ECAL shower shape
observables. Electron candidates with a pseudorapidity n of their ECAL supercluster in
the transition region between ECAL barrel and endcap (1.4442 < |n| < 1.5660) are rejected,
because the reconstruction of electrons in this region is compromised [94].

The PF candidates are used to reconstruct hadronic tau candidates, m,, with the
“hadron plus strip” algorithm [95] that is designed to optimize the performance of 7,
identification and reconstruction by considering specific 7, decay modes. The neutrinos
produced in all 7 decays escape detection and are ignored in the 7y, reconstruction. The
algorithm provides high 7, identification efficiency, approximately 50% for the range of 7,
energies relevant for this analysis, while keeping the misidentification rate for jets at the
level of ~ 1%.

Leptons produced in the decay of W and Z bosons are expected to be isolated from
hadronic activity in the event. Isolation is defined as the scalar sum of the transverse mo-
menta of the PF candidates found (excluding the selected leptons in the event themselves)
in a cone of radius R = VAn? + A¢? = 0.4, with ¢ being measured in radians, built around
each lepton. We require that the isolation sum is smaller than 20% (15%) of the muon
(electron) transverse momentum. To account for the contribution to the isolation sum
from pileup interactions and the underlying event, a median energy density is determined
on an event-by-event basis using the method described in ref. [96]. For electron candidates,
an effective area that is proportional to the isolation cone, is derived to renormalize this
density estimate to the number of pileup interactions, and is subtracted from the isolation
sum. For muon and tau candidates, the correction is done by subtracting half the sum of
the transverse momenta of the charged particles not associated to the primary vertex in
the cone of interest. Soft muons do not need to fulfill isolation requirements.



The combined efficiency of lepton reconstruction, identification, and isolation is mea-
sured using observed Z decays and ranges between 90% and 97% for muons, between 70%
and 90% for electrons, and approximately 50% for hadronic taus depending on the pp and
71 of the leptons.

Jets are reconstructed from PF candidates [97] using the anti-kr clustering algo-
rithm [98] with a distance parameter of 0.5 (called AK5 jets), as implemented in the
FASTJET package [99], and with the Cambridge-Aachen algorithm [100] with a distance
parameter of 0.8 (called CAS8 jets); when not otherwise specified we use the term jets to
mean AK5 jets throughout this paper. Any reconstructed jet overlapping with isolated
leptons within a distance of 0.5 (0.8) for AK5 (CAS8) jets is removed in order to avoid
double counting the lepton as a jet. AK5 (CAS8) jets are required to have |n| < 4.7(2.4).
At hadron level, the jet momentum is defined as the vectorial sum of all particle momenta
in the jet, and is found in the simulation to be within 5-10% of the true momentum over
the whole pr range and detector acceptance. A correction is applied to the jet pr to take
into account the extra energy clustered in jets due to additional proton-proton interactions
within the same bunch crossing [96, 101]. Other jet energy scale (JES) corrections applied
are derived from the simulation, and are calibrated with in situ measurements of the energy
balance of dijet and Z/~+jets events. For some of the channels in this analysis, a combina-
torial background arises from low-pr jets from pileup interactions, which get clustered into
high-pr jets. At /s = 8 TeV the number of pileup events is larger than at /s = 7 TeV, and
a multivariate selection is applied to separate jets stemming from the primary interaction
and those reconstructed due to energy deposits associated with pileup interactions [102].
The discrimination is based on the differences in the jet shapes, on the relative multiplicity
of charged and neutral components, and on the different fraction of transverse momentum,
which is carried by the hardest components. Within the tracker acceptance, the tracks
belonging to each jet are also required to be compatible with the primary vertex.

At high Higgs boson masses, the pt of the Z or W boson is high enough that the
two quarks from the vector boson decay are expected to be reconstructed as a single CAS8
jet, or merged jet. To improve background rejection and jet mass resolution, we apply
a jet pruning algorithm [103]. Additionally, the “N-subjettiness ratio” variable 79/,
a measure of the compatibility of a jet having N = 2 subjets, is used to reduce the
backgrounds [103, 104]. We require 75 /71 < 0.5 to avoid contamination from jets originating
from the hadronization of gluons and single quarks.

In some of the channels included in this analysis, the identification of jets originat-
ing from b quarks is important. These b jets are tagged with dedicated algorithms [105],
which are applied either directly to the AKS5 jets, or to the subjets of the merged jets. The
b-tagging algorithm used is either the Combined Secondary Vertex algorithm, Jet Proba-
bility algorithm, or Track Counting High Efficiency algorithm depending on the channel.
Tagged b-jet candidates are required to have pt > 30GeV and to be within the tracker
acceptance (|n| < 2.4). For jets in this kinematic range with a b-tagging efficiency of 70%,
the misidentification probability from light quark and gluon jets is approximately 1%.

The missing transverse momentum vector, E%‘iss, is defined as the projection on the
plane perpendicular to the beams of the negative vector sum of the momenta of all recon-
structed particles in an event [91, 106]. Its magnitude is referred to as ERS,



H H Exclusive No. of  my range mH
decay mode production final states channels [GeV] resolution
WW — lvly  untagged ((ee, pp), ep) + (0 or 1 jets) 4 145-1000% 20%

VBF tag ((ee, pp), ep) + (jj)ver 2 145-1000 *  20%
WW — frqq untagged (ev, pv) + (j)w 2 180-600 5-15%
untagged (ev, pv) + (J)w + (0+1-jets) 2 600-1000 *  5-15%
VBF tag (ev, w) + (Nw + (i)ver 1 600-1000 *  5-15%
77 — 202¢'  untagged de, 4, 2e2p 3 145-1000 12%
VBF tag (e, 4, 2¢211) + (jj)ver 3 145-1000 1-2%
untagged (ee, ) + (ThTh, TeThs TuTh, TeTy) 8 200-1000 10-15%
77 — 202v  untagged (ee, pup) + (0 or > 1 jets) 4 200-1000 %
VBF tag (ee, ppr) + (jj)vBr 2 200-1000 %
77 — 202q  untagged (ee, ) + (jj)y 2P toes 6 230-1000° 3%
untagged (ee, pp) + (J)yt2Pb taes 6 230-1000 © 3%
VBF tag  (ec, up) + (Gi)y 2" " + (ij)ver 6 230-1000 © 3%
VBF tag  (ee, pup) + (J)7H2° & 4 (§j)ypr 6 230-1000 © 3%

“EW singlet model interpretation starts at 200 GeV to avoid contamination from h(125).
600-1000 GeV for /s = 8 TeV only.
‘For /s = 8 TeV only.

Table 1. A summary of the analyses included in this paper. The column “H production” indicates
the production mechanism targeted by an analysis; it does not imply 100% purity in the selected
sample. The main contribution in the untagged categories is always ggF. The (jj)vpr refers to a
dijet pair consistent with the VBF topology. (jj)w(z) and (J)w(z) refer to a dijet pair and single
merged jet from a Lorentz-boosted W (Z) with an invariant mass consistent with a W (Z) dijet
decay, respectively. The superscript “0,1,2 b tags” refers to the three possible categories of b tag
multiplicities. Exclusive final states are selected according to the lepton and reconstructed jet
content of the event. The mass range under investigation and the mass resolution are also listed.
Mass ranges differ with the sensitivities of each channel.

5 Data analysis

The results presented in this paper are obtained by combining searches exploiting different
Higgs boson production and decay modes as detailed in table 1. All final states are exclu-
sive, without overlap between channels. For the WW — (vlv and ZZ — 2£2¢' channels
a mass range starting from 110 GeV has been analyzed in other contexts (e.g. [12]), but
in this paper both analyses are restricted to searches above 145 GeV . In the rest of this
section, the individual analysis strategies and details are defined including a discussion of
the leading systematic uncertainties. In the next section, statistical interpretations of the
individual and combined searches are given for the Higgs boson with SM-like couplings
hypothesis as well as the EW singlet extension of the SM.



51 H — WW — flvév

In the H - WW — fvfv channel the Higgs boson decays to two W bosons, both of which
decay leptonically, resulting in a signature with two isolated, oppositely charged, high-pt
leptons (muons or electrons) and large E%ﬁss due to the undetected neutrinos. A complete
description of the analysis strategy is given in ref. [18]. For this analysis, we require triggers
with either one or two high-pt muons or electrons. The single muon or electron triggers
are based on relatively tight lepton identification with pr thresholds from 17 to 25 GeV
(17 to 27 GeV) in the muon (electron) channel. The higher thresholds are used for periods
of higher instantaneous luminosity. The dilepton trigger pt thresholds for the leading and
trailing leptons were 17 and 8 GeV, respectively.

Candidate events must contain two reconstructed leptons with opposite charge, pr >
20 GeV for the leading lepton, and pt > 10GeV for the subleading one. Only muons
(electrons) with |n| < 2.4 (2.5) are considered in this channel. The analysis is very similar
to that in the Higgs boson discovery [11, 12], but additionally uses an improved Higgs
boson lineshape model.

Events are classified into three mutually exclusive categories, according to the number
of reconstructed jets with pp > 30GeV . The categories are characterized by different
signal yields and signal-to-background ratios. In the following, these are referred to as 0-
jet, 1-jet, and 2-jet multiplicity categories. Events with more than two jets are considered
only if they are consistent with the VBF signature: a dijet mass of the two highest pr jets
greater than 500 GeV, |An;;| > 3.5, and no additional jets with pr > 30 GeV in the 7 region
between these two leading jets. Signal candidates are further divided into same-flavor (SF)
dilepton (utpu~ or eTe™) and different-flavor (DF) dilepton (u*eT) categories. The bulk
of the signal arises through direct W boson decays to muons or electrons, with the small
contribution from W — 7v — ¢ + X decays implicitly included.

In addition to high-pr isolated leptons and minimal jet activity, significant Elfnss is ex-
pected to be present in signal events, as opposed to none to moderate Elrniss in background.
For this channel, an Effl’is;r
component transverse to the closest lepton, if A¢(¥, E&niss) < m/2, or (ii) the magnitude of

variable is employed, defined as (i) the magnitude of the E}niss

E%ﬁss otherwise. This observable more efficiently distinguishes Z/v* — 777~ background
events in which the E%liss is preferentially aligned with the leptons, and Z/y* — £T¢~
events with mismeasured E%liss. Since the E%issr resolution is degraded as pileup increases,
the minimum of two different observables is used: the first includes all particle candidates
in the event, while the second uses only the charged particle candidates associated with
the primary vertex. Events with E%ifr > 20 GeV are selected for this analysis.

The backgrounds are suppressed using techniques described in refs. [11, 12]. Top quark
background is controlled with a selection based on the presence of a soft muon and b-jet
tagging [105]. Rejection of events with a third lepton passing the same requirements as the
two selected leptons reduces both WZ and W~* backgrounds.

The Drell-Yan (DY) process produces SF lepton pairs (u*p~ and ete™) and therefore
additional requirements are applied for the SF final state. Firstly, the resonant component
of the DY background is rejected by requiring a dilepton mass outside a 30 GeV window



centered on the Z boson mass. The remaining off-peak contribution is further suppressed
by requiring significant missing transverse energy in the event. For the /s = 7 TeV data, we
require E%issr > (374 Nyix/2) GeV directly, while for /s = 8 TeV data, a boosted decision
tree (BDT) multivariate discriminant including Ef'3 is used. For events with two jets,
the dominant source of misreconstructed EF'° is the mismeasurement of the hadronic
recoil, and optimal performance is obtained by requiring E%“iss > 45GeV . Finally, the
momenta of the dilepton system and of the most energetic jet must not be back-to-back
in the transverse plane. For the /s = 7TeV data, we require the angle to be less than
165 degrees , while for /s = 8 TeV data, this information is included in the BDT. These
selections reduce the DY background by three orders of magnitude, while rejecting less
than 50% of the signal.

The final analysis in the DF and in the SF 0-jet or 1-jet categories is performed using a
two-dimensional fit in two observables, the dilepton invariant mass my, and the transverse
mass mt determined between the transverse dilepton system, ]5161? , and the E_'Ifnissz

mr = \/2p4T€E%ﬂSS (1~ cosae (5, Epp=)), (5.1)

where A®(pY, E%iss) is the azimuthal angle between the dilepton transverse momentum
and the E%liss.

Figure 1 shows the distributions of these two observables for the 0-jet DF category.
The fit ranges in my and m7 are dependent on the myg hypothesis. For myg > 200 GeV,
additional selections requiring pr > 50 GeV for the leading lepton and mt > 80 GeV are
imposed to suppress the h(125) contribution. A cross-check counting analysis is performed
by applying selection criteria to several kinematic observables including mys and mr.

For the VBF production mode [107-110], the cross section is roughly ten times smaller
than for ggF at lower my hypotheses and is roughly three times smaller at the highest my
hypothesis. We optimize the selection in the 2-jet category to tag these VBF-type events by
requiring the mass of the dijet system to fulfill mj; > 500 GeV, and the angular separation
of the two jets to pass |An;| > 3.5. Given the small event yield in this category, the
signal extraction in the DF category is performed using a one-dimensional fit in my, where
an my dependent requirement on the transverse mass is imposed. A counting analysis is
performed in the SF category and is used as a cross-check in the DF category.

The normalization of the background contributions relies on observed events rather
than simulation whenever possible, and exploits a combination of techniques [11, 12]. The
tt background is estimated by extrapolation from the observed number of events with the b-
tagging requirement inverted. The DY background measurement is based on extrapolation
from the observed number of u™p~ and eTe™ events with the Z boson veto requirement
inverted. The background of W + jets and Quantum Chromodynamics (QCD) multijet
events is estimated by measuring the number of events with one loosely isolated lepton.
The probability for such loosely isolated nongenuine leptons to pass the tight isolation
criteria is measured in observed data using multijet events. In the O-jet and 1-jet bins,
the nonresonant WW contribution is estimated from a fit to the data while in the 2-jet
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Figure 1. Distributions of my, (left) and mr (right) for the 0-jet DF category of the H - WW —
lvly search. The uncertainty in the background histograms includes the systematic uncertainties
on all background estimates and is centered on the sum of all backgrounds, including the h(125)
in red. The W + jets distributions include the contributions from QCD multijet processes as well.
The red open histogram shows five times the expectation for a my = 400 GeV SM-like Higgs boson.
The selection has been optimized to suppress the h(125) contribution as explained in the text.

bin it is estimated from simulation. Other backgrounds, such as V+Z/v* and triple boson
production (VVV) are estimated from simulation and are small.

Experimental effects, theoretical predictions, and the choice of event generators
(POWHEG, GG2WW, MADGRAPH, PHANTOM) are considered as sources of systematic un-
certainty, and their impact on the signal efficiency is assessed. The overall signal nor-
malization uncertainty is estimated to be about 20%, and is dominated by the theoretical
uncertainty associated with missing higher-order QCD corrections and PDF uncertainties,
estimated following the PDFALHC recommendations [81, 111-114]. The total uncertainty
in the background estimation in the H — WW signal region is about 15% and is domi-
nated by the statistical uncertainty in the observed number of events in the background
control regions.

52 H— WW — flvqq
5.2.1 Unmerged-jet category

In the H - WW — fvqq channel we search for a Higgs boson decaying to WW, where one
W decays leptonically, thus providing a trigger handle for the event, while the other decays
hadronically. This channel has a larger branching fraction than the two-lepton final state
and allows one to reconstruct the Higgs boson candidate invariant mass [115]. The final
state consists of an isolated electron or muon, Efrniss, and two separated jets. The main
experimental challenge is to control the large W-jets background.

We use data collected with a suite of single-lepton triggers mostly using pr thresh-
olds of 24 (27) GeV for muons (electrons). Basic kinematic selections are applied to the
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final-state objects to reduce the background contribution. The muon (electron) is required
to be isolated and have pr > 25 (35)GeV . A veto is imposed on additional muons
and electrons in the event to reduce backgrounds from DY events. The events are re-
quired to have EXSS > 25(30) GeV in case of muons (electrons). The transverse mass

mp =V 2pr BRI (1 — cos A®), with A® being the azimuthal angle between the lepton pr
and E%liss, needs to be greater than 30 GeV . The two leading-pr jets in the event each
must have pr > 30 GeV and must together have an invariant mass, m;;, between 66 and
98 GeV . An unbinned maximum likelihood fit is performed on mj; to determine the back-
ground normalizations in the signal region for each Higgs mass hypothesis independently.
Events that contain a b-tagged jet are vetoed in order to reduce the background from top
quark decays.

To further exploit the differences in kinematics between the signal and background, a
likelihood discriminant is constructed using angles between the Higgs boson decay products
that fully describe the Higgs boson production kinematics [19, 71] and the lepton charge.
The lepton charge provides discrimination power because of the charge asymmetry in the
background, which is not present in the signal. This approach improves the expected
sensitivity to a Higgs boson across the entire mass range.

The background normalization in the signal region is extracted for each Higgs boson
mass hypothesis independently with an unbinned maximum likelihood fit to the dijet in-
variant mass distribution, mj;, of the two leading jets. The signal region corresponding to
the W boson mass window, 66 < mj; < 98 GeV, is excluded from the fit. The background is
overwhelmingly due to events from W+jets production. The normalization of the W+jets
component is a free parameter and is determined in the fit. The electroweak diboson, tt,
and single top shapes are based on simulation and their normalizations are constrained
to the theoretical predictions with associated uncertainties. In the case of diboson back-
grounds, both WW and WZ normalizations come from NLO predictions. The uncertainties
in the normalization of the W+jets component obtained from the fit, as well as those from
all other backgrounds, are included in the limit calculation as systematic uncertainties.

For the signal search, we use the binned distribution of mwyw, which is computed
using a neutrino longitudinal momentum, p,, that is determined from the constraint that
the leptonically decaying W boson is produced on-shell. The ambiguity of two possible
solutions is resolved by taking the solution that yields the smaller |p,| value for the neutrino.
According to simulation over 85% of signal events are assigned the correct p, value, thus
improving the mass resolution, especially at low Higgs mass. The contribution of each
background in the signal region (66 < mj; < 98 GeV) is described by an expected shape
and normalization. The distribution of the W+jets contribution is parameterized with a
polynomial functional form determined through simulation. The parameters of the function
are determined from the observed data spectrum in the binned likelihood fit, which is also
used to determine the exclusion limits. The other background shape distributions are
parameterized using simulation, and their normalizations and uncertainties are included as
nuisance parameters. Figure 2 depicts the myw distribution for the muon category for two
different Higgs boson mass hypotheses. The observed data are compared to background
and signal expectations.
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Figure 2. The WW invariant mass distribution with the fit projections in the signal region 66 <
mj; < 98 GeV, for the muon channel of the unmerged-jet category. The V+jets background includes
both, the large contribution from W+jets production, and the much smaller component of Z+jets.
The blue curve on the left (right) shows 50 (5) times the expectation for a my = 200 (500) GeV
SM-like Higgs boson.

Experimental effects, theoretical predictions, and uncertainties due to the choice of
fit functions are considered as sources of systematic uncertainty. Because of the large
background, the dominant source of systematic uncertainty is the shape uncertainty of the
W-jets mww distribution, followed by the normalization uncertainty that is extracted
from the my; fit. The main uncertainty in the signal normalization stems from the uncer-
tainty in the efficiency of the likelihood discriminant selection. This effect occurs because
of mismodeling of the likelihood discriminant and is studied in a signal-depleted region of
the analysis.

5.2.2 Merged-jet category

In the highest mass range of this search, from 600 to 1000 GeV, the pt of the decaying
W bosons is typically greater than 200 GeV . At this pp, the daughter quarks of the
hadronically decaying W are often merged into a single jet to the point where traditional
dijet searches cannot be performed. For a signal mass of 600 GeV (1 TeV), and signal events
falling in the detector acceptance, approximately 65% (82%) of the hadronic W decay
products are contained in a cone of AR < 0.8; alternatively, approximately 10% (42%) of
the hadronic W decay products are separated by a distance of AR < 0.5 and would not be
reconstructed by the standard CMS AKS5 jet finding algorithm. The larger cone CAS8 jet
affords more signal acceptance in the single jet signature while not losing events when the
decay products are separated by AR < 0.5. In this case, we use jet substructure techniques
for identifying jets that have originated from a hadronically decaying W boson with high
Lorentz boost.

As in the unmerged case, we use data collected with the single electron or muon trigger.
The dominant background is W+jets with a smaller background contribution from tt.
Remaining backgrounds arise from WW, WZ, ZZ, and single top quark production.
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The hadronic W boson candidate is reconstructed with CAS8 jets to increase accep-
tance. To reduce the contribution of quark- and gluon-initiated jets from QCD processes,
a selection is made on the pruned jet mass of the CAS8 jet of 65 < my < 105 GeV and the
N-subjettiness ratio mo/7 < 0.5.

The kinematic selections of muons and electrons are slightly more stringent than those
for the unmerged case, with the pt thresholds of isolated muons and electrons being 30 and
35 GeV, respectively. The E%iss requirement is increased to be greater than 50 (70) GeV
in the muon (electron) channel. The pr of both, leptonically and hadronically decaying W
boson candidates, is required to be greater than 200 GeV in order to select events with a
large Lorentz boost. Additional selections are made to ensure that the W boson candidates
are sufficiently separated in a back-to-back topology. As in the unmerged category, there
is an additional requirement to veto events with a b tagged jet in order to reduce the
background from top quark decays.

To increase the sensitivity of the analysis, the analysis is split into exclusive jet multi-
plicity categories: 0+1-jet and 2-jets. These additional AK5 jets must pass a pr threshold
of 30 GeV and be separated from the hadronic W candidate in the event by a distance
AR > 0.8. Additionally, the 2-jet category has further requirements to better identify a
topology consistent with the VBF production mode. The two highest pr AKS5 jets in the
event are required to satisfy |An;| > 2.5 and mj; > 250 GeV . There is also a requirement
on the invariant mass of the W boson candidates and the nearest AK5 jet to be greater
than 200 GeV in order to reject other top quark background. The final discriminating
distribution is the mww shape reconstructed from the lepton + EXS + CAS8 jet sys-
tem. Because the number of events in the 2-jet category is limited, the muon and electron
datasets are merged.

The background is estimated using observed data rather than simulation wherever
possible. The dominant W+jets background normalization is determined from a fit to
the pruned jet mass sideband where other backgrounds contribute less significantly. The
W-+jets shape is determined from extrapolating the pruned jet mass sideband region into
the signal region. The tt background is estimated by inverting the veto on AK5 b-tagged
jets, which yields a high-purity tt control sample. The normalization of tt in the signal
region is then corrected by a data-to-MC scale factor determined from the tt control sample.
Finally the tt control sample is also a good source of W bosons with high Lorentz boost,
which are used to calibrate the jet substructure selection efficiency.

Figure 3 displays the final mww distributions after all selections and background
estimations for the 0+1-jet category for the muon channel only on the left and for the 2-jet
category on the right. In the 2-jet category, there is an excess observed around 750 GeV
with local significances of 2.6 o at 700 GeV and 2.1 ¢ at 800 GeV . No such excess is observed
in the 041-jet multiplicity bin.

Sources of systematic uncertainty are similar to the unmerged-jet category. The dom-
inant experimental uncertainties are the background normalization and shape uncertainty,
particularly in the 2-jet category, where the number of events is small, as well as the uncer-
tainty in the signal cross section due to the hadronic W candidate selection. The dominant
theoretical uncertainty comes from the uncertainty in the cross section when dividing the
analysis into exclusive jet multiplicity bins.
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Figure 3. The final WW invariant mass distribution is shown for the 041-jet bin category for the
muon channel only (left) and for the 2-jet bin category (right). Points represent the observed data,
shaded graphs represent the background and dashed graphs represent five times the expectation for
a my = 800 GeV SM-like Higgs boson from ggF and VBF production, separately.

5.3 H — ZZ — 202¢¢

This analysis seeks to identify Higgs boson decays to a pair of Z bosons, with one Z
decaying to a pair of muons or electrons (Z — 2¢, with £ = p or e), and the second
decaying to electrons, muons or taus (Z — 2¢‘, with ¢ = e,y or 7) [11, 19, 116]. This
channel has extremely low background, and the presence of four leptons in the final state
allows reconstruction and isolation requirements to be very loose, leading to a high selection
efficiency. This channel is one of the most sensitive channels across the entire mass range.

For this analysis, we require triggers with two high-pt muons or electrons. The dilepton
trigger pr thresholds for the leading and trailing leptons were 17 and 8 GeV, respectively.
Events included in the analysis contain Z boson candidates formed from a pair of leptons
of the same flavor and opposite charge. Decay muons or electrons are required to be
isolated, and to originate from the primary vertex. Muons (electrons) are required to have
pr > 5(7)GeV and |n| < 2.1(2.5), while taus are required to have a visible transverse
momentum pr > 20 GeV and |n| < 2.3. We reconstruct the Z — 77 in the following decay
modes: Z — T, Z — TeTh, Z — T,Th, and Z — 7.7,. Overlap with the 2¢2¢ channel is
avoided by excluding events with both taus decaying to electrons or muons.

For the 2/2¢ final state, the lepton pair with invariant mass closest to the nominal Z
boson mass, denoted Zi, is identified and retained if 40 < myz, < 120GeV . The second
7 boson, denoted Zo, is then constructed from the remaining leptons in the event, and is
required to satisfy 12 < my, < 120GeV . If more than one Zj candidate remains, the
ambiguity is resolved by choosing the leptons of highest pr. Amongst the four candidate
decay leptons, at least one should have pp > 20 GeV, and another should have pp > 10 GeV.
This requirement ensures that selected events correspond to the high-efficiency plateau of
the trigger.
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For the 2/27 final state, events are required to have one Z; — 2¢ candidate, with one
lepton having pt > 20 GeV and the other pp > 10 GeV. The leptons from leptonic decays
of the tau are required to have pt > 10 GeV . The invariant mass of the reconstructed Z;
candidate is required to satisfy 60 < myy < 120 GeV . The Zs candidate mass reconstructed
from the visible tau decay products (visible mass), m ., must satisfy 30 < m., < 90 GeV
for events with at least one hadronically decaying tau, and 20 < m., < 90 GeV for events
with two leptonically decaying taus. Events with both taus decaying to muons or electrons
are excluded in order to avoid overlap with the 2¢2¢ channel. The selections on the recon-
structed Z; mass for the 2¢27 final state are tighter than for the 2¢2¢ channel, because the
search range starts at mp = 200 GeV rather than myp = 145 GeV.

In order to further separate signal from background and to distinguish different signal
production mechanisms, we use a matrix element likelihood approach, which relies on prob-
abilities for an event to come either from signal or background using a set of observables,
such as angular and mass information, which fully characterize the event topology in its
center-of-mass frame [71].

The events are categorized according to their jet multiplicity, counting jets with pp >
30 GeV . In the 0- or 1-jet category the pr spectrum of the four-lepton system is exploited
to distinguish between ggF and vector boson induced production modes, such as VBF and
associated production with a vector boson (VH). The events selected with two or more
jets potentially come from several sources: background (predominantly ZZ+2 jets), VBF
signal, VH signal (with V—2 jets), and ggF signal gg — H+2 jets. In order to isolate
the production mechanism, we use a matrix-element-based probability [71, 117] for the
kinematics of the two jets and the Higgs boson to come either from the VBF process or
from the gg — H+2 jets process. This discriminant is equally efficient to separate VBF
from either H+2 jets signal or ZZ+2 jets background, because both processes show very
similar jet kinematics.

To allow estimation of the tt, Z+jets, and WZ+jets backgrounds, a Z;+X control
region is defined, well separated from the expected signal region. In addition, a sample of
Z1+/ events, with at least one reconstructed lepton in addition to a Z, is defined in order to
estimate the lepton misidentification probability, which is the probability for non-prompt
leptons and other particles, which are not leptons, to be reconstructed as leptons and to
pass the isolation and identification requirements. The contamination of the sample from
WZ events containing a genuine additional lepton is suppressed by requiring the energy
imbalance measured in the transverse plane to be below 25(20) GeV for the 2¢2¢ (2027)
channel. The event rates measured in the background control region are extrapolated to
the signal region. The systematic uncertainties associated with the reducible background
estimate vary from 30% to 100% and are combined in quadrature with the statistical
uncertainties.

The cross section for ZZ production at NLO is calculated with MCFM. The theo-
retical uncertainty in the cross section is evaluated as a function of mogoe, varying both
the renormalization and factorization scales and the PDF set, following the PDF4LHC
recommendations [81, 111-114].

The reconstructed invariant mass distribution for 2¢2¢, combining the 4y, 2u2e, and 4p
channels, is shown in figure 4 (left), compared with the expectation from SM background
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Figure 4. Distribution of the four-lepton reconstructed mass for the sum of the 4y, 2u2e, and 4e
channels (left), and for the sum over all 2¢27 channels (right). Points represent the observed data,
shaded histograms represent the background, and the red open histogram shows the expectation
for a myg = 350 GeV SM-like Higgs boson.

processes. Figure 4 (right) plots the reconstructed visible mass distribution for the 2¢27
selection, combining all 2¢27 final states.

The background shapes are taken from simulation, with rates normalized to the ob-
served data. The measured Z boson and ZZ masses are underestimated due to the unde-
tected neutrinos in tau decays. To compensate for this effect we correct the momenta of
the visible tau decay products to constrain the Z boson mass to 91.2 GeV . The correction
is applied on the selected events and only affects the final mass shape of the ZZ system.
The observed mass distributions are well-matched to the SM background expectation.

In the 2/2¢ channel limits on the production of heavy Higgs bosons are extracted
using the unbinned four lepton mass distribution and the correlation of the kinematic
discriminant with the Higgs boson mass. In the case of the tagged 2-jet category a third
dimension is introduced using the correlation of the aforementioned VBF discriminant with
the four-lepton mass. In the untagged 0/1-jet category the transverse momentum of the
four lepton system is used in place of the VBF discriminant. For the 2¢27 final state, limits
are set using the moyo, distribution.

54 H — Z7Z — 202v

This analysis seeks to identify Higgs boson decays to a pair of Z bosons, with one Z
boson decaying to neutrinos and the other decaying to leptons. The analysis strategy is
based on selection requirements in the (EITniSS, mr) phase space, with selections adjusted
for different mpy hypotheses [118]. Here, the transverse mass is determined between the
transverse dilepton system, ﬁ’ffé, and the E%liss.

As in the previous section, we use data collected with the trigger requiring two high-pr
electrons or muons. Events are required to have a pair of well-identified, isolated leptons of
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same flavor (1™~ or ete™), each lepton with pr > 20 GeV, with an invariant mass within
a 30 GeV window centered on the Z boson mass. The pr of the dilepton system is required
to be greater than 55 GeV. The presence of large Efl?iss (70 GeV or more, depending on
my) in the event is also required.

To suppress the Z+jets background, events are rejected if the angle in the transverse
plane between the E%niss and the closest jet with pp > 30 GeV is smaller than 0.5 radians.
Events where the lepton is mismeasured are rejected if E%‘iss > 60 GeV and A¢(¢, E%iss)
< 0.2. The top quark background is suppressed by applying a veto on events having a b
tagged jet with pr > 30GeV and || < 2.5. To further suppress this background, a veto is
applied on events containing an additional, soft muon with pt > 3 GeV, typically produced
in the leptonic decay of a b quark. To reduce the WZ background, in which both bosons
decay leptonically, any event with a third lepton (u or e) with pr > 10 GeV, and passing
the identification and isolation requirements, is rejected.

The search is carried out in two mutually exclusive categories. The VBF category
contains events with two or more jets in the forward region, with a |An;| > 4 requirement
between the two leading jets, and with the invariant mass of those two jets greater than
500 GeV . In addition, the two leptons forming the Z candidate are required to lie between
these two jets in 7, while no other selected jets with pr > 30GeV are allowed in this
region. The ggF category includes all events failing the VBF selection, and is subdivided
into subsamples according to the presence or absence of reconstructed jets with pp >
30GeV . The event categories are chosen in order to maximize the expected cross section
limit. In the case of the VBF category, a constant EIT]rliSS > 70 GeV and no mt requirement
are used, as no gain in sensitivity is obtained with a selection dependent on the Higgs
boson mass hypothesis. In the case of ggF, we apply an mpy-dependent lower limit on
E%ﬁss ranging from 80 to 100 GeV over the search range.

The background composition is expected to vary with the my hypothesis. At low-
mu, Z-+jets and tt processes are the largest contributions, while at my > 400 GeV the
irreducible ZZ and WZ backgrounds dominate. The ZZ and WZ backgrounds are estimated
from simulation and are normalized to their respective NLO cross sections. The Z+jets
background is modeled from a control sample of events with a single photon produced
in association with jets. This procedure yields a good model of the Elrniss distribution in
Z+jets events.

The uncertainty associated with the Z+jets background is affected by residual contam-
ination of the y+jets control sample from processes involving a photon and genuine E%liss.
We do not explicitly subtract this contamination, but include a shape uncertainty in the
final fit, which is allowed to vary this small residual background between 0 and 100% of
this estimate.

Background processes that do not involve a Z boson (nonresonant background), include
tt, single top quark production, W+jets and WW, and are estimated with a control sample
of DF dilepton events (uTe®) that pass the full event selection. This method cannot
distinguish between the nonresonant background and a possible contribution from H —
WW — 202v events, which are treated as part of the nonresonant background estimate.
The nonresonant background in the u*u~ or ete™ final states is estimated by applying a
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Figure 5. The final transverse mass (left, center) and missing transverse energy (right) distributions
are shown for all three event categories of the H — Z7Z — 2£2v channel: (left) events with zero jets,
(center) events with at least one jet, but not passing the VBF selection, (right) VBF events. The
expected distributions from the different background processes are stacked on top of each other.
The red open histograms show the expectation for a my = 400 GeV SM-like Higgs boson separating
the ggF and VBF contributions. In the case of the 0-jet category, the VBF contribution is multiplied
by a factor of 10 to increase visibility.

scale factor to the selected uFeT events, obtained from the events in the sidebands of the
Z boson peak (40 < my < 70 GeV and 110 < myy < 200 GeV). The uncertainty associated
with the estimate of this background is determined to be 25%. No significant excess of
events is observed over the SM background expectation.

The mT and Efl?iss distributions used to extract the results are shown in figure 5 for
all three event categories with the muon and electron channels combined.

55 H — ZZ — 202q

The H — ZZ — 2¢2q channel has the largest branching fraction of all H — ZZ channels
under consideration, but also a large background contribution from Z+jets production.
Furthermore, the reconstruction of the hadronically decaying Z boson is more difficult
than the fully leptonic final states. The dominant background is due to the DY process
and can be reduced using b-tagging requirements on the selected jets, as will be described
later in this section.

As in the other channels with a Z boson in the final state, we use data collected with
the trigger requiring two high-pt muons or electrons. Reconstructed muons and electrons
are required to have pr > 40(20) GeV for the leading (second) lepton. Muons are required
to have |n| < 2.4, and electrons |n| < 2.5. Jets are required to have pr > 30 GeV and
In| < 2.4. Each pair of oppositely charged leptons of the same flavor and each pair of jets
are considered as Z boson candidates.

To increase the sensitivity to a possible signal, the main analysis is complemented
with dedicated selections for the VBF signature. VBF events are identified requiring two
additional jets with pp > 30 GeV, mj; > 500 GeV, and |Anj;| > 3.5.

Analogously to the H - WW — frqq channel, the analysis is modified for very high
Higgs boson masses (my > 600 GeV) to account for the fact that the two jets originate from
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a Lorentz-boosted Z boson and therefore they may be reconstructed as a single, merged
jet (sections 4 and 5.2.2). Information about the internal structure of this kind of jet [103]
is used in order to gain some insight about the origin of the jet, distinguishing the DY
background from jets produced from boosted Z bosons. To reduce the contamination from
nonboosted Z 4+ X backgrounds, the selection for the merged-jet topology requires the
hadronically decaying Z boson to have pp > 100 GeV and |n| < 2.4, and the leptonically
decaying Z boson to have pp > 200 GeV.

In order to exploit the different jet composition of signal and background, events are
classified into three mutually exclusive categories according to the number of selected b
tagged jets: 0 b tag, 1 b tag, and 2 b tag. This distinction is not done in the VBF oriented
selection where the main discrimination is given by a multivariate discriminator for VBF
topology based on angular and energy information of the two VBF tag jets.

Background contributions are reduced by requiring 71 < mj; < 111GeV and 76 <
mye < 106 GeV in the selected events. The presence of Z bosons decaying to leptons and
dijets makes this selection very efficient for signal, whereas the continuous background gets
largely reduced. In case of the merged-jet analysis, the dijet requirement is applied on the
merged-jet mass, after applying the pruning procedure.

An angular likelihood discriminant is used to separate signal-like from background-
like events in each category [71, 119]. In order to suppress the substantial expected tt
background in the 2 b tag category, a discriminant is used, defined as the logarithm of
the likelihood ratio of the hypothesis that the E%liss is equal to the value measured by
the PF algorithm and the null hypothesis EX5 = 0 [91]. This discriminant provides a
measure of whether the event contains genuine missing transverse energy. When an event
contains multiple Z boson candidates passing the selection requirements, those with jets
in the highest b tag category are retained for analysis. If multiple candidates are still
present, the ones with mj; and my, values closest to the Z boson mass are retained. In the
case of the merged-jet category all the requirements on jets with respect to b tagging and
the likelihood discriminant are applied to the two subjets reconstructed inside the merged
jet. In case of events with a merged-jet Z boson candidate in addition to a dijet one, the
candidate from the merged jet gets selected.

The dominant Z+jets background is estimated using simulated events properly cor-
rected to reproduce the yield of the observed data in the control regions, defined as
60 < mj; < 71 GeV and 111 < mj; < 130 GeV . Simulated events are weighted to reproduce
the pr spectrum of the ¢4jj system in these control regions. In case of the merged-jet
category both the pr of the ¢¢ and ¢¢J systems have weights applied. The normalization
of this distribution is taken from observed data and used as an additional constraint for
this background.

Other backgrounds are estimated using simulated events. These include diboson and
top quark events. In the VBF selection, the background from top quark events is small.
In the ggF analysis it is estimated from observed data using a control sample of ey events,
invoking lepton flavor symmetry that is satisfied by several background contributions but
not in the signal events.

The distributions of myzyz in the signal region are shown in figure 6 for the three b tag
multiplicities of the dijet category comparing observed data with background expectations.
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Figure 6. The myy invariant mass distribution after final selection in three categories of the
H — Z7Z — 202q dijet channel: 0 b tag (left), 1 b tag (center), and 2 b tag (right). Points with
error bars show distributions of observed data. Solid histograms are depicting the background
expectation from simulated events for the different components. The red open histogram shows the
expectation for a my = 400 GeV SM-like Higgs boson.

Good agreement is observed within the uncertainties. For the merged and VBF categories
good agreement is also observed. The dominant systematic uncertainties are due to the b-
tagging performance and the JES [97]. Further systematic effects are due to the uncertainty
in the predicted signal and background shapes used in the analysis. The distributions of
myyz in the signal region are used to extract the final signal and background yields.

5.6 Systematic uncertainties

Systematic uncertainties for the various final states come from common treatment of the
signal model assumptions, reconstructed objects used in the analysis and a few common
experimental effects.

Uncertainties on the cross section for the production of heavy Higgs bosons arise from
uncertainties in the combined choice of the PDFs and ay, as well as in the renormalization
and factorization scales [73], which are typically 6-7% and 7-12%, respectively, for the ggF
production mechanism, and 1-2% and 2-5%, respectively, for production via VBF. Addi-
tionally, we add an uncertainty in the background coming from off-shell h(125) production,
which we estimate with ¢G2zz (PHANTOM) for the ggF (VBF) case. We find that at the
largest my values, the size of the effect is approximately 3% of the total background. Un-
certainties on the signal lineshape reweighting with interference varies for the ggF and VBF
modes. For ggF, we follow the prescription in ref. [73], which considers the NNLO contri-
bution to the signal interfering with the gg — ZZ background process. For VBF, without
a full prescription, we assign systematic uncertainties coming from renormalization and
factorization scale variations in the PHANTOM generator.

Other common systematic effects come from the luminosity uncertainty, which is 2.2%
(2.6%) for the 7 (8) TeV data. Uncertainties on the muon and electron reconstruction
efficiencies, and JES and jet energy resolution (JER) are correlated among the various
final states, where all these effects are subdominant. The lepton fake rate is largest for the
H — Z7Z — 2(2¢ channel, in which we consider fake leptons at relatively lower pr than
in the other channels. A summary of the systematic uncertainties per channel is given
in table 2.
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Source of uncertainty H—-WW | H—-WW | H-WW H—>ZZ | H—>Z7ZZ2 | H—>77
— Lvly — Lvjj — fv] — 2020 | = 202v | — 202q

Experimental sources

Luminosity, 7 (8) TeV 2.2 (2.6) 2.2 (2.6) 2.2 (2.6) | 2.2 (2.6) | 2.2 (2.6) | 2.2 (2.6)

{ trigger, reco, id, iso 1-4 1-2 1-2 0.5-7 2-3 1.8-2

¢ mom. /energy scale 2-4 0.5-30 1-2 0.1-04

¢ misid. rate 30

JES, JER, Emiss 2-35 <1 2 5-30 1 1-13

Pileup <1 1-3 1

b-tag/mistag 2.5 1-3 1-6

W-tag/Z-tag 7.5 0-9.3

Signal selection eff. 10 2

Monte Carlo statistics 1-20 1-2 0-6

Background estimates

tt, tW 20 7 6-30 25 0-15

Z+jets 40-100 2042 100 16

77 3 13-14 12

Wjets 40 0.6 8 25

WWwW 8-30 10 30 25

WZ, W~* 3-50 30 5.8-8.5

Theoretical sources

o(gg — H) 10-13 10-11 11-13 10-13 10-13 10-13

o(qq — H) 2.6-5.8 2.6-3.6 3.6-5.8 2.6-5.8 | 2.6-5.8 | 2.6-5.8

H lineshape 5 2-8 0-7

H-WW (ZZ) interference 1-27 10-50 10-50

Jet binning 7-35 7-35 30

Table 2. Sources of systematic uncertainties considered in each of the channels included in this
analysis. Uncertainties are given in percent. Most uncertainties are affecting the normalisation of
the observed data or simulated events, but some are uncertainties on the shape of kinematic distri-
butions. Wherever ranges of uncertainties are given, they are either ranges in my, jet multiplicity
categories, or dependent on the production mode.

6 Statistical interpretation

The combination of the measurements in the different channels presented in this paper re-
quires the simultaneous analysis of the data selected by all individual analyses, accounting
for all statistical and systematic uncertainties, as well as their correlations. The statistical
methodology used in this combination was developed by the ATLAS and CMS Collabo-
rations in the context of the LHC Higgs Combination Group [12, 120, 121]. Upper limits
on the model parameters are set for different my hypotheses using a modified frequentist
method referred to as the CLg method [122, 123], where a likelihood ratio test statistic is
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Figure 7. Upper limits at the 95% CL for each of the contributing final states and their combina-
tion. The theoretical cross section, ogy, is computed in ref. [73]. The observed and expected limits
of the six individual channels are compared with each other and with the combined results (right),
for H - WW channels (top right panel) and H — ZZ channels (bottom right panel) separately.

used in which the nuisance parameters are profiled. In the likelihood ratio, the total num-
ber of observed events is compared to the signal and background predictions by means of a
product of Poisson probabilities. The predictions are subject to the multiple uncertainties
described in the previous section, and are handled by introducing nuisance parameters
with probability density functions. The nuisance parameters modify parametrically the
expectations for both signal and background processes. Furthermore, a signal strength
modifier () is used to scale the Higgs boson cross sections of all production mechanisms
by the same factor with respect to their SM predictions while keeping the decay branching
fractions unchanged.

6.1 SM-like Higgs boson search

The combined results obtained for a heavy Higgs boson with SM-like couplings for all
the different contributing final states are displayed in figure 7. On the left, the observed
95% CL limit is shown for each final state. The expected combined 95% CL limit of the
six channels is plotted as a dashed black line, while the yellow shaded region is the +2¢
uncertainty in the expected limit. On the right, the expected and observed limits are
displayed for each of the individual channels as well as the combined result. The top right
panel shows the WW final states, while the ZZ final states are displayed in the bottom
right panel. In the lower mass region of the search range, the most sensitive channels are
H — 7Z7Z — 4¢ and H - WW — 2/2v. At the highest masses, the H — ZZ — 2/2v channel
has the best sensitivity, while H - ZZ — 4/, H - WW — 2/2v, H - WW — {vqq, and
H — 77 — 2£2q contribute significantly.
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Figure 8. Upper limits at the 95% CL on the EW singlet extension. Upper limits are displayed
as a function of the heavy Higgs boson mass and the model parameter C'? for different values of
Bhew. The upper dash-dotted line indicates where, for Byew = 0.5, the variable width of the heavy
Higgs boson reaches the width of a SM-like Higgs boson. The lower dash-dotted line displays the
indirect limit at 95% CL on C'? from the measurement of h(125).

Features in the combined observed limit can be traced to corresponding features in the
limits of the individual channels. At lower masses below 400 GeV, there are oscillations in
the observed limit due to the high resolution channel, H — ZZ — 4/, and the narrow width
of the heavy Higgs boson in this mass range. An excess in the combined limit at around
280 GeV is related to a small excess in the channels H — ZZ — 4¢ and H - WW — 202v.
The small excess of observed events seen around 700 GeV in the H - WW — /vJ merged-
jet category is not supported by the other channels and is reduced to less than 0.5¢ in
the combination. The combined upper limits at the 95% CL on the product of the cross
section and branching fractions exclude a Higgs boson with SM-like couplings in the full
search range 145 < my < 1000 GeV.

6.2 EW singlet Higgs boson search

We interpret the search results in terms of a heavy Higgs boson in the EW singlet extension
of the SM. The parameters of the model are C'?, the heavy Higgs boson contribution to
electroweak symmetry breaking, and By, the contribution to the Higgs boson width of
non-SM decays, and are defined in section 3. Figure 8 shows the expected and observed
upper limits at 95% CL on the singlet scalar cross section with respect to its expected cross
section as a function of its mass.

The region above the curves shows the parameter space that is expected to be excluded
at 95% CL. We show the exclusion region for various values of Bpey. We find a large region
of C"? versus mass parameters to be excluded for various values of Byew. We also plot the
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Figure 9. Upper limits at the 95% CL on the EW singlet extension. Upper limits are displayed as
a function of the heavy Higgs boson mass and the model parameter C’? for different values of Bpew-
All considered ZZ decay channels combined (top left). All considered WW decay channels combined
(top right). Limits for the ggF production mode only (bottom left). Limits for VBF production
only (bottom right). The dash-dotted line in the two left plots indicates where, for Byew = 0.5, the
variable width of the heavy Higgs boson reaches the width of a SM-like Higgs boson.

pn(i25) = 14 0.14 [85] indirect constraint C”? < 0.28 at 95% CL for Bpew=0. The upper
dash-dotted line shows the cutoff of the allowed region for Bew = 0.5 where the width of
the heavy Higgs boson becomes larger than the SM width at that mass hypothesis.

In order to understand the constraints of these results in a model-independent ap-
proach, we further subdivide the results into categories. In figure 9 we show the limits in
various configurations. At the top of figure 9 are the limits we obtain when we combine
the ZZ (top left) and WW (top right) channels separately. Since the ZZ channels are more
sensitive in the search for a Higgs boson with SM-like couplings, they better constrain the
BSM case as well. The bottom of figure 9 shows the combined 95% CL for all final states
but only the ggF or VBF production mechanism for the heavy Higgs boson. In the heavy
Higgs boson with SM-like couplings scenario, we assume the ratio of the cross sections for
various production mechanisms to be the same as in the SM case.

7  Summary

Combined results are presented from searches for a heavy Higgs boson in H — WW and
H — 77 decay channels, for Higgs boson mass hypotheses in the range 145 < my <
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1000 GeV . In the case of a Higgs boson decaying into a pair of W bosons, the fully leptonic
(H— WW — /(vfv) and semileptonic (H - WW — frqq) final states are considered in
the analysis. For a Higgs boson decaying into two Z bosons, final states containing four
charged leptons (H — ZZ — 2£2{'), two charged leptons and two quarks (H — ZZ — 2(2q),
and two charged leptons and two neutrinos (H — ZZ — 202v) are considered, where ¢ = e
or pand ¢ =e, u, or 7.

The observed data are interpreted both in the context of a heavy Higgs boson with
SM-like couplings and decays, as well as a search for a heavy, narrow resonance as an EW
singlet partner of the SM Higgs boson at 125 GeV . No significant excess over the expected
SM background has been observed and exclusion limits have been set. In the case of the
search for a heavy Higgs boson with SM-like couplings and decays, we exclude the existence
of such a heavy Higgs boson over the entire search range of 145 < my < 1000 GeV . For
the EW singlet partner of the SM Higgs, the parameters of the model are C'?, the heavy
Higgs boson contribution to EW symmetry breaking, and Byew, the contribution to the
Higgs boson width of non-SM decays. We find that a large part of the C'? versus mass
parameter space is excluded for various values of Bpew. Additionally, we present limits for
the EW singlet model for different production mechanisms, ggF and VBF, and WW and
77 decay modes separately.
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