PERFORMANCE AND EMISSIONS ANALYSIS OF MARINE DIESEL ENGINES DURING SHIP MANEUVERING

Murat YAPICI M.Sc., Maritime Transportation and Management Engineering, Piri Reis University 2016

Submitted to the Institute for Graduate Studies in Science and Engineering in partial fulfillment of the requirements for the degree of Master of Science

Graduate Program in Maritime Transportation and Management Engineering Piri Reis University 2016 Murat YAPICI, M.Sc. student of Piri Reis Maritime Transportation and Management Engineering student ID 138013001, successfully defended the thesis entitled "PERFORMANCE AND EMISSIONS ANALYSIS OF MARINE DIESEL ENGINES DURING SHIP MANEUVERING" which he prepared after fulfilling the requirements specified in the associated legislations, before the jury whose signatures are below.

APPROVED BY

Colon	. CA .
Prof. Süleyman Özkaynak (Advisor).	What the find
Prof. Dr Nurhan Kahyaoğlu	L
Asst. Prof Dr. Kamil Özden Efes	ZZA

I

- 5

DATE OF APPROVAL:25/0.1/ 2016

To my familiy

ACKNOWLEDGMENTS

This thesis was written for my master degree in Maritime Transportation and Management Engineering, at Piri Reis University.

I would like to thank to the following people, without whose help and support, this thesis would not have been possible. I extend my thanks to my thesis advisor Prof. Süleyman Özkaynak for their interest and support during the conduct of this study.

Finally, I owe a debt of gratitude to my beloved family, who always supported me.

ACKNOWLEDGMENTS	III
LIST OF SYMBOLS/ABBREVIATIONS	VI
LIST OF TABLES	VII
LIST OF FIGURES	IX
ABSTRACT	XI
ÖZET	XII

1.]	. INTRODUCTION1				
1	.1.	Historical Development of Ecology and Air Pollution1	1		
	1.2.	Sulfur Cycle1	1		
	1.3.	Anthropogenic Influences on Air Pollution2	2		
		1.3.1. Carbon monoxide (CO)	2		
		1.3.2. Carbon dioxide (CO ₂)	2		
		1.3.3. Sulfur dioxide (SO ₂)	3		
		1.3.4. Sulfur trioxide (SO ₃)	3		
		1.3.5. Nitrogen Oxides (NO _X)	3		
		1.3.6. Particulate Matter	3		
	1.4.	Anthropogenic Impacts on Ship-Source Pollution4	1		
	1.5.	International Regulations for Air Pollution from Ships4	1		
2.]	MET	HODOLOGY9)		
2	2.1.	The Aim of the Research9)		
-	2.2.	Problem of Resarch9	9		

12	. DIESEL ENGINE PERFORMANCE AND EMISSION TEST .	3.
12	3.1. Diesel Engine Cycles	
12	3.1.1. Four Stroke Diesel Engines	

	3.1.2. Two Stroke Diesel Engines	13
3.2.	Diesel Engine Performance Test	14
	3.2.1. Test Instruments	15
	3.2.2. Test Planimeter Test Instruments	16
	3.2.3. P-V and P-θ Diagrams	17
3.3.	Diesel Engine Performance Parameters	18
3.4.	Calculation of the Test Performance Parameters	20
3.5.	Test Bed Results of Diesel Engine at Various Engine Loads	24
	3.5.1. Test Bed Results of Main Engine	24
	3.5.2. Test Bed Results of Generator Diesel Engine	33

4.	MA	NEUVERING EMISSION TEST	.37
	4.1.	Main Engine Emission at Maneuvering	.43
	4.2.	Diesel Generator Emission at Maneuvering	56
	4.3.	Total Emission Test Results at Maneuvering	58

5. DISCUSSIONS AND RESULT	60
REFERENCES	62
APPENDIX	64

LIST OF SYMBOLS/ABBREVIATIONS

UK	United Kingdom
SO_2	Sulphur dioxide
SO_3	Sulphur trioxide
H_2SO_4	Sulphuric Acid
CO_2	Carbon dioxide
СО	Carbon monoxide
NO _X	Nitrogen oxides
PM	Particule matter
pН	Power of hydrogen
ECA	Emission Control Area
SECA	Sulphur Emission Control Area
MARPOL	International convention for the prevention of pollution from ships
ISO	International Organization for Standardization
DMX	Pure disilate marine oil
DMA	Gas Oil
DMB	Clean Diesel
DMC	Blended Disel Oil
cSt	CentiStokes
Al	Aluminum
m/m	Mass matter

IMO International Maritime Organization

LIST OF TABLES

Table 1.1.	ISO 8217 Fuel Standards	6
Table 1.2.	Properties of Ultra Low Sulfur Fuel Oil	7
Table 3.1.	Measured Indicated Pressure (bar)	21
Table 3.2.	Calculation of Mean Effective Pressure	21
Table 3.3.	Calculation of Indicated Power (kW) and Effective Power (kW)	22
Table 3.4.	Calculation of Indicated Specific Fuel Consumption and Effective Spec Fuel Consumption	ific 23
Table 3.5.	Calculation of FC (Kg/hr)	23
Table 3.6.	Specific emissions of O_2 , CO_2 , CO_3 , NO_x , HC, SO_2 , H_2O_3 . (taken from test bed report) of % 75 load.	the 24
Table 3.7.	Fuel Consumption Changes per Unit Percentage of Load Change	25
Table 3.8.	Specific Emission Changes at Each interval Load (Main Engine)	30
Table 3.9.	Specific Emission Changes Each Load (Diesel Generator)	36
Table 4.1.	Power and Emissions for the Main engine at 0-25 % load	41
Table 4.2.	Power and Emissions for Diesel Generator at 0-25 % Load	42
Table 4.3.	Test Results of NOx Emission for the Main engine.	44
Table 4.4.	Test Results of CO ₂ Emission Table for Main engine	45
Table 4.5.	Test Results of CO Emission Table for Main engine	47
Table 4.6.	Test Results of SO ₂ Emission Table for Main engine	48
Table 4.7.	Test Results of O ₂ Emission Table for Main engine	49
Table 4.8.	Test Results of HC Emission Table for Main engine	51
Table 4.9.	Test Results of H ₂ O (Vapour) Emission Table for Main engine	48
Table 4.10.	Comparison of the Test Bench Results (Total Emission) and aver emissions during maneuvers	age 54
Table 4.11.	Test Results Emission for Main engine	55

Table 4.12.	Test Result Emissions at 25 % and 50% load of a Diesel Generator	56
Table 4.13.	Emission Test Results for % 50 Diesel Generator load.	57
Table 4.14.	Test Results Emission for gram per 1 kW for Diesel Generator	57
Table 4.15.	Total Emission Results for Maneuver	58

LIST OF FIGURES

Figure 1.1.	Year by year Sulfur Rates	6
Figure 1.2.	Seaborne Trade Routes	7
Figure 1.3.	Diesel Engine NOx Limitations	8
Figure 3.1.	A Marine Type Four Stroke Diesel Engine	12
Figure 3.2.	Man Engine Cross Section of S35MC7. Marine Type Modern Two Str	roke
Diesel Engine		13
Figure 3.3.	Engine Indicator	15
Figure 3.4.	Planimeter	16
Figure 3.5.	P-V Diagram	17
Figure 3.6.	Pressuure vs. Crank Angle	17
Figure 3.7.	Deviations of Measured Indicated Pressure (bar)	18
Figure.3.8.	Specific Fuel Consumption	25
Figure 3.9	Specific NO _X changes in different Load for Main Engine	26
Figure 3.10.	Specific O ₂ changes in different Load for Main Engine	27
Figure 3.11.	Specific CO ₂ changes in different Load for Main Engine	27
Figure 3.12.	Specific CO changes in different Load for Main Engine	28
Figure 3.13.	Specific HC changes in different Load for Main Engine	28
Figure 3.14.	Specific SO ₂ changes in different Load for Main Engine	29
Figure 3.15.	Specific H ₂ O changes in different Load for Main Engine	30
Figure 3.16.	Turbocharger rpm changes in different load for Main Engine	31
Figure 3.17.	Turbocharger air inlet and scav. temperature changes in different load	32
Figure 3.18.	Diesel Engine Working Pressure and Turbocharger Pressure change	s in
different load		32

Figure 3.19.	Four Stroke Diesel Engine	33
Figure 3.20.	Specific Fuel Consumption changes in different Load for D.G.	34
Figure 3.21.	Specific NOx emissions for Diesel Generator	34
Figure 3.22.	Specific CO emissions for Diesel Generator	35
Figure 3.23.	Specific CO ₂ emissions for Diesel Generator	35
Figure 3.24.	Specific O ₂ emissions for Diesel Generator	36
Figure 4.1.	Spain-Castellon Port Map	37
Figure 4.2.	West Mediterranean Wind Map (15.09.2015)	38
Figure 4.3.	West Mediterranean Sea Temperature Map (15.09.2015)	39
Figure 4.4.	Test results at Manevering Points for NO _X	43
Figure 4.5.	Test results at Manevering Points for CO ₂	46
Figure 4.6.	Test results at Manevering Points for CO	46
Figure 4.7.	Test results at Manevering Points for SO ₂	50
Figure 4.8.	Test results at Manevering Points for O ₂	50
Figure 4.9.	Test results at Manevering Points for HC	53
Figure 4.10.	Test results at Manevering Points for H ₂ O	53
Figure 4.11.	Percentage comparision of one of two generators emissions at 241 kW	58

ABSTRACT

PERFORMANCE AND EMISSIONS ANALYSIS OF MARINE DIESEL ENGINES DURING SHIP MANEUVERING

Sea transport is the most economical and convenient transportation option for long distance transport. From the 19th century with the realization of the industrial revolution, it has entered into a rapid development of maritime transport.

Developing technology and international treaties necessiated more sensitive to changes in the environment of this technology. In this context, IMO (the International Maritime Organization) MARPOL annex 6 (1997 protocol) was enacted in 2005. Air pollution is causing global warming, the depletion of the ozone layer, acid rain, damage to the human health.

Keping constantly under the control of the operation and performance of diesel engines with low air pollution is important. Due to variable loads during maneuvers of ships gases emitted into the atmosphere is damaging the air quality in the port environment. Therefore, they must perform the maneuver of the vessel as soon as possible. In addition, operation of the generators during their stay in the port causes air pollution. During the maneuver for main engine, 20% CO₂ and 800% emissions produced specific emissions more than normal operating conditions. In addition, the emissions produced by two generator at same power load is 16% CO₂ and 320% CO more specific emissions than one generator operating conditions.

In this study, ships exhaust harmful gases released into the environment while maneuvering and port stays are illustrated numerically. During the maneuvering to reduce emissions and port stays were made to run during the determination of the number of the generators. Annual and periodic emission calculations will be based on the calculations methods.

ÖZET

GEMİ DİZEL MOTORLARININ GEMİ MANEVRALARI SIRASINDAKİ EMİSYON VE PERFORMANSININ ANALİZİ

Deniz taşımacılığı uzun mesafe taşımalarda en ekonomik ve en kullanışlı taşımacılık seçeneğidir. Sanayi devriminin gerçekleşmesi ile beraber 19.yüzyıldan itibaren deniz taşımacılığı hızlı bir gelişim içine girmiştir.

Gelişen teknoloji ve Uluslararası antlaşmalar bu teknolojinin çevreye daha duyarlı değişimleri zorunlu kılmıştır. Bu bağlamda IMO (International Maritime Organization) Uluslararası Denizcilik Örgütü 1997 protokolüyle MARPOL'ün altıncı eki 2005 yılında yürürlüğe sokulmuştur. Hava kirliliği küresel ısınmaya, ozon tabakasının incelmesine, asit yağmurlarına, insan sağlığının zarar görmesine neden olmaktadır.

Dizel motorlarının düşük hava kirliliği ile çalıştırılması ve performansının sürekli kontrol altında tutulması önemlidir. Gemilerin manevralar esnasında değişken yükler nedeniyle atmosfereye yaydıkları gazlar liman çevresinin hava kalitesine zarar vermektedir. Bu nedenle gemilerin en kısa zamanda manevralarını gerçekleştirmeleri gerekmektedir. Ayrıca gemilerin limanda kaldıkları süre içerisinde jeneratörlerinin çalışması hava kirliliğine neden olmaktadır. Manevrada ana makine için, %20 CO₂ ve %800 CO emisyonlarının normal çalışma koşullarından daha fazla özgül emisyon üretildiği görülmüştür. Ayrıca jenereratör çalıştırma sayısı açısından aynı yükü karşılayan iki jeneratörün ürettiği emisyonun bir jeneratörün ürettiğinden % 16 CO₂ ve % 320 CO daha fazla özgül emisyona sahip olduğu tespit edilmiştir.

Bu çalışmada gemilerin manevra ve liman kalış sürelerinde çevreye yaydıkları zararlı gazlar sayısal olarak örneklenmiştir. Manevra süresince emisyonları azaltmak ve liman kalış süresince çalıştırılacak jeneratör sayısı hakkında tespitlerde bulunulmuştur. Örneklemeler üzerinden yapılacak hesaplar ile limanların yıllık ve dönemsel emisyon hesaplamaları gerçekleştirilebilmektedir.

1. INTRODUCTION

The first air pollution from burning has been seen in England. In 1301, 1st King Edward banned the burning of coal for heating on the ground that caused the smoke and smell in London. Large increases in air pollution-induced deaths were seen in the UK in 1875 [1].

Ship-source pollution began with the industrial revolution when using the machine power instead of manpower. This engine technology began to use steam for carrying cargo by ships. John Fitch (1743-1798) was built the first steamboat on Delaware River in 1787 [2].

The first ship in excess of the ocean; Savannah has been reached from Savannah-Georgia to Liverpool-England in 1819. First steam ship was built in Britain in 1827 for Turkish shipping industry. "Eser-i Hayr Ferry" was launched on 26th of November 1837. This steamship has begun to be used in our maritime trade. Therefore, the first ship-source pollution was occurred in Turkey [3].

1.1. Historical Development of Ecology and Air Pollution

Human hunted and gathered plants to resume life in ancient times. This reality was seen in archaeological activities carried out by use of the environment to create these conditions [4]. These people have emigrated to move away from non-productive environments. The first information about the ecology and the environment was began by the study of Aristotle and students in the 4th century BC by the Theophrastus [5]. Leibig has researced the most important study about ecology in 1840. He demonstrated the development of plants in the environment of chemical substances. The first time, the term ecology was used by Haeckel in 1869 [6].

1.2. Sulfur Cycle

Sulfur, which is present in the soil is the basic building blocks of pyrite and chalcopyrite rocks and decomposed plant material. Creatures are using sulfates dissolved

sulfur. The volcano, swamp land and the water are the resources of hydrogen sulfide gas. Differently source sulphur in the air combines with oxygen to create Sulphur dioxide (SO_2) or Sulphur tri-oxide (SO_3) formations. These compounds constitute the resulting sulfuric acid when combined with humidity. Sulfur compound in acidic structure rotates ground with precipitation.

Population growth in recent years, the impact of sulfur cycle was increased by increasing urbanization and industrialization negatively. The consumption of fossil fuels with a high percentage of sulfur in the atmosphere increases the amount of sulfur dioxide and acid [5].

1.3. Anthropogenic Influences on Air Pollution

In the literature; it is called anthropogenic effects caused by human. Pollution caused by ships in the maritime transport is considered as anthropogenic effects. In the air composition is described as natural; 78% nitrogen, 21% oxygen, 0.93% argon, neon, helium, methane, hydrogen, krypton, xenon, diozat monoxide, water vapor, ozone and carbon dioxide. Major polluters pollute the atmosphere; carbon monoxide; (CO), carbon dioxide (CO₂), sulfur dioxide (SO₂), nitrogen oxides (NO_X) and particulate matter (PM) [7].

1.3.1. Carbon monoxide (CO)

The oxygen level of carbon contains fuel (coal, wood, natural gas, gasoline, cooking gas, etc.) and toxic gases resulting from the combustion in exactly low setting. Carbon monoxide poisoning, inhalation of oxygen gas contained in the hemoglobin of red blood cells in the blood are connected. to pass much more quickly after the lungs. This leads to cell death. Nausea, dizziness, vomiting, weakness cause the death at advanced level [8].

1.3.2. Carbon dioxide (CO₂)

Carbon dioxide is an important gas for photosynthesis. However, this gas in fossil fuels increases global warming due to industrial activities [9].

1.3.3. Sulfur dioxide (SO₂)

Each year anthropogenic and natural formations are involved by the volcanos and combustion of fossil fuels with tons of sulfur dioxide atmosphere. The high concentration of sulfur dioxide into the body causes of cough, bronchitis, asthma and lung disease. Discoloration due to reduction of chlorophyll in plants, leaves of institutions, inhibition of growth and development, seed and fruit formation damage, pulmonary animals, illustrates the effect on lung diseases [9].

1.3.4. Sulfur trioxide (SO₃):

Sulfur trioxide life cycle is so short in the atmosphere. It combines with water and vapor to form sulfuric acid. Sulfuric acid is one of reason caused acid rain and damage to living and nonliving environment. Especially in terms of corrosion on metal weight and structure of the bridge can be seen by acid rain. It damages to large agricultural areas as product damage [8].

1.3.5. Nitrogen Oxides (NO_X)

Airborne concentrations due to human activities are the main cause of warming and increased nitrogen oxide by motor vehicles. Nitrogen oxides cause acid rain in the air. The sulphuric acid is converted to nitric acid. Acid rains change the structure of ground as chemical, physical and biological, wise.

Potassium, calcium, sodium and magnesium elements as a result of interference by the substrate through the ground water caused to decrease soil fertility. Acid rain lowers the pH, increasing the acidification of soils and wetlands affected area and cause the dissolution of heavy metals in the food chain [9].

1.3.6. Particulate Matter:

In the atmosphere, consisting of a mixture of liquid and solid particles available is called particulate matter. It can be seen at some activites such as volcanoes, oceans,

natural phenomena such as pollen and industrial activities [8].

1.4. Anthropogenic Impacts on Ship-source Pollution

Air pollution is a natural effect of the use of fossil fuels by merchant ships. International Maritime Organisation's 1997 protocol MARPOL Annex six has established guidelines for the prevention of air pollution, enacted in 19th May 2005. ECA (Emission Control Area) created especially in Europe with ship exhaust resulting from the SO_X were trying to determine the fuel used by ships in order to reduce the impact of harmful gases containing NO_X [10].

The main causes of air pollution caused by toxic exhaust flue gases from ships. In addition, leakage may occur in the refrigeration and air-conditioning system that cools the gas stores with air conditioning systems cause air pollution. Gas usage must be recorded and the use of gas that does not harm the ozone layer as possible. Also, it includes harmful gases consisting of cargo transported in cargo holds or tanks [11].

1.5. International Regulations for Air Pollution from Ships

Marpol 73/78 is one of the most important international marine environmental conventions. It was designed to minimize pollution of the seas, including dumping, oil and exhaust pollution. Its stated object is to preserve the marine environment through the complete elimination of pollution by oil and other harmful substances and the minimization of accidental discharge of such substances.

The original MARPOL was signed on 17th February 1973, but did not come into force due to lack of ratifications. The current convention is a combination of 1973 Convention and the 1978 Protocols. It entered into force on 2 October 1983. May 2013, 152 states, 99.2 percent of the world's shipping tonnage are representing parties to the convention.

All ships flagged under countries that are signatories to MARPOL are subject to its requirements, regardless of where they sail and member nations are responsible for vessels registered under their respective nationalities.

Annex I: Prevention of pollution by oil & oily water,

Annex II: Control of pollution by noxious liquid substances in bulk,

Annex III: Prevention of pollution by harmful substances carried by sea in packaged form,

Annex IV: Pollution by sewage from ships,

Annex V: Pollution by garbage from ships,

Annex VI: Prevention of air pollution from ships [12].

As a result of several interviews in order to reduce air pollution from ships; it is provided in accordance with a specific timetable for the reduction in the sulfur content of the fuel. This chart presented when the ship machinery manufacturers in terms of reduction of both emissions and fuel companies. According to MARPOL Annex VI Regulations for the prevention of air pollution from ships, Rule 14, Section 3 ship's fuel oil must comply with the following limits for maximum sulfur content:

- 4.50% respectively prior to 1stJanuary 2012 m/m
- After 1st January 2012 3.50 % m/m
- After 1st January, 2020 at 0.50 % m/m

End of 2015, in special emission control areas, fuel oil sulfur content is % 1 m/m (expressed in terms of % m/m – that is by mass matter). And end of 2020, the sulfur content of marine fuel oil Global limit will be 3.5 % m/m. The limit of sulfur content for ECA will be 0.50% m/m after 1st January 2020. According to Figure 1.1., maximum sulfur content of fuel oil for all fuel used in maritime transport is shown.

Figure 1.1. Year by year Sulfur Rates [12].

Fuel standards and limits used for ships according to the ISO 8217 standard is shown in Table 1.1. If the value of fuel specifications is between minimum and maximum limits, it will not be a problem for ship equipment as main engines, diesel generators or boilers.

			Category			Test	
Characteristic	Unit	Unit Limit	DMX	DMA	DMZ	DMB	Method Referance
Density at 15° C	kg/m ³	max.	-	890	890	900	ISO 3675or
Density at 15 C							ISO 12185
Viscosity at 40° C	mm ² /s*	min.	1.40	2.00	3.00	2.00	ISO 3104
Viscosity at 40 C,		max.	5.50	6.00	6.00	11.0	ISO 3104
Cetane number	-	min.	45	40	40	35	ISO 4264
Flach point	⁰ C	min.	-	60	60	60	ISO 271 9
Flash politi,		max.	43	-	-	-	
Pour point (upper,)	⁰ C						
-Winter quality		max.	-6	-6	-6	0	ISO 3016
-Summer quality		Max.	0	0	0	6	ISO 3016
Sulphur	% (m/m)	max	1.0	1.5	1.5	2.0	ISO 8754 or
Sulphui,							ISO 14596
Hydrogen Sulfide	mg/kg	max.	2.00	2.00	2.00	2.00	IP 570
Acid Number	Mg	max.	0.5	0.5	0.5	0.5	ASTM D664
	KOH/g						
Total existent sediment,	% (m/m)	max.	-	-		0.10	ISO 10307-1
Stability	g/m°	max.	25	25	25	25	ISO 12205
Carbon residue on %10							
(V/V) distillation bottoms,	% (m/m)	max.	0.30	0.30	0.30	-	ISO 10370
Carbon residue,	% (m/m)	max.	-	-	-	0.30	ISO 10370
Cloud point,	⁰ C	max	-16	-		-	ISO 3015
Ash,	% (m/m)	max.	0.01	0.01	0.01	0.01	ISO 6245
Sediment	% (m/m)	max.	-	-		0.10	ISO 10307-1
Water,	% (v/v)	max.	-	-		0.3	ISO 3733
Vanadium,	mg/kg	max.	-	-		-	ISO 14597
Aluminum plus silicon,	mg/kg	max.	-	-		-	ISO 10478

Table 1.1. ISO 8217 Fuel Standards [15].

Where; *mm²/s = cSt, DMX: Pure Disillate Marine Oil, DMB: Clean Diesel, DMA: Gas Oil, DMC: Blended Diesel Oil.

Some properties of ultra-low sulfur fuel currently used in ECAs are shown in Table 1.2.

Characteristic	IFO-180 RMD80LS	IFO-180 RME180
Density at 15 [°] C kg/cm ³	Max. 980	Max. 991
Viscosity at 50 [°] C cSt	Max. 80	Max. 180
Flash point ⁰ C	Min. 60	Min. 60
Upper Pour Point ^o C	Max. 30	Max. 30
Micro Carbon Residue % (m/m)	Max. 14	Max. 15
Ash % (m/m)	Max. 0.1	Max. 0.1
Water % (m/m)	Max. 0.50	Max. 0.50
Sulfur % (m/m)	Max. 0.10	Max. 3.50
Vanadium mg/kg	Max. 350	Max. 200
Total Sediment Potential % (m/m)	Max. 0.10	Max. 0.10
Al+Si mg/kg	Max. 80	Max. 80

Table 1.2. Properties of Ultra Low Sulfur Fuel Oil [15].

Seaborne Trade Routes are shown in Figure 1.2.

Figure 1.2 Seaborne Trade Routes [26].

In the near future, MARPOL Annex VI subcommittee is scheduled to take place in specially designated areas as the Black Sea, Mexico, the Mediterranean Sea of Japan, Mediterranean Sea, China Sea, South Africa, and Persian Gulf.

According to MARPOL Annex VI, the operation of each diesel engine to which this regulation applies is prohibited, except when the emission of nitrogen oxides (calculated as the total weighted emission of NO₂) from the engine is within the following limits:

- (i) $17.0 \text{ g/kW} \cdot \text{h}$ when n is less than 130 rpm
- (ii) $45.0 \times n^{-0.2} \text{ g/kW} \cdot \text{h}$ when n is 130 or more but less than 2000 rpm
- (iii) 9.8 g/kW \cdot h when n is 2000 rpm or more

where n = rated engine speed (crankshaft revolutions per minute).

Figure 1.3. Diesel Engine NOx Limitations [12].

When using fuel composed of blends from hydrocarbons derived from petroleum refining, test procedure and measurement methods shall be in accordance with the NOx Technical Code, taking into consideration the test cycles and weighting factors outlined in appendix II to this Annex.

2. METHODOLOGY

In this thesis, the primary source of the research is data collection about the research subject. The data were obtained from the ship engine emission test results. Secondary source of the research is based on literature survey. The articles about the thesis were investigated.

2.1. The Aim of the Research

The primary aim of this research is to examine the effects of ship maneuvering upon the performance and emissions of the ship diesel engines. To do this, performance and emission tests results of diesel engines are analaysed and relationship between power output and emissions are investigated.

2.2. Problem of Research

The ship owners and governments are faced with the following problems due to the air pollution from ships:

• There is compliance with the fuel quality emission rules,

• Special ship emissions control areas are known or unknown by employees and companies,

- The effect of ship emissions of alternative technologies,
- Insufficient marine education about air pollution awareness.
- Evaluate the performance during maneuvers emissions,
- The relationship between emissions and number of generator.

In this study, four different types of emission for marine diesel engines values were obtained in the test report. Also, using the numerical interpolation, intermediate values of emissions are calculated with the given only four or five load changes.

Emissions can easily be calculated corresponding to each speed or load change of the engine. Total emissions can be calculated during the maneuvering at full speed, half, dead slow, slow operations. Total emission is given as,

$$\Sigma_{\text{Emission}} = \Sigma_{\text{EM}} + \Sigma_{\text{EG}} + \Sigma_{\text{EB}} + \Sigma_{\text{EW}} + \Sigma_{\text{EA}} + \Sigma_{\text{EC}} + \Sigma_{\text{EF}} + \Sigma_{\text{EK}}$$

Where;

$$\begin{split} \Sigma_{\rm EM} &= {\rm Total\ Emission\ of\ Main\ Engine(s)} \\ \Sigma_{\rm EG} &= {\rm Total\ Emission\ of\ Generator(s)} \\ \Sigma_{\rm EB} &= {\rm Total\ Emission\ of\ Boiler(s)} \\ \Sigma_{\rm EW} &= {\rm Total\ Emission\ of\ Waste\ Oil\ Incinerator} \\ \Sigma_{\rm EA} &= {\rm Total\ Emission\ of\ Air\ Condition\ \&\ Ref.\ System(s)} \\ \Sigma_{\rm EC} &= {\rm Total\ Emission\ of\ Cargo} \\ \Sigma_{\rm EF} &= {\rm Total\ Emission\ of\ Fire\ System} \\ \Sigma_{\rm EK} &= {\rm Total\ Emission\ of\ Kitchen} \end{split}$$

There are many publications in the literature about emissions. In particular, few studies have assessed the performance and compute the change during maneuvering. A.K. Gupta, R.S. Patil and S.K.Gupta, were investigated Emissions of Gaseous and particulate Pollutants in a Port and Harbour Region in India in 2002. This is the first study as known how calculate or estimate total emissions [19]. One year later, Yang. D. & Kwan, S.H. researched emission inventory of marine vessels in Shanghai in 2003. This is an important study for sampling Shanghai port for other Chinese ports [20]. In 2006, California Environmental Protection Agency made Emission Reduction Plan for Ports and Goods Movement in California [21].

Also, in Port of Oakland, seaport air emission inventory were done in 2005 [18]. Saxe, H. & Larsen were researched air pollution in three Danish Ports. It had been the last study before Baltic Sea ECA zone rules entered to force for all ships [17]. In England, Marr and others made their survey about air quality and emissions inventory at Aberdeen harbor in 2007. In this study, pollutant gases were started to categorized and counted amount of greenhouse gases [16]. In Turkey, Deniz C. and others made some studies around Ambarli port, İzmit port, and Çandarlı gulf. Their method was taken from The European Commission Directorate General environment service contract on ship emissions calculations [22, 23, 24]. In 2010, Saraçoğlu H. made his thesis as "Investigation of exhaust gas emissions of ships calling İzmir Port and their environmental impacts". In this study, also, the same coefficients were used for calculations as Deniz C and others did.

This study aims to demonstrate the analytical instant case of ship diesel engine performace and emissions during different maneuvering conditions. United States Environmental Protection Agency (EPA) identified emission factors based on different operating conditions in 2002 [25]. These emission factors are provided with a general approach. Test value were derived from this study aimed to compare with EPA's data.

Fuel sulfur content in 2005 was updated using today's rates. Loads (below 10%) are aimed to build on the trend line for the emission. This will be realistic emission estimation in the maneuver. Power changes during maneuvers focused on changes in emissions.

3. DIESEL ENGINE PERFORMANCE AND EMISSON TEST

3.1. Diesel Engine Cycles

Internal combustion engines are power producing machines that work in a thermodynamic heat engine cycle. In an internal combustion engine cycle, the input energy is provided by burning fuel in the system limits. The fuel's energy is converted into mechanical work at a high rate. The ratio of mechanical power output to the fuel's energy is defined as thermal efficiency and depends on the thermodynamic state changes occurring in the engine.

During the cycle, the piston returns to its initial position at the end of each revolution. Diesel engines are divided into two groups according to the operating principles.

3.1.1. Four Stroke Diesel Engines

There are four strokes in a cycle as; intake, compression, combustion and exhaust strokes and power is produced at the end of two revolutions of the crankshaft. Then, 720 degrees crank angle contains four strokes of the engine. A four stroke piston movement at different times is shown in figure 3.1.

Figure 3.1. A Marine Type Four Stroke Diesel Engine.

3.1.2. Two Stroke Diesel Engines

Intake, compression, combustion and exhaust strokes are performed at each 360 degrees revolution of the crankshaft. A two stroke Diesel Engine is shown in figure 3.2. More than 30 years ago, two-stroke marine diesel engines used exhaust ports for exhaust gases. Today's modern diesel engine, exhaust valves are used for exhaust gases.

Figure 3.2. Man Engine Cross Section of S35MC7. Marine Type Modern Two Stroke Diesel Engine.

Comparison of two-stroke and four-stroke Diesel Engines;

- Two-stroke engines have about twice the power in the same size because there are twice as many power strokes per cycle.
- Two Stroke Diesel Engines don't need a heavy flywheel for torque ripple in terms of the engine. Four-stroke machines are made with heavy flywheel for balancing crankshafts.
- Two Stroke Diesel Engines have a higher mechanical efficiency than Four Stroke Diesel Engine.
- When the two-stroke engine uses insufficient amount of supercharging air, exhaust gases in the cylinder cannot be cleaned well. This causes a pressure drop and bad combustion.

• Generally, Two Stroke Diesel Engines are manufactured for more than 1000 hp power requirements.

Figure 3. 2 shows two stroke marine diesel engine as internal-combustion engine in which air is compressed to obtain a sufficiently high temperature to ignite diesel fuel injected into the cylinder. This marine engine converts the chemical energy stored in the fuel into the mechanical energy, which can be used to power marine vessels. Today, ultra long stroke length two-stroke Diesel engines are used for marine industry. Depending on the number of revolutions they have been working on the reduction of exhaust emissions. Studies are underway to achieve lower fuel consumption compared to outdated Diesel engine technology.

Proper operation of a marine diesel engine requires balanced power generation in each cylinder. Unbalanced power generation in the cylinder is due to the result of incomplete combustion of fuel. This leads to the creation of more exhaust emissions.

The power data in each cylinder of the diesel engine can be calculated by using an indicator diagram. Mechanical devices which plot the pressure versus cylinder pressure are called indicator device. Today, mechanical and electronical indicator devices together with the computer software are used to calculate performance of the engines.

3.2. Diesel Engine Performance Test

Marine Diesel Engines are tested after manufacturing. Performance parameters and emission values of the engines are measured at different loads [25]. A sea trial is the testing period of a new ship. Sea trial is the last period of construction and takes place on open sea for experience of seaworthiness. Sea trials are related to measure a vessel's Diesel engine performance and general seaworthiness. Vessel's speed, maneuverability, equipment and safety features are tested. Technical director or superintendent from the owner and engineer of shipyard are attends these trials.

3.2.1. Test Instruments

The performance measurements are conducted with the engine indicator which is connected to the engine cylinder indicator. Engine indicator is the device used to take the indicator diagram. The diagram is taken periodically from the indicator valve placed on the cylinder head. Indicator diagrams give efficiency of combustion in the cylinder, condition of the running gear, irregularities in fuel pumping and injection.

Pressure from the taps in the assembly is absorbed by the power spring. Indicator diagrams on a special paper are drawn. The compression pressure and maximum pressure in the cylinder can be measured from the indicator diagram. The area in the diagram is measured with the apparatus called planimeter. The figure 3.3. shows an engine indicator. The indicator diagram is very important to know the combustion in the cylinder and so as to adjust the engine.

Figure 3.3. Engine Indicator

The standard design of engine indicator is used for taking single diagrams for internal combustion engines. The indicator spring is a double-coiled, easily interchangeable tension spring. All springs are precisely calibrated and marked with the spring scale and the maximum pressure related to a piston size. The drum is returned by the spring. The paper drum is usually driven from the crosshead guide or from the connecting rods of engine. The indicator should be mounted preferably near to the engine cylinder to be tested. An indicating valve must be provided. If the indicator connections are arranged at the side of the engine cylinder, the indicator will be in a horizontal position.

3.2.2. The Planimeter Test Instruments

The planimeter is a simple instrument for the precise measurement of PV diagram areas. To measure PV diagram area it is only necessary to trace the outline of the figure in a clockwise direction with the CenterPoint of the tracing lens and read off the result on the scales.

Figure 3.4. Planimeter

The planimeter consists of three separate parts; the tracing arm to which the roller housing the pole arm and the pole plate are attached. Three parts are packed separately in the case. The pole arm is simple beam. On each a ball end is fixed, fitting into the roller housing, the other into the pole plate. The roller housing rests on three supports; the tracing lens, the measuring roller and a supporting ball.

3.2.3. P-V and P-θ Diagrams

PV and P- θ diagrams are very important to determine the engine performance. It shows four cycle during operation of the diesel engine and illustrates the abnormal operating conditions. All turbocharged Marine Diesel Engines are susceptible to extreme torque and extreme thermal stress. Air flow from the turbocharger is sensitive to small changes in the speed of the engine. Total power and each cylinder's power can be found by using these diagrams. Maximum compression pressure (Pmax or Pcomp) and power are shown in Figures 3.5 and 3.6. The difference between the maximum pressure and compression pressure of the engine is identified as the deviation. Deviation condition is undesirable. A difference is tolerated between -3 and +3 bar. The abnormal pressure differences cause problems in machine condition. Thus, undesirable emission increases occurs. Figure 3.7. shows the deviations of measured indicated pressure.

Figure 3.5. P-V Diagram

Figure 3.6. Pressuure vs. Crank Angle.

Figure 3.7. Deviations of Measured Indicated Pressure (bar)

3.3. Diesel Engine Performance Parameters

The indicator diagram of Marine Diesel Engines with indicator drive or electronic equipment, can be used to find the Mean Indicated Pressure (p_i) . And, p_e is the effective pressure available after friction losses in the shaft. Calculation of the indicated and effective engine power consists of following steps:

• Mean Indicated Pressure, p_i (kpa)

$$p_i = \frac{A}{L \times Cs} \times 100 \tag{3.1}$$

Where;

A: is the area of the indicator diagram measured with a planimeter in (mm^2)

Cs: Spring constant of the drive in mm/bar (vertical movement of the indicator stylus (mm) for a 1 bar pressure rise in the cylinder)

L: length of the indicator' diagram (atmospheric line) (mm)

• The mean effective pressure, p_e (kpa)

$$p_e = p_i - kt \ x \ 100$$
 (3.2)

kt : the mean friction loss (bar)

The mean friction loss has proved to be practically independent of the engine load.

• Piston displacement

$$V_D = \frac{\pi}{4} x D^2 x L \tag{3.3}$$

Where;

D: cylinder diameter (m)

L: piston stroke (m).

• Indicated and Effective Powers are:,

$$N_i = p_i x n x V_D / 60 \tag{3.4}$$

$$N_e = p_e x n x V_D /60$$
(3.5)

Where;

N_i: Mean Indicated Power (kW),

P_i: Mean Indicated Pressure (kpa),

Ne: Mean Effective Power (kW),

Pe: Mean Effective Pressure (kpa),

n: Revolution per minutes (rpm),

V_D: Piston displacement

• Mechanically Efficiency

$$\eta = \frac{Ne \times 100}{Ni} \tag{3.6}$$

• Indicated and Effective Fuel Consumptions (g/kWh) are;

$$ISFC = FC / N_i$$
 (3.7)

$$ESFC = FC / N_e$$
 (3.8)

Where;

FC: Fuel Consamption (kg/s),

3.4. Calculation of the Test Performance Parameters

Monthly routine performance test values are obtained by an electronic indicator device at 13 000 DWT general cargo ship. The ship has Controllable Pitch Propeller (CPP) and fixed main engine rpm [27]. Main engine's operational parameters are given below:

Main Engine rpm	: 173
Power (100%) (kW)	: 4440
Load	: 75 %
Mean Friction Press (bar)	: 1.15
Bore (cm)	: 35
Stroke (m)	: 1.4
Number of Cylinder	: 6
Heat Value (kCal/kg)	: 10224
SFC (g/kWh)	: 179 (Speed 100%, 173 r/min)
Fuel Consumption (kg/hr)	:643.52
MEP (bar)	: 19.1

Measured indicated pressures at 75% power load are given in Table 3.1.

No. 1Cyl	No. 2 Cyl	No.3 Cyl	No. 4 Cyl	No. 5 Cyl	No. 6 Cyl	Mean
15.41	15.51	15.19	15.31	15.68	15.55	15.44

 Table 3.1. Measured Indicated Pressure (bar)

Power calculations are quite significant in terms of emissions calculations. Power decrease in the engine will cause incomplete combustion. In this case, emissions will increase due to incomplete combustion. Using the data given in Table 3.1 and Equations 3.1.-3.8, the main performance parameters can be calculated. All the calculated parameters are given in Table 3.2-3.8.

Using Equation 3.2. Mean Effective Pressure is calculated and the effective pressures in the each cylinder and the mean effective pressure is given in the Table 3.2.

Cylinder No	Pe
No. 1 Cyl	$Pe_{cyl.1} = 15.41 - 1.15 = 14.26$ bar
No. 2 Cyl	$Pe_{cyl.2} = 15.51 - 1.15 = 14.36$ bar
No. 3 Cyl	$Pe_{cyl.3} = 15.19 - 1.15 = 14.04$ bar
No. 4 Cyl	$Pe_{cyl.4} = 15.31 - 1.15 = 14.16$ bar
No. 5 Cyl	$Pe_{cyl.5} = 15.68 - 1.15 = 14.53$ bar
No. 6 Cyl	$Pe_{cyl.6} = 15.55 - 1.15 = 14.40$ bar
Mean of Effective Pressure	Pe =14.29 bar

Table 3.2. Calculation of Mean Effective Pressure.

Using Equations (3.4) and (3.4), N_i (Indicated Power (kW) and N_e (Effective Power (kW)) can be calculates. Results are given in table 3.3.

Cylinder No	$Ni_{cyl,i} = Pi_{cyl,i} \times n \times V_D / 60$
No. 1Cyl	Ni _{cyl.1} =598.501 kW
No. 2Cyl	Ni _{cyl.2} =602.385 kW
No. 3Cyl	Ni _{cyl.3} =589.956 kW
No. 4Cyl	Ni _{cyl.4} =594.617 kW
No. 5Cyl	Ni _{cyl.5} =608.987 kW
No. 6Cyl	Ni _{cyl.6} =603.938 kW
ΣΝί	3598.387 kW

Table 3.3. Calculation of Indicated Power (kW) and Effective Power (kW)

Cylinder No	$N_{e} = Pe_{cyl.i} x n x V_{D} / 60$
No. 1Cyl	$Ne_{cyl.1} = 553.837 \text{ kW}$
No. 2Cyl	Ne _{cyl.2} =557.721 kW
No. 3Cyl	Ne _{cyl.3} =545.293 kW
No. 4Cyl	Ne _{cyl.4} =549.953 kW
No. 5Cyl	Ne _{cyl.5} =564.323 kW
No. 6Cyl	Ne _{cyl.6} =539.274 kW
ΣN_e	3330.401 kW
	l de la constante de

Indicated power and effective power are used to find mechanical efficiency. In order to find the mechanical efficiency of the engine equation (3.6) is used. Substituting the result from calculated data, we can find the mechanical efficiency as;

$$\eta = \frac{\text{Ne x 100}}{\text{Ni}}$$
 $\eta = \frac{3330.401 \text{ x 100}}{3598.387}$ $\eta = 92.55 \%.$

After power and pressure calculations, indicated and effective specific fuel consumptions can be found for the engine as:

$$ISFC = FC / N_i = 643.52 / 3598.387 = 178.83 g/kW-h.$$

And

$$ESFC = FC / N_e = 643.52 / 3330.401 = 193,22 g/kW-h.$$

Indicated Specific Fuel Consumption (g/kWh) and Effective Specific Fuel Consumption (g/kWh) are calculated for each cylinder and given in table 3.4.

 Table 3.4. Calculation of Indicated Specific Fuel Consumption and Effective Specific

 Fuel Consumption.

Cylinder No	ISFC x Ni / ΣNi	ESFC x Ne / SNe
No. 1Cyl	29.744 g/kW-h.	32.132 g/kW-h.
No. 2Cyl	29.937 g/kW-h.	32.357 g/kW-h.
No. 3Cyl	29.319 g/kW-h.	31.636 g/kW-h.
No. 4Cyl	29.551 g/kW-h.	31.907 g/kW-h.
No. 5Cyl	30.265 g/kW-h.	33.740 g/kW-h.
No. 6Cyl	30.014 g/kW-h.	32.447 g/kW-h.
Total	Total Indicated Specific Fuel	Effective Specific Fuel
	Consumption-178.8 g/k w-h.	Consumption–193.2 g/k w-n.

Fuel Consumption (kg/hr) at 75% load for each cylinder is calculated below table 3,5. as:

Cylinder No	$FC = ESFC \times Ne_{cyl.i}$
No. 1Cyl	FC = 193.220 x 553.837=107.012 (kg/hr)
No. 2Cyl	FC = 193.220 x 557.721=107.762 (kg/hr)
No. 3Cyl	FC = 193.220 x 545.293 = 105.361 (kg/h r)
No. 4Cyl	FC = 193.220 x 549.953=106.261 (kg/hr)
No. 5Cyl	FC = 193.220 x 564.323=109.038 (kg/hr)
No. 6Cyl	FC = 193.220 x 559.274=108.063 (kg/hr)
Ni	Total Fuel Consumption= 643.500(kg/hr)

Table 3.5. Calculation of FC (Kg/hr)
Measured average quantity of specific emissions of O_2 , CO_2 , CO_2 , O_3 , HC, H_2O . (taken from the test bench report) of % 75 load condition for the engine and calculated emissions for each cylinder are given Table 3.6.

Table 3.6. Specific emissions of O2, CO2, CO, NOx, HC, H2O. (taken from the test benchreport) of % 75 load.

Cylinder	Effective	CO ₂	O ₂	СО	NO _x	HC	H ₂ O
Number	Power	(kg/h)	(kg/h)	(kg/h)	(kg/h)	(kg/h)	(kg/h)
1	553.837	325.046	784.012	0.390	8.053	0.486	158.342
2	557.721	327.326	789.510	0.393	8.109	0.489	159.452
3	545.293	320.032	771.916	0.384	7.929	0.478	155.899
4	549.953	322.767	778.514	0.388	7.996	0.482	157.232
5	564.323	331.201	798.856	0.398	8.205	0.495	161.340
6	559274	328.238	791.709	0.394	8.132	0.490	159.897
TOTAL	3330.401	1954.613	4714.516	2.348	48.424	2.921	952.162

3.5. Test Results of Diesel Engine at Various Engine Loads

3.5.1. Test Bench Results of Main Engine

The diesel engine analysed in this work is two stroke marine MAN B&W S35MC7 Diesel engine with 4440 kW. Tests are performed at 25%, 50%, 75% and 100% loads. Generally, the values measured in the tests are conducted in the manufacturer's plant, delivered to the ship owner [27], (Appendix 1).

The following data were obtained from the manufacturer's test bench. Fuel consumption is increasing linearly. However, specific fuel consumption decreases continuously until 75% engine load as seen in the figure 3.8. At high engine load the fuel combustion is improved due to better mixing of fuel and air. Specific fuel consumption of around 75% load has minimum value and this load is taken as the most economical service load. The minimum value of specific fuel consumption is obtained at 75% engine load. Below %75 load and operating the engine at low loads specific fuel consumption increases. Especially, the value of the specific fuel consumption is the most important data for slow steaming.

Figure 3.8. Specific Fuel Consumption.

From figure 3.8 and 3.9, fuel consumption changes per unit percentage of load change can be calculated as seen in Table 3.7. The slope of this line at a given load interval gives the magnitude of the fuel consumption changes.

 Table 3.7. Fuel Consumption Changes per Unit Percentage of Load Change

	LOAD	LOAD	LOAD
	%25-50	%50-75	%75-100
Specific Fuel Cons. (Avarage) (g/kWh)	193.70	185.85	183.15
Total Fuel Cons. (Avarage) (kg)	322.51	515.73	711.53

A significant change of the specific NOx emissions are seen in the figure 4.10. NOx are produced during the combustion process via high temperatures between nitrogen and oxygen gases. Marine fuels contain small amounts of nitrogen gases. But heavy duty fuels contain more nitrogen than Diesel Oils. Nitrogenoxides occurs under the following conditions:

• Sufficient oxygen available.

This case is always in marine Diesel engine.

• High Temperature.

This case occurs when the temperature of combustion exceeds 1200 ⁰C.

• Time in combustion process.

The total combustion process of two stroke marine Diesel engine includes expansion stroke generally 120 crank degrees. According to this study, sampled two stroke crosshead Diesel engine has 173 rpm. The time for combustion per 360 crank angle is $(173 / 60) \times 360/120 = 0.115$ second. So, the combustion process takes only 0.115 seconds.

According to the survey, specific NO_X value is increased up to 75% engine load as shown in figure 3.9 and specific O_2 changes for Main Engine is shown in Figure 3.10.

Figure 3.9. Specific NO_X changes in different Load for Main Engine.

Figure 3.10. Specific O₂ changes in different Load for Main Engine.

In principle of marine Diesel engines, the carbon components in the fuel react with the oxygen. Carbon dioxide gases appear to contribute to the so-called greenhouse effect. CO_2 gas emissions are only possible to be minimized by using light fuels. According to figure 3.11, specific CO_2 gas emissions are reduced until %75 load. After %75 load for producing more power needs more fuels. So, more fuel means more CO_2 .

Figure 3.11. Specific CO₂ changes in different Load for Main Engine.

Carbon monoxide gases are produced during complete combustion of the fuel. Under perfect or stoichiometric combustion, fuel and oxygen are totally consumed. Then, no uncombined oxygen remain in the flue gases. When there is not enough oxygen available for perfect combustion, some of the fuel is left unburned, resulting undesirable emissions, such as carbon monoxide and smoke. Poor fuel and air mixture may also cause high carbon monoxide amount. Acoording to figure 3.12, specific CO decreases as load increases.

Figure 3.12. Specific CO changes in different Load for Main Engine.

High Hydrocarbon (HC) emissions generally in poor fuel ignition. This emission gases can be created by improper ignition timing, defective ignition components, lean fuel mixture and low cylinder compression. Figure 3.13 shows the specific HC changes in different load.

Figure 3.13. Specific HC changes in different Load for Main Engine.

Sulphur dioxide is producued with perfect combustion and is a reaction of sulphur with oxygen. SO_2 and SO_3 are formed in combustion. Sulphur dioxides gases can not carried long distance by air in atmosphere. So that means it quickly fells down to the sea. Acoording to figure 3.15, specific SO_2 changes in different load is not reduced linearly. Specific SO_2 emissions are reduced after %75 load.

Specific SO₂ changes between 25% -100% loads are shown in the figure 3.14. Specific SO₂ decreases continuously until 75% engine load. Specific SO₂ around 75% load has minimum value and this load is taken as the most economical service load. Below %75 load and operating the engine at low loads specific SO₂ increases.

Figure 3.14. Specific SO₂ changes in different Load for Main Engine.

According to figure 3.15, specific H_2O vapour reduces as load increases. The primary greenhouse gases in Earth's atmosphere are water vapor, carbon dioxide, methane, nitrous oxide, and ozone. So, water vapour is the most important greenhouse gas. 95% of greenhouse gases are water vapour. If the sky is clear the heat will escape and the temperature will drop. If there is a cloud cover, the heat is trapped by water vapour as a greenhouse gas and the temperature stays quite warm.

Figure 3.15. Specific H₂O changes in different Load for Main Engine.

Table 3.8 shows calculation of the different emissions in %1 load changes. In this study, NOx, O₂, CO₂, CO, HC, SO₂, H₂O changes are made using figures 3.9-3.15.

	LOAD	LOAD	LOAD
	%25-50	%50-75	%75-100
NOx (g/kwh)	0.07	0.0884	-0.0444
O ₂ (g/kwh)	-12.616	-1.4	-6.8
CO ₂ (g/kwh)	-1.484	-0.6	0.332
CO (g/kwh)	-0.01084	-0.00712	-0.00444
HC (g/kwh)	-0.00772	0.00292	-0.01084
SO ₂ (g/kwh)	-0.00048	-0.0002	0.00012
H ₂ O (g/kwh)	1.048	0.296	-0.008

 Table 3.8. Specific Emission Changes at Each interval Load (Main Engine).

The exhaust gases emitted through a combustion process are mainly a combination of N_2 , CO_2 , H_2O , CO, HC, SO_2 and O_2 . Some of them are harmful and are considered major pollutants. One of the most dangerous of these is CO, carbon monoxide. This gas has the potential to kill people and animals if concentrations are high enough.

Hydrocarbons, HC come from unburned fuel. Nitrogen oxides, NOx, are released through the internal combustion process and have been linked to acid rain and ozone.

Air pollution can affect human health in both the short and the long term. So, exhaust gases are harmful for human. But It is important for turbochargers. Turbocharger exhaust supply is related with fresh air to engine cylinders. Turbocharging is critical for diesel engine performance and for emission control through a well designed exhaust gas recirculation (EGR) system. In gasoline engines, turbocharging enables downsizing which improves fuel economy by 5-20%.

Figure 3.16. Turbocharger rpm changes in different load for Main Engine.

As can be seen from figures 3.9-3.15, optimal operating point is important both in terms of fuel consumption and emissions. In low load operation, incomplete combustion effects scavenge temperature increases. Therefore, auxiliary blower is activated to increase the amount of oxygen for ideal combustion and cooling air.Turbocharger air inlet and scavenge temperature changes and Diesel engine working pressure and turbocharger pressure changes are shown in Figures 3.17 and 3.18 in different load.

Figure 3.17. Turbocharger air inlet and scavenge temperature changes in different load.

Figure 3.18. Diesel Engine Working Pressure and Turbocharger Pressure changes in different load.

3.5.2. Test Bed Results of Generator Diesel Engine

Four stroke Diesel Engine generator has a rate power of 345 kW. It is examined at %10, 25%, 50%, 75% and 100% loads. The test results are taken in the test bed. Tests are performed in the manufacturer's plant before it is delivered to the ship owner. The following data are obtained from the test results [28], (Appendix 2).

Rated Speed (rpm)	: 1800
Rated Power (100%), (kW)	: 345
Load	: 50 %
Compression Ratio	: 15, 5:1
Bore (mm)	: 125
Stroke (mm)	: 166
Number of Cylinder	: 6
Heat Value (kCal/kg)	: 10224
SFC (g/kWh)	: 215

Figure 3.19. Four Stroke Diesel Engine

Fuel consumption is shown in the figure 3.20 between 0% - 100% loads. Fuel consumption decreases as load increases. Specific fuel consumption of around 80-100% load is the most economical service load. When the load is low, the specific fuel consumption increases. Especially, the value of the specific fuel consumption is the most important data for running two or one Diesel generator.

Figure 3.20. Specific Fuel Consumption changes in different Load for Diesel Genrator.

NOx, CO, CO₂, O₂, and emissions are shown in the figure 3.21 between 0% - 100% loads. The data obtained from the test results indicate that operation at low loads is not advantageous in terms of fuel consumption and emissions. Generator tests are similar to main engine test.

Figure 3.21. Specific NOx emissions for Diesel Generator.

Figure 3.22. Specific CO emissions.

Specific emission changes at each load (diesel generator) is shown in table 3.9. The efficiency of the generator is the ratio of the energy used to the total output from the generator and it depends on operating load of the generator. In general, the efficiency of diesel generator decreases with decrease in load. The lower the efficiency of the diesel generator the higher is the amount of emissions by the generator. So, it is recommended to use the generator at 70-80% of full load. At that range of load the exhaust temperatures are high enough to keep cylinders clean.

Figure 3.23. Specific CO₂ emissions.

Figure 3.24. Specific O₂ emissions.

Running diesel engine at low loads can result in carbon buildup. This generally happens when the engine is left idling. Running engine under low loads results in soot formation which is due to poor combustion at low combustion pressures and temperatures. Also the unburnt fuel residues clogs the piston rings. This will reduce efficiency and can cause problems and the engine failure. This can be prevented by carefully selecting the generator according to the power requirements.

	LOAD	LOAD	LOAD	LOAD
	%10-25	%25-50	%50-75	%75-100
Nox (g/kWh)	-0.0418	0.0064	0.0032	-0.0150
CO (g/kWh)	-0.1607	-0.0452	-0.0100	-0.0012
CO ₂ (g/kWh)	-24.889	-4.3024	-0.8326	-0.0513
O ₂ (g/kwW)	-209.6261	-50.8479	-0.8326	-4.3839

Table 3.9. Specific Emission Changes Each Load (Diesel Generator).

4. MANEUVERING EMISSION TEST

After the manufacturer's workshop trials, emission estimates can be made by a model during maneuvering. At 28 different points on the maneuvering route with different loads during the maneuvering as seen from Fig 4.1 were chosen to calculate the total emissions.

Figure 4.1. Castellon-Spain Port Map

Total emissions of ship maneuvers are generated by main engine(s), generator(s), boiler(s) and calculated as,

$$\sum$$
Ship Emission = \sum Main Engine(s) Emission + \sum Diesel Generator(s) Emission + \sum Boiler(s) Emission(4.1)

The following general equation is used to calculate the amount of NOx, SOx, CO₂, CO in each maneuvering points for ships. This method allows us to calculate various emissions amount during maneuvers.

$$\sum_{\text{Main Engine Emission}} = \left[(\sum Ne_1 \times SE_1)/60 \times \Delta t \right] + \left[(\sum Ne_2 \times SE_2)/60 \times \Delta t \right] + \dots + \left[(\sum Ne_n \times SE_n)/60 \times \Delta t \right]$$
(4.2)

Where;

\sum Ship Emission	Total amount of emissions generated by ships during maneuvering (g, kg),
Ne	: Effective power for a given load power (kW),
SE	: NOx, SOx, CO ₂ or CO specific emission (g/kWh),
Δt	: Time elapsed (min),
n	: Number of emissions occurring in each maneuver point.

The Figure 4.1. shows a map of Castellon-Spain port maneuvering points. There are 28 total points determined in accordance with this example. Total emissions mainly consist of main engines and generator engines. For this reason, only emissions form the main engine and diesel generator are calculated. After developing general emission data for the main diesel engine and diesel generators, emissions at the 28 maneuvering points can be calculated using these data at different engine loads.

The terms of the maneuvers carried out in Castellon-Spain port are outlined as follows;

Figure 4.2. West Mediterranean Wind Map (15.09.2015).[29].

Figure 4.3. West Mediterranean Sea Temperature Map (15.09.2015), [30].

Wind and sea water temperature maps can be seen on figure 4.2. and 4.3.

• Castellon Port Loaction:

Lonitude: 0^0 1' E (Greenwich) Latitude : 39^0 58' N

• *Wind Rate:* Prevailing : N.E. Dominant : N.E. Wind : 40 kph

• Storm Conditions in Deep Water: Large : 850 Km Maximum heigh of wave (2h =Hs) : 6.5 m Maximum length of wave (2L) : 293.60 m • *Tides:* Maximum Tidal Range : 0.7 m Swell : 0.4 m Period : 8 s.

• Harbour Enterance Channel: Direction : E-ESE-SE Width :400-735-376 m Length : 1.815 m Draught : 17 m Sea Bottom Characteristics :Rocky

• *Harbour Enterance Mounth:* Direction : S Width : 346 m Draught : 17 m

In 1906, José Serrano Lloberes has prepared the General Plan for the Port. In 1906, traffic through the port rise up to 60,000 tons. by 1912 this had grown to 80,000 tons. Oranges represented more than 80% of this annual traffic, but at the same time the export of tiles became a characteristic feature of the merchandise handled by the port in this early period. Most of these ceramic products came from the factories of Onda, a small town fifteen kilometres from Castellón and to this day the centre of the ceramics industry of the province [30].

The following table 4.1 has been developed using Eqn. 4.2. Table 4.1 shows emissions that can be used to calculate different maneuvering points for the main engine. Emissions and power are regarded as the different amount under the 25% of total load.

	Power	NOx	CO2	CO	SO2	HC	H2O
%LOAD	(Kw)	(g/kwh)	(g/kwh)	(g/kwh)	(g/kwh)	(g/kwh)	(g/kwh)
25	1110.0	10.58	639.60	1.54	0.20	1.00	319.50
24	1067.3	10.64	646.95	1.68	0.20	1.00	322.15
23	1024.6	10.71	654.94	1.83	0.20	1.04	325.04
22	981.9	10.79	663.65	1.99	0.20	1.08	328.18
21	939.2	10.88	673.20	2.17	0.20	1.13	331.63
20	896.5	10.98	683.70	2.37	0.20	1.18	335.42
19	853.8	11.09	695.31	2.59	0.20	1.24	339.61
18	811.2	11.22	708.20	2.84	0.20	1.31	344.26
17	768.5	11.37	722.61	3.11	0.20	1.39	349.47
16	725.8	11.54	738.83	3.42	0.20	1.48	355.32
15	683.1	11.74	757.20	3.77	0.20	1.58	361.95
14	640.4	11.97	778.20	4.17	0.20	1.71	369.53
13	597.7	12.25	802.43	4.63	0.20	1.86	378.28
12	555.0	12.60	830.70	5.17	0.20	2.04	388.49
11	512.3	13.02	864.11	5.80	0.20	2.26	400.55
10	469.6	13.54	904.20	6.56	0.20	2.55	415.02
9	426.9	14.22	953.20	7.49	0.20	2.91	432.71
8	384.2	15.12	1014.45	8.66	0.20	3.38	454.82
7	341.5	16.35	1093.20	10.15	0.20	4.04	483.25
6	298.8	18.12	1198.20	12.15	0.20	4.97	521.15
5	256.2	20.80	1345.20	14.94	0.20	6.40	574.22
4	213.5	25.26	1565.70	19.13	0.20	8.77	653.82
3	170.8	33.73	1933.20	26.11	0.20	13.27	786.49
2	128.1	53.95	2668.20	40.07	0.20	24.02	1051.82
1	85.4	135.08	4873.20	81.96	0.20	67.14	1847.82
0	42.7	135.08	4873.20	81.96	0.20	67.14	1847.82

Table 4.1. Power and Emissions for the Main engine at 0-25 % load.

	Decrea (Vers)	O ₂	NO _X	CO ₂	SO ₂	СО	HC
%LOAD	Power (Kw)	(g/kwh)	(g/kwh)	(g/kwh)	(g/kwh)	(g/kwh)	(g/kwh)
25	121.0	1941.32	8.76	777.69	0.20	2.81	0.45
24	116.2	1995.83	8.83	785.04	0.20	2.95	0.48
23	111.4	2056.32	8.90	793.03	0.20	3.10	0.52
22	106.6	2123.77	8.98	801.74	0.20	3.26	0.56
21	101.8	2199.34	9.06	811.29	0.20	3.44	0.61
20	97.0	2284.48	9.16	821.79	0.20	3.64	0.66
19	92.2	2380.96	9.27	833.40	0.20	3.86	0.72
18	87.4	2491.02	9.40	846.29	0.20	4.11	0.79
17	82.6	2617.51	9.55	860.70	0.20	4.38	0.87
16	77.8	2764.06	9.72	876.92	0.20	4.69	0.96
15	73.0	2935.43	9.92	895.29	0.20	5.04	1.06
14	68.2	3137.94	10.16	916.29	0.20	5.44	1.19
13	63.4	3380.13	10.44	940.52	0.20	5.90	1.34
12	58.6	3673.79	10.78	968.79	0.20	6.44	1.52
11	53.8	4035.67	11.20	1002.20	0.20	7.07	1.74
10	49.0	4490.22	11.73	1042.29	0.20	7.83	2.03
9	44.6	5074.42	12.41	1091.29	0.20	8.76	2.39
8	40.2	5846.67	13.31	1152.54	0.20	9.93	2.86
7	35.7	6904.17	14.54	1231.29	0.20	11.42	3.52
6	31.3	8419.79	16.30	1336.29	0.20	13.42	4.45
5	26.9	10728.99	18.98	1483.29	0.20	16.21	5.88
4	22.5	14565.62	23.45	1703.79	0.20	20.40	8.25
3	18.1	21843.48	31.91	2071.29	0.20	27.38	12.75
2	13.6	39226.53	52.13	2806.29	0.20	41.34	23.50
1	9.2	108978.12	133.26	5011.29	0.20	83.23	66.62
0	4.8	108978.12	133.26	5011.29	0.20	83.23	66.62

Table 4.2. Power and Emissions for Diesel Generator at 0-25 % Load

Table 4.2 shows emissions at a given percentage of the generator load. This table can be used to calculate the total emissions during maneuvering for the Diesel Generators at 0-25% generator load. In this maneuvering period, two generators were running together with the main engine.

4.1. Main Engine Emissions at Maneuvering

The NOx emissions from the main engine are calculated from Table 4.1. In order to calculate the NOx emissions, emission amounts are formulated as a function of time elapsed and power at a given percentage of the load. Table 4.3 shows the NOx calculations for each maneuvering points and total amount of NOx emission after maneuvering. Representation of NOx emission of 28 maneuvering points are seen in Figure 4.4. and Table 4.3.

Figure 4.4. Test results at Maneuvering Points for NO_X

Maneuvering	LOAD	Time Elapsed	Ne x NO _x x $\Delta t/60$	
points	%	(MINUTES)		NOx (g)
1-2	17	3	(768.5 x 11.37) x 3/60 =	436.735
2-3	15	3	$(683.1 \times 11.74) \times 3/60 =$	400.839
3-4	10	2	(469.6 x 13.54) x 2/60 =	212.026
4-5	8	1	$(384.2 \times 15.12) \times 1/60 =$	96.841
5-6	5	6	$(256.2 \times 20.80) \times 6/60 =$	532.827
6-7	7	2	$(341.5 \times 16.35) \times 2/60 =$	186.165
7-8	10	6	$(469.6 \times 13.54) \times 6/60 =$	636.078
8-9	7	1	$(341.5 \times 16.35) \times 1/60 =$	93.083
9-10	0	23	(42.7 x 135.08) x 23/60 =	2210.571
10-11	7	3	$(341.5 \times 16.35) \times 3/60 =$	279.248
11-12	23	2	(1024.6 x 10.71) x 2/60 =	365.916
12-13	8	6	(384.2 x 15.12) x 6/60 =	581.048
13-14	20	7	$(896.5 \times 10.98) \times 7/60 =$	1148.375
14-15	7	2	$(341.5 \times 16.35) \times 2/60 =$	186.165
15-16	4	2	$(213.5 \times 25.26) \times 2/60 =$	179.760
16-17	0	8	(42.7 x 135.08) x 8/60 =	768.894
17-18	4	1	$(213.5 \times 25.26) \times 1/60 =$	89.880
18-19	0	1	(42.7 x 135.08) x 1/60 =	96.112
19-20	10	2	(469.6 x 13.54) x 2/60 =	212.026
20-21	0	1	(42.7 x 135.08) x 1/60 =	96.112
21-22	4	3	$(213.5 \times 25.26) \times 3/60 =$	269.639
22-23	0	1	(42.7 x 135.08) x 1/60 =	96.639
23-24	10	1	(469.6 x 13.54) x 1/60 =	106.013
24-25	0	3	(42.7 x 135.08) x 3/60 =	288.335
25-26	4	3	$(213.5 \times 25.26) \times 3/60 =$	269.639
26-27	3	2	$(170.8 \times 33.73) \times 2/60 =$	191.993
27-28	0	6	(42.7 x 135.08) x 6/60 =	576.671
TOTAL T	IME	101	TOTAL NOx (g)	10607.103
ELAPSED(MIN)			

Table 4.3. Test Results of NOx Emission for the Main engine.

Also, using the same method of calculation for NO_x emissions, the CO_2 emissions are calculated and results are given in Table 4.4. This table shows the CO_2 calculation at each points and total amount of CO_2 emission during the maneuvering having 28 points. The most important greenhouse effect emission gas is carbon dioxide.

Maneuvering	LOAD	Time	Ne x CO ₂ x $\Delta t/60$	$CO_2(g)$
points	%	Elapsed		
		(MINUTES)		
1-2	17	3	$(768.5 \times 722.61) \times 3/60 =$	27764.967
2-3	15	3	$(683.1 \times 757.20) \times 3/60 =$	25861.292
3-4	10	2	(469.6 x 904.20) x 2/60 =	14154.208
4-5	8	1	$(384.2 \times 1014.45) \times 1/60 =$	6496.382
5-6	5	6	$(256.2 \times 1345.20) \times 6/60 =$	34457.815
6-7	7	2	$(341.5 \times 1093.20) \times 2/60 =$	12445.662
7-8	10	6	$(469.6 \times 904.20) \times 6/60 =$	42462.623
8-9	7	1	$(341.5 \times 1093.20) \times 1/60 =$	6222.831
9-10	0	23	$(42.7 \times 4873.20) \times 23/60 =$	79751.792
10-11	7	3	$(341.5 \times 1093.20) \times 3/60 =$	18668.492
11-12	23	2	$(1024.6 \times 654.94) \times 2/60 =$	22368.690
12-13	8	6	(384.2 x 1014.45) x 6/60 =	38978.690
13-14	20	7	$(896.5 \times 683.70) \times 7/60 =$	71512.390
14-15	7	2	$(341.5 \times 1093.20) \times 2/60 =$	12445.662
15-16	4	2	$(213.5 \times 1565.70) \times 2/60 =$	11140.558
16-17	0	8	$(42.7 \times 4873.20) \times 8/60 =$	27739.754
17-18	4	1	(213.5 x 1565.70) x 1/60 =	5570.279
18-19	0	1	$(42.7 \times 4873.20) \times 1/60 =$	3467.469
19-20	10	2	$(469.6 \times 904.20) \times 2/60 =$	14154.208
20-21	0	1	$(42.7 \times 4873.20) \times 1/60 =$	3467.469
21-22	4	3	$(213.5 \times 1565.70) \times 3/60 =$	16710.837
22-23	0	1	$(42.7 \times 4873.20) \times 1/60 =$	3467.469
23-24	10	1	$(469.6 \times 904.20) \times 1/60 =$	7077.104
24-25	0	3	$(42.7 \times 4873.20) \times 3/60 =$	10402.408
25-26	4	3	$(213.5 \times 1565.70) \times 3/60 =$	16710.837
26-27	3	2	$(170.8 \times 1933.20) \times 2/60 =$	11004.369
27-28	0	6	$(42.7 \times 4873.20) \times 6/60 =$	200804.815
TOTAL T	IME	101	TOTAL $CO_2(g)$	565308.672
ELAPSED((MIN)			

Table 4.4. Test Results of CO2 Emissions for the Main engine.

Graphical representation of CO_2 emission of 28 maneuvering points are seen in Figure 4.5.

Figure 4.5. Test results at Maneuvering Points for CO_2

Similarly, using the same method of calculation for determining of emission values done above, one can calculate the other important emissions of CO and SO₂. Tables 4.5 and 4.6 show the CO and SO₂ calculations at each points and total amount of emissions during the maneuvering having 28 points, respectively. Also, figures 4.6 and 4.7 are the representation of the CO and SO₂ variations with respect to maneuvering points.

Figure 4.6. Test results at Maneuvering Points for CO.

Ī	Maneuvering	LOAD	Time Elapsed	Ne x CO x $\Delta t/60$	CO (g)
	points	%	(MINUTES)		
Ī	1-2	17	3	$(768.5 \times 3.11) \times 3/60 =$	119.612
Ī	2-3	15	3	$(683.1 \times 3.77) \times 3/60 =$	128.765
Ī	3-4	10	2	(469.6 x 6.56) x 2/60 =	102.733
	4-5	8	1	$(384.2 \times 8.66) \times 1/60 =$	55.440
	5-6	5	6	(256.2 x 14.94) x 6/60 =	382.714
	6-7	7	2	$(341.5 \times 10.15) \times 2/60 =$	115.592
Ī	7-8	10	6	$(469.6 \ge 6.56) \ge 6/60 =$	308.199
	8-9	7	1	$(341.5 \times 10.15) \times 1/60 =$	57.796
	9-10	0	23	$(42.7 \times 81.96) \times 23/60 =$	1341.385
	10-11	7	3	$(341.5 \times 10.15) \times 3/60 =$	173.388
	11-12	23	2	(1024.6 x 1.83) x 2/60 =	62.413
	12-13	8	6	(384.2 x 8.66) x 6/60 =	332.640
	13-14	20	7	(896.5 x 2.37) x 7/60 =	248.290
	14-15	7	2	$(341.5 \times 10.15) \times 2/60 =$	115.592
	15-16	4	2	$(213.5 \times 19.13) \times 2/60 =$	136.116
	16-17	0	8	$(42.7 \times 81.96) \times 8/60 =$	466.569
	17-18	4	1	$(213.5 \times 19.13) \times 1/60 =$	68.058
	18-19	0	1	(42.7 x 81.96) x 1/60 =	58.321
Ī	19-20	10	2	$(469.6 \ge 6.56) \ge 2/60 =$	102.733
	20-21	0	1	(42.7 x 81.96) x 1/60 =	58.321
	21-22	4	3	(213.5 x 19.13) x 3/60 =	204.174
Ī	22-23	0	1	(42.7 x 81.96) x 1/60 =	58.321
Ī	23-24	10	1	$(469.6 \ge 6.56) \ge 1/60 =$	51.367
Ī	24-25	0	3	(42.7 x 81.96) x 3/60 =	174.963
Ī	25-26	4	3	(213.5 x 19.13) x 3/60 =	204.174
Ī	26-27	3	2	(170.8 x 26.11) x 2/60 =	148.635
Ī	27-28	0	6	(42.7 x 81.96) x 6/60 =	349.927
Ī	TOTAL T	IME	101	TOTAL CO (g)	5626.239
	ELAPSED(MIN)			

Table 4.5. Test Results of CO Emission Table for Main engine

Graphical representation of CO emission of 28 maneuvering points are seen in Figure 4.6.

Maneuvering	LOAD	Time Elapsed	Ne x SO ₂ x $\Delta t/60$	$SO_{2}(g)$
points	%	(MINUTES)		
1-2	17	3	$(768.5 \times 0.20) \times 3/60 =$	7.685
2-3	15	3	$(683.1 \ge 0.20) \ge 3/60 =$	6.831
3-4	10	2	(469.6 x 0.20) x 2/60 =	3.131
4-5	8	1	$(384.2 \ge 0.20) \ge 1/60 =$	1.281
5-6	5	6	$(256.2 \times 0.20) \times 6/60 =$	5.123
6-7	7	2	$(341.5 \times 0.20) \times 2/60 =$	2.277
7-8	10	6	$(469.6 \ge 0.20) \ge 6/60 =$	9.392
8-9	7	1	$(341.5 \times 0.20) \times 1/60 =$	1.138
9-10	0	23	$(42.7 \ge 0.20) \ge 23/60 =$	3.273
10-11	7	3	$(341.5 \times 0.20) \times 3/60 =$	3.415
11-12	23	2	$(1024.6 \ge 0.20) \ge 2/60 =$	6.831
12-13	8	6	$(384.2 \ge 0.20) \ge 6/60 =$	7.685
13-14	20	7	$(896.5 \ge 0.20) \ge 7/60 =$	20.919
14-15	7	2	$(341.5 \times 0.20) \times 2/60 =$	2.277
15-16	4	2	$(213.5 \times 0.20) \times 2/60 =$	1.423
16-17	0	8	$(42.7 \ge 0.20) \ge 8/60 =$	1.138
17-18	4	1	$(213.5 \times 0.20) \times 1/60 =$	0.712
18-19	0	1	$(42.7 \ge 0.20) \ge 1/60 =$	0.142
19-20	10	2	$(469.6 \ge 0.20) \ge 2/60 =$	3.131
20-21	0	1	$(42.7 \ge 0.20) \ge 1/60 =$	0.142
21-22	4	3	$(213.5 \times 0.20) \times 3/60 =$	2.135
22-23	0	1	$(42.7 \ge 0.20) \ge 1/60 =$	0.142
23-24	10	1	$(469.6 \ge 0.20) \ge 1/60 =$	1.565
24-25	0	3	$(42.7 \ge 0.20) \ge 3/60 =$	0.427
25-26	4	3	$(213.5 \times 0.20) \times 3/60 =$	2.135
26-27	3	2	$(170.8 \ge 0.20) \ge 2/60 =$	1.138
27-28	0	6	(42.7 x 0.20) x 6/60 =	0.854
TOTAL T	ME	101	TOTAL SO ₂ (g)	96.342
ELAPSED(MIN)			

Table 4.6. Test Results of SO_2 Emission Table for Main engine

Graphical representation of SO₂ emission of 28 maneuvering points are seen in Figure 4.7.

Maneuvering	LOAD	Time Elapsed	Ne x O_2 x $\Delta t/60$	O ₂ (g)
points	%	(MINUTES)		
1-2	17	3	$(768.5 \times 2442.19) \times 3/60 =$	93836.373
2-3	15	3	$(683.1 \times 2760.11) \times 3/60 =$	94268.396
3-4	10	2	(469.6 x 4314.90) x 2/60 =	67544.743
4-5	8	1	$(384.2 \times 5671.35) \times 1/60 =$	36318.462
5-6	5	6	$(256.2 \times 10553.67) \times 6/60 =$	270336.301
6-7	7	2	$(341.5 \times 6728.85) \times 2/60 =$	76605.396
7-8	10	6	$(469.6 \times 4314.90) \times 6/60 =$	202634.229
8-9	7	1	$(341.5 \times 6728.85) \times 1/60 =$	38302.698
9-10	0	23	$(42.7 \times 108802.80) \times 23/60 =$	1780599.669
10-11	7	3	$(341.5 \times 6728.85) \times 3/60 =$	114908.094
11-12	23	2	(1024.6 x 1881) x 2/60 =	64243.541
12-13	8	6	(384.2 x 5671.35) x 6/60 =	217910.769
13-14	20	7	(896.5 x 2109.16) x 7/60 =	220609.885
14-15	7	2	$(341.5 \times 6728.85) \times 2/60 =$	76605.396
15-16	4	2	$(213.5 \times 14390.30) \times 2/60 =$	102392.519
16-17	0	8	$(42.7 \times 108802.80) \times 8/60 =$	619.339.015
17-18	4	1	(213.5 x 14390.30) x 1/60 =	51196.260
18-19	0	1	$(42.7 \times 108802.80) \times 1/60 =$	77417.377
19-20	10	2	$(469.6 \times 4314.90) \times 2/60 =$	67544.743
20-21	0	1	$(42.7 \times 108802.80) \times 1/60 =$	77417.377
21-22	4	3	(213.5 x 14390.30) x 3/60 =	153588.779
22-23	0	1	$(42.7 \times 108802.80) \times 1/60 =$	77417.377
23-24	10	1	$(469.6 \times 4314.90) \times 1/60 =$	33772.372
24-25	0	3	$(42.7 \times 108802.80) \times 3/60 =$	232252.131
25-26	4	3	(213.5 x 14390.30) x 3/60 =	153588.779
26-27	3	2	(170.8 x 21668.16) x 2/60 =	123341.860
27-28	0	6	$(42.7 \times 108802.80) \times 6/60 =$	464504.262
TOTAL TIME		101	TOTAL $O_2(g)$	5588496.803
ELAPSED(1	MIN)			

Table 4.7. Test Results of O2 Emission Table for Main engine

Graphical representation of O_2 emission of 28 maneuvering points are seen in Figure 4.8.

Figure 4.7. Test results at Maneuvering Points for SO₂

Figure 4.8. Test results at Maneuvering Points for O₂

Maneuvering	LOAD	Time Elapsed	Ne x HC x $\Delta t/60$	HC (g)
points	%	(MINUTES)		
1-2	17	3	(768.5 x 1.39) x 3/60 =	53.312
2-3	15	3	$(683.1 \times 1.58) \times 3/60 =$	54.101
3-4	10	2	(469.6 x 2.55) x 2/60 =	39.841
4-5	8	1	$(384.2 \times 3.38) \times 1/60 =$	21.668
5-6	5	6	$(256.2 \times 6.40) \times 6/60 =$	163.983
6-7	7	2	(341.5 x 4.04) x 2/60 =	45.964
7-8	10	6	(469.6 x 2.55) x 6/60 =	119.524
8-9	7	1	(341.5 x 4.04) x 1/60 =	22.982
9-10	0	23	(42.7 x 67.14) x 23/60 =	1098.705
10-11	7	3	$(341.5 \times 4.04) \times 3/60 =$	68.946
11-12	23	2	(1024.6 x 1.04) x 2/60 =	35.540
12-13	8	6	(384.2 x 3.38) x 6/60 =	130.010
13-14	20	7	(896.5 x 1.18) x 7/60 =	123.594
14-15	7	2	$(341.5 \times 4.04) \times 2/60 =$	45.964
15-16	4	2	$(213.5 \times 8.77) \times 2/60 =$	62.426
16-17	0	8	$(42.7 \times 67.14) \times 8/60 =$	382.158
17-18	4	1	$(213.5 \times 8.77) \times 1/60 =$	31.213
18-19	0	1	$(42.7 \times 67.14) \times 1/60 =$	47.770
19-20	10	2	(469.6 x 2.55) x 2/60 =	39.841
20-21	0	1	(42.7 x 67.14) x 1/60 =	47.770
21-22	4	3	$(213.5 \times 8.77) \times 3/60 =$	93.639
22-23	0	1	(42.7 x 67.14) x 1/60 =	47.770
23-24	10	1	(469.6 x 2.55) x 1/60 =	19.921
24-25	0	3	$(42.7 \times 67.14) \times 3/60 =$	143.309
25-26	4	3	$(213.5 \times 8.77) \times 3/60 =$	93.639
26-27	3	2	(170.8 x 13.27) x 2/60 =	75.550
27-28	0	6	(42.7 x 67.14) x 6/60 =	286.619
TOTAL TIME		101	TOTAL HC (g)	3395.758
ELAPSED(MIN)				

Table 4.8. Test Results of HC Emission Table for Main engine

Graphical representation of HC emission of 28 maneuvering points are seen in Figure 4.9.

Maneuvering	LOAD	Time Elapsed	Ne x H ₂ O x $\Delta t/60$	H ₂ O g)
points	%	(MINUTES)		
1-2	17	3	(768.5 x 1.39) x 3/60 =	13427.600
2-3	15	3	$(683.1 \times 1.58) \times 3/60 =$	12362.098
3-4	10	2	(469.6 x 2.55) x 2/60 =	6496.659
4-5	8	1	$(384.2 \times 3.38) \times 1/60 =$	2912.597
5-6	5	6	$(256.2 \times 6.40) \times 6/60 =$	14708.866
6-7	7	2	$(341.5 \times 4.04) \times 2/60 =$	5501.599
7-8	10	6	(469.6 x 2.55) x 6/60 =	19489.978
8-9	7	1	$(341.5 \times 4.04) \times 1/60 =$	2750.800
9-10	0	23	$(42.7 \times 67.14) \times 23/60 =$	30240.285
10-11	7	3	$(341.5 \times 4.04) \times 3/60 =$	8252.399
11-12	23	2	(1024.6 x 1.04) x 2/60 =	11101.277
12-13	8	6	(384.2 x 3.38) x 6/60 =	17475.584
13-14	20	7	(896.5 x 1.18) x 7/60 =	35083.642
14-15	7	2	$(341.5 \times 4.04) \times 2/60 =$	5501.599
15-16	4	2	$(213.5 \times 8.77) \times 2/60 =$	4652.181
16-17	0	8	$(42.7 \times 67.14) \times 8/60 =$	10518.360
17-18	4	1	$(213.5 \times 8.77) \times 1/60 =$	2326.090
18-19	0	1	$(42.7 \times 67.14) \times 1/60 =$	1314.795
19-20	10	2	(469.6 x 2.55) x 2/60 =	6496.659
20-21	0	1	$(42.7 \times 67.14) \times 1/60 =$	1314.795
21-22	4	3	$(213.5 \times 8.77) \times 3/60 =$	6978.271
22-23	0	1	(42.7 x 67.14) x 1/60 =	1314.795
23-24	10	1	(469.6 x 2.55) x 1/60 =	3248.330
24-25	0	3	$(42.7 \times 67.14) \times 3/60 =$	3944.385
25-26	4	3	$(213.5 \times 8.77) \times 3/60 =$	6978.271
26-27	3	2	(170.8 x 13.27) x 2/60 =	4476.924
27-28	0	6	(42.7 x 67.14) x 6/60 =	7888.770
TOTAL TIME		101	TOTAL H ₂ O (g)	246757.609
ELAPSED(1	MIN)			

Table 4.9. Test Results of H_2O (Vapour) Emission Table for Main engine

Graphical representation of H_2O (Vapour) emission of 28 maneuvering points are seen in Figure 4.10.

Figure 4.9. Test results at Maneuvering Points for HC

Figure 4.10. Test results at Maneuvering Points for H₂O

As explained before, Tables 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9 and Figures 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10 show emissions of NO_x , CO_2 , CO, O_2 , HC, SO_2 , H_2O respectively, from the main engine based on Table 4.1. as a function of time elapsed and power at a given percentage of the load for each maneuvering points.

During maneuvers, average power is calculated as 481.711 kW. On the other hand, the average emissions (g, kg/kwh) during total maneuvering time can be found using below correlation,

 $SE_{ave} = [(\sum SE)/(Ne_{ave} * \Delta t / 60)]$

Where;

Ne_{ave} : Average power (kW) during maneuvering.

 \sum SE : Total values of NO_x, CO₂, CO, O₂, HC, SO₂, or H₂O specific emission (g/kWh) during maneuvering.

	TE	EST BENC	H RESUL	ГS	CALCULATED EMISSIONS
	%25	%25 %50 %75 %100		%100	Average power and emissions during
	LOAD	LOAD	LOAD	LOAD	maneuvers
Power (kW)	1091	2220	3340	4440	481.711 (Mean Power at Maneuver)
NOx (g/kwh)	10.58	12.33	14.54	13.43	(10607 / (481.711* (101 / 60)) = 13.080
CO ₂ (g/kwh)	639	601.9	586.9	595.2	(565308 / (481.711*(101 / 60)) = 697.153
CO (g/kwh)	1.154	0.883	0.705	0.594	(5626 / 481.711*(101 / 60)) = 6.938
SO ₂ (g/kwh)	0.201	0.189	0.184	0.187	(69 / 481.711* (101 / 60)) = 0.12
O ₂ (g/kwh)	1766	1450.6	1415.6	1245.6	(5588496 / 481.711* (101 / 60)) = 6891.882
HC (g/kwh)	1.540	0.883	0.705	0.594	(3395 / 481.711* (101 / 60)) = 4.187
H ₂ O (g/kwh)	319.5	293.3	285.9	286.1	(246757 / 481.711* (101 / 60)) = 304.308

 Table 4.10. Comparison of the Test Bench Results (Total Emission) and average emissions during maneuvers.

Table 4.10 and 4.11 show the comparison of the Test Bench Results (Total Emission) and average emissions during maneuvers at different loads. It can be seen that values of

 CO_2 , CO, O_2 , HC, H_2O emissions during maneuvers are greater than that of the test bench results. But, No_x is lower than that of the %75 and %100 test bench results. At this point, we can conclude that maneuvering period is an important parameter for calculating emissions and plays important role controlling the emissions within limits.

NOx (gper kW)	%25 LOAD < %50 LOAD < Maneuver < %100 LOAD < %75 LOAD
CO ₂ (g per kW)	Maneuver > %25 LOAD > %50 LOAD > %100 LOAD > %75 LOAD
CO (g per kW)	Maneuver > %25 LOAD > %50 LOAD > %75 LOAD > %100 LOAD
SO ₂ (g per kW)	%25 LOAD > %50 LOAD > %100 LOAD > %75 LOAD > Maneuver
O ₂ (g per kW)	Maneuver > %25 LOAD > %50 LOAD > %75 LOAD > %100 LOAD
HC (gper kW)	Maneuver > %25 LOAD > %75 LOAD > %50 LOAD > %100 LOAD
H ₂ O (g per kW)	Maneuver > %25 LOAD > %50 LOAD > %100 LOAD > %75 LOAD

Table 4.11. Test Results Emission for Main engine

Summary of the analysis of the main engine is given in the table 4.8. The maneuver consists of higher CO₂, CO and SO₂ except NOx emissions than %25, %50, %75 and %100 main engine load.

During the manuvers, CO_2 specific emission is approximately 20%, CO is approximately 884% and NOx is approximately 25% greater than the %25 load. On the other hand, 3% NOx is less than %100 load. This results show the importance of the maneuvering propulsion power and time and the effect on emissions.

4.2. Diesel Generator Emission at Maneuvering

Table 4.2 shows emissions at a given percentage of the generator load to calculate the total emissions during maneuvering for the Diesel Generators at 0-25% generator load. In this maneuvering period, two generators were running together with the main engine. The amount of emissions (kg) at a given power during total maneuvering time can be found using below correlation,

ME=Ne_e x SE $x\Delta t$ /60

Where;

ME : Total amount of emissions (g, kg)

Ne_e : Electrical Power (kW) required during maneuvering.

SE : Specific emission (g/kWh) values of NOx, CO₂, O₂, HC or CO.

Table 4.12 shows the amount of NO_x , CO_2 , CO, O_2 , and HC emissions from the diesel generators based on Table 4.2 at 25% and 50% load.

	ME=Ne _e x SE xΔt /60 At 25% LOAD (121kW)	ME=Ne _e x SE xΔt /60 %50 LOAD(241 Kw)
NOx (kg)	121 x 8.76 x 101 / 60 =1.784	241 x 8.92 x 101/60 =3.618
CO_2 (kg)	121 x 777.69 x 101 / 60 =158.402	241 x 670.12 x 101/60= 271.856
CO (kg)	121 x 2.81 x 101 / 60 =0.572	241 x 0.871 x 101/60 =0.353
O_2 (kg)	121 x 1941.32 x 101 / 60 =395.349	241 x 670.12 x 101/60 =269.164
HC (kg)	121 x 0.45 x 101 / 60 =0.09	241 x 0.12 x 101/60 =0.04

Table 4.12. Test Result Emissions at 25 % and 50% load of a Diesel Generator

Diesel generators were run to meet the power needs of 241 kW for 101 minutes during the maneuvering. In this test, changes were negligible at load changes. Table 4.14 shows the amount of NO_x , CO_2 , CO, O_2 , and HC emissions from the diesel generators at 50% load using one or two diesel generators for comparison.

	1 Generator 241 Kw	2 Generators 121 Kw x 2 pcs	Difference
NOx (kg)	3.618	3.568	-0.05
CO_2 (kg)	271.856	316.804	44.948
CO (kg)	0.353	1.144	0.791
O_2 (kg)	269.164	790.698	521.534
HC (kg)	0.04	0.18	0.14

 Table 4.13. Emission Test Results for % 50Diesel Generator load.

Emission comparison of one or two generators at 241 kW power during maneuvers in order to meet electrical power demand are seen in Table 4.13. Data used to calculate the emissions during maneuvers, taken from the Table 4.2. In Table 4.13, using one or two generators for maneuver is examined in terms of amount of emissions at the same electrical power output. It is clearly understood from the Table 4.14, one diesel generator should be run in terms of reducing emissions during operation. However, for safety of the ship, it is important and required to use two generators together at the appropriate time.

	2 Generators	1 Generator
	121x kW	241 Kw
NOx (g per kW)	0.01474380	0.01501244
CO ₂ (g per kW)	1.309074380	1.128033195
CO (g per kW)	0.004272727	0.001464730
O ₂ (g per kW)	3.280904564	1.116863070
HC (g per kW)	0.000743801	0.000165975

Table 4.14. Test Results Emission for gram per 1 kW for Diesel Generator

Table 4.14 shows emissions produced while producing 1 Kw for Diesel generators at 121 kW and 241 kW power. Also the table 4.15 shows the emissions produced in 24 hours for Diesel generators at 121 kW and 241 kW power.

Usually there is more than one generator on the ships. According to the required loads, they are run in parallel. But, minimum number of generators to provide the use of maneuver requests are important in terms of emissions as seen figure 4.11.

Figure 4.11. Percentage comparision of one or two generators' emissions at 241 kW.

Figure 4.1 shows the percentage emission of comparision of one or two generators emissions at 241 kW. During the manuvers and using two generators instead of one, CO_2 emission increases approximately 16.53%, CO increases approximately 323.97% but NOx degreases approximately -1.38%. This results show the importance of the selection of the number of the generators during maneuvering.

4.3. Total Emissions at Maneuvering

During the maneuvering, total emissions are calculated by using main engine and Diesel generators data. Table 4.15 shows the estimated emissions for three main emissions as NO_X , CO_2 and CO greenhouse effect gases.

		Generator Diesel Engine(s)		ΤΟΤΑΙ	ΤΟΤΑΙ
	Main	2 Diesel	1 Diesel	amission for	emission for two generators
	Engine	Engine	Engine	one generator	
		(121 kW x 2)	(241 kW)	one generator	
NOx (kg)	10.607	3.568	3.618	14.225	14.175
CO ₂ (kg)	565.308	316.804	271.856	837.164	882.112
CO (kg)	5.626	1.144	0.353	5.979	6.77

Table 4.15. Total Emission Results for Maneuver

In this study, calculations in two different scenarios were performed based on one or two generators to run. The amount of ship emissions during maneuvering are modeled as realistic as possible. Emissions will vary in different ship types and equipment features. The emissions for different ship's main engine and diesel generator can be calculated by using this basic practice. Also, the number of generators used at the port determined by this method. In this way, both fuel consumption and emissions are achieved.
DISCUSSION AND RESULT

Energy efficient shipping is a prerequisite for the reduction of the Green House Gas emissions to the levels anticipated within the next decades. Therefore, it is necessary to have technically high performance ships. High performance that release harmful gases into the atmosphere will be reduced by a ship.

A set of rules as a result of increased global warming in recent years has been come into force. In addition, tax treatment began on emissions. In this way, the ship owners were forced to pay according to their degree of polluting the air. At this point, it is required to measure of the air polluting level of the vessel. Various measuring methods have been developed related with the port, maneuvering and sailing modes of the ship.

In this study, unlike previous studies, estimations have been made for the overall emissions in the maneuvering. This sense, it aims to contribute to the existing literature. The results of Diesel engine performance measurement calculation is used to estimate produced power and emissions relations.

The supply of electricity by ports as well as ports of existing technology will completely eliminate emissions.

When the diesel engine is running, it produces more than 35 different gas emissions. Basic air pollutants and the terms of the international conventions as MARPOL Annex 6 are described. In particular, Diesel engines sourced pollutants have been identified as CO_2 , CO, NO_X , PM, SO_X . Basic fuel standards have been compared with the announced rate on sulfur emissions.

Performance analysis of the Diesel engine is performed by the actual value measurement. Should any power loss ais found by comparing the values of the test data, operational checks and maintetence must be done.

Methodology using informations on primary and secondary sources is described in the test methods. A vessel is examined by performance of the total air pollution at maneuver by comparing different loads.

Results describe the concept as a precondition to calculate emissions and evaluate the performance. It describes how to evaluate the power of engine and relationship with emission gases by calculating results. The assessed value of main engine and generator are determined to find out specific and total emission at optimum working conditions. Considering the number of the operating diesel generators, it has been shown is necessary for the safety of the ship. This is a negative situation in terms of emissions, but is necessary for safety.

In maneuvering, main engine specific emission of carbon dioxide gas is more than 25%, 50%; 75% and 100% load conditions. During the manuvers, Main engine CO_2 emission is approximately 20%, CO is approximately 884% greater than the normal operating load. NOx for main engine is less than 25% during manuvers. Also using two generators instead of one, CO_2 emission increases approximately 17%, CO increases approximately 320% and NOx increases approximately -1.5%. This result show the importance of the maneuvering propulsion power and time and the effect on emissions.

The discussed concepts are instantly evaluated maneuver. These points are determined for different emissions. They are calculated at maneuvering position. Specific fuel consumption and pollutant emissions increase while maneuvering. Also, it has been found to be detrimental to the quantity of specific emissions while generators are operating low load.

Result of this study, maneuvers should be performed quickly and as soon as possible. This situation shows the captain's abilities come to the sceme. Emission gases can be calculated with the variety of different ship types and tonnage. Also according to the power and emissions, the number of the Diesel generators which might be used in the port identified as the most suitable options available.

Computing results identified instantly by maneuvering with more precision was generated by emission values. For any vessel, emissions can be calculated on different diesel engines depending on the performance and power by the same method. Ships should choose optimum routes for minimize fuel consumptions and emissions. Ships should also check the loaded and empty conditions with their emission and power performances.

Energy efficiency will be important in future studies to evaluate the emissions of different machines as pumps, boilers, cranes etc. at port and maneuvering conditions.

REFERENCES

[1] URL 1,

http://cevreanaliz.blogspot.com.tr/2010/12/hava-kirliliginin-tanimi-ve-tarihsel.html (Access Date :15.02.2015).

- [2] URL 2, <u>http://www.livescience.com/44186-who-invented-the-steam-engine.html</u> (Access Date :15.02.2015).
- [3] Düzcü L. "A Maritime Example of the Ottoman Transition to the Industrial Age: Main Parameters of the Transition to Steamship (1828-1856)", International Journal of History, Vol. 5, Issue 1, pp. 113-127.
- [4] Berkes, F. ve Kışlalıoğlu, M., (1990) .Ekoloji ve Çevre Bilimleri, İstanbul Remiz Kitabevi
- [5] Çepel, N,. Genel Ekoloji, İstanbul Üniversitesi Yayınları İstanbul, 1983.
- [6] Çepel, N., Çevre Koruma ve Ekoloji Terimleri Sözlüğü, TEMA Yayınları İstanbul, 1995.
- [7] Gökmen, S., Genel Ekoloji, Nobel Basımevi, Ankara, 2007.
- [8] Kara, S., Banar, M., Özkan, A. Ve Çokaygil, Z., Çevre Sağlığı, (Ed. A. Çiçek), Anadolu Üniversitesi, AÖF yayınları, Eskişehir, 2008.
- [9] Özdemir, Ş., Temel Ekoloji Bilgisi ve Çevre Sorunları, Hatiboğlu Yayınları, Ankara, 1997.
- [10] Revised MARPOL ANNEX VI Regulations fort the prevention of air pollution from ships and Nox Technical Code 2008, 2009 Edition, IMO publication, London, 2009.
- [11] Marpol Annex VI and NTC 2008 with guidelines for implementation, 2013 Edition, IMO publication, London, 2013.
- [12] Marpol Consolidated fith Edition, IMO publication, London, 2011
- [13] URL 3 <u>http://www.dieselnet.com/standards/inter/imo.php</u>, (Access Date : 20.02.2015)
- [14] URL 4 <u>www.unctad.org</u>, (Access Date :20.02.2015).
- [15] URL 5 <u>http://www.iso.org/iso/catalogue_detail.htm?csnumber=59479</u>, (Access Date :20.03.2015).
- [16] Marr, L. Rosser, D. P. & Meneses, C. A. 2007. An air quality survey and emissions inventory at Aberdeen harbour. Atmospheric Environment, 41, 379-6395
- [17] Saxe, H. & Larsen, T. 2004. Air Pollution in three Danis Ports Atmospheric Environment, 38, 4057-4067.

- [18] ENVIRON 2005. Port of Oakland. Seaport air emission inventory.
- [19] A.K. Gupta, R.S. Patil and S.K.Gupta, 2002.Emissions of Gaseous and particulate Pollutants in a Port and Harbour Region in India.
- [20] Yang. D. & Kwan, S.H. 2007. An emission inventory of marine vessels in Schanghai in 2003.
- [21] California Environmental Protection Agency 2006.Emission Reduction Plan for Ports and Goods Movement in California.
- [22] Cengiz Deniz, Alper Kılıç 2009 Estimationand assessment of shipping emissions in the region of Ambarlı Port, Turkey, Wiley Interscience DOI 10,1002/ep.10373.
- [23] Alper Kılıç, Cengiz Deniz, 2009. Inventory of shipping emissions in İzmit Gulf, Turkey Wiley Interscience DOI 10,1002/ep.10365
- [24] Cengiz Deniz, Alper Kılıç, Gökhan Çıvkaroğlu, 2009. Estimation of shipping emissions in Çandarlı Gulf, Turkey, Springer Environ Monit Asses, DOI 10,1007/s10661-009-1273-2
- [25] Analysis of Commercial Marine Vessels Emissions and Fuel Consumption Data 2000, United States Environmental Protection Agency.
- [26] Pablo Kaluza, Andrea Kölzsch, Michael T.Gastner. Berd Blasius. "The complex network of global cargo ship movements" *Journal of Royal Society*, Vol.7. Issue.48, pp 1093-1101
- [27] M.A.N. B&W S35MC Test Bench Report, 2005.
- [28] M.A.N. B&W D 2876 Model Diesel Generator Test Bench Report, 2005.
- [29] URL 6- http://www.surf-forecast.com (Access Date :15.09.2015).
- [30] URL 7- The port of Castellón (2015). http://www.portcastello.com/ (Access Date :15.09.2015).

				De	scription	: IMO Te	echnical F	ile				
ME	BD Info No.	A								← Identifica	tion No.	→
3	00 044	4	Eng	ine Ty	/pe 6S3	5MC, PI	ant spec	90892	26-4	0 xx x	x xx->	(
Suppl. D	rwg.:									Page No.:		2
20	Date	Des. SVH	Chk.	Appd. SVH	A.C.	Change/F	Replacemer	nt				C. No.
Par Two- open for o	stroke, uni- -chamber, o peration on	of the flow so direct-lu heavy	e en cavenç njectic fuel o	gine ged, tu on die il.	ırbo-cha sel engi	irged, cl ne, with	harge-air pump-lii	coole ne-noz	d, in-lin zle fuel	e, cross-head, wa injection for each	ter coo cylind	led, ler, and
1	Name and ad	dress of r	manufac	turer		MAN	B&W Di	esel A/	S, Alpha	a Diesel		
						Niels	s Juels ve	j 15, 9	900 Fred	derikshavn, Denma	rk	
2	Date of engine	e build an	nd pre-c	ertificati	on survey				21 Jul	ly 2005		
3	Parent engine	ə rəspons	ible			MAN	B&W Di	esel A	S, Cope	enhagen		
4	Built at manut	facturer (r	name ar	nd addre	ess)	MAN	B&W Di	esel A	S, Alpha	a Diesel		
						Niels	s Juels ve	j 15, 9	900 Fred	derikshavn, Denma	rk	
5	Date of paren	t engine l	build an	d pre-ce	artification :	survey			19. Ap	oril 2004		
6	Engine type								S35M	C		
					Number of	cyl. 6	Bore	(mm)	350	Stroke (mm)	1400	
					Cooling sys Parent	stem	Cen	tral (fix	(ed) <i>Membe</i>	ər		
7	Engine numb	er			37067				37075	5		
8	Plant spec. n	umber			908863-9)			90892	26-4		
9	If applicable,	the engin	e is:	an li	ndividual ei	ngine	a F	Parent er	ngine	a Member engin	e X	
	of the followin	ng engine	Group:			ADF	-S35MC-	04-1				
	On-board sur	vey code	name	n(n)		ADF	-S35MC-	04-1 TB and	on-hoa	rd MC, ver 5-3		
10	Test cycle(s)	(see chap	oter 3 of	the Te	chnical Cod	de)			E2			
11	Rated MCR P	Power (kN	V) and S	peed (n	/min) *)				4440	kW at 173 r/min		
12	Layout MEP ((bar) / ma	x. cylind	ler pres	sure (baral	bs) *)			19.1 b	oar / 147 barabs		
13	Specification(s) of test	fuel (an	d/or Ce	rtification n	o. of fuel s	sample anai	ysis)	ITS ce	ertificate 28398 (se	e Encl. :	3)
14	NOx reducing	device d	lesignati	ed appr	oval numbe	ər (if install	led)		Not ap	oplicable (N/A)		
15	Applicable NC	Ox Emissi	ion Limi	t (g/kWi	n) (regulatio	on 13 of Ar	nnex VI)		16.1			
16	Parent Engine	e's actual	NOx Er	nission	Value (g/k	Wh)			E2: 14	4.2 E3: 14.6		
17	NOx Emission	n at maxir	mum all	owed to	lerances (g	g/kWh)			E2: 15	5.3 E3: 15.4		

MAN B&W Diesel A/S Description: IMO Technical File ← Identification No. → MBD Info No. Α 4 Engine Type 6S35MC, Plant spec 908926-4 0 xx xx xx-x 3 00 044 Suppl. Drwg.: Page No.: 8 Date Des. Chk. Appd. A.C. Change/Replacement C. No. SVH SVH 2004-06-15 1 Engine group definition 2. Engine group designation ADF-S35MC-04-1 6\$35MC Member engine(s) Plant specification(s): 908926-4, 0908863-9 All engines built to the specified plant specification(s) (i.e. through the technical data in the Tables 1.1 to 1.3) and within the following rated power/speed/ MEP ranges: 4440 kW / 173 r/min / 19.1 bar Parent engine Alpha 6S35MC, plant specification: 0908863-9 Power/speed/MEP rating: 4440 kW / 173 r/min / 19.1 bar Class approval: LR Engine no 37067 built at Alpha and tested: 2 December 2004 Confirmation of conformity *) Product conformity through MAN B&W plant specification - licencees supplied drawings (with tolerances) and 'Conformity of Production' procedures *) documentation for group engines only to the Authorized Company 3. **On-board NOx verification procedure** 3.1 Introduction MAN B&W has defined a combination of performance parameter checks and, component and setting verification as the on-board survey method. Fig. 1 shows a flow chart of the on-board survey procedures, and Appendix B includes a detailed description of all survey procedures. MAN B&W recommends as a standard procedure to include the results of the on-board survey to the 'record book' after any performance adjustment or IMO component changes to the engine to secure and document continuing compliance. 3.2 Performance parameter check The parameter check can be performed using the manufacturer supplied survey code as an easy tool to calculate and present the ISO corrected reference values to verify compliance. The expected (simulated) NOx emission is added for additional benefit of the Owner. The survey code is supplied on a CD ROM and dedicated to a specific engine group. The code is based on EXCEL 2000. (If a computer is not available, also a manual check can be performed (see step-by-step procedures in Appendix B, Section B.3.2).) Two options of the code exist on the CD. The 'on-board' option to be used as the standard survey method on board and the 'test-bed' (TB) option, a more detailed version, to be used to show compliance on test bed for member engines. The on-board option (for initial and intermediate surveys) surveys the performance at 75% load for MC engines without VIT, and at 75% load and a load point above the break point (to ensure checking of the maximum firing pressure) for engines with VIT. The TB option includes all the E3/E2 cycle load points. The code is based on a 'standard MAN B&W performance check' (see necessary parameters in Appendix B, Table B.2.1 and the measurement positions in the schematic of the engine Fig. 2) and follows the described procedures and formulas in Appendix B. Enclosure 1 (at the end of the Technical File) shows input and output

Appendix 1. M.A.N. B&W S35MC Model Main Engine Test Bench Report.

R:\klasse\NOx\2_takt\S5729_37075_Sonay 2\MC(C) MEMBER TF v5-1.doc

from the survey code based on the actual test-bed data for the parent engine (as documented in Chapter 4.) The

MBD Into No. A Construction Construct				Des	criptio	n: IMO Technical File		
3 00 044 4 Engine Type 6S35MC, Plant spec 908926-4 0 xx xx xx-x uppl. Drwg: Page No:: 9 Date Des. Chk. Appd. A.C. Change/Replacement C.No. 2004-06-15 SVH SVH - 1 Compliance is confirmed for the actual setting values for the engine when the ISO-corrected performance parameters are within the specified tolerances as given in Table 1.3. (In compliance with the 'NOX Technical Code' §2.4 and §6.2.2.) A slightly more strict requirement than showing the simulated NOx value to be lower or equal the maximum tolerance value (item 17 in particulars of the engine.) The output Tables from the code (Enclosure 1) shall be added to the record book on board. 3.3 Components and settings verification In order to physically verify the components and settings allowed within this certificate, a check of the actual NO components is necessary. The allowed components are specified in Chapter 1.1 (or the last output page from the survey code in Enclosure 1.) and Appendix A specifies the necessary verification procedures. Turbocharger, air cooler and auxiliary blower are verified through their nameplates. To verify the turbochargers internal parts (marked by the turbocharger manufacturer) dismantling is necessary (procedures are not included (as described in the previous Chapter 3.2.) When the required performance data, (see Appendix B, Table B.2.1 When a performance check has been performed and no changes were entered in the record book, verification or the fuel nozzle on board is enough to show compliance (see comments in Appendix B.). (However, other NOX components may be checked, as considered necessary and in compliance with the '	MBD Info No.	A					← Identificati	on No. \rightarrow
uppl. Drwg: Page No:: 9 Date Des. Chk. Appd. A.C. Change/Replacement C. No. 2004-06-15 SVH SVH - 1 Compliance is confirmed for the actual setting values for the engine when the ISO-corrected performance parameters are within the specified tolerances as given in Table 1.3. (In compliance with the 'NOX Technical Code' §2.4 and §6.2.2.) A slightly more strict requirement than showing the simulated NOx value to be lower or equal the maximum tolerance value (item 17 in particulars of the engine.) The output Tables from the code (Enclosure 1) shall be added to the record book on board. 3.3 Components and settings verification In order to physically verify the components and settings allowed within this certificate, a check of the actual NO components is necessary. The allowed components are specified in Chapter 1.1 (or the last output page from to survey code in Enclosure 1.) and Appendix A specifies the necessary verification procedures. Turbocharger, air cooler and auxiliary blower are verified through their nameplates. To verify the turbochargers internal parts (marked by the turbocharger manufacturer) dismantling is necessary (procedures are not included) (sa described in the previous Chapter 3.2.) When the required performance data, (see Appendix B, Table B.2.) When the required performance data, (see Appendix B, Table B.2.) When the future, a record of these changes shall be kept in the record book, verification or the fuel nozzle on board is enough to show compliance (see comments in Appendix B.) (However, other NOX components may be checked, as considered necessary and in compliance with the 'NOX Technical Code' §2.3. and §6.2.2.) The performance data from either hofore or affer the approxima	3 00 044	4	Eng	ine Typ	be 6S3	5MC, Plant spec 908926-4	0 xx xx	XX-X
Date Des. Chk. Appd. A.C. Change/Replacement C. Ne. 2004-06-15 SVH SVH - 1 Compliance is confirmed for the actual setting values for the engine when the ISO-corrected performance parameters are within the specified tolerances as given in Table 1.3. (<i>In compliance with the 'NOX Technical Code' §2.4 and §6.2.2.</i>) A slightly more strict requirement than showing the simulated NOx value to be lower or equal the maximum tolerance value (item 17 in particulars of the engine.) The output Tables from the code (Enclosure 1) shall be added to the record book on board. 3.3 Components and settings verification In order to physically verify the components and settings allowed within this certificate, a check of the actual NO components is necessary. The allowed components are specified in Chapter 1.1 (or the last output page from th survey code in Enclosure 1.) and Appendix A specifies the necessary verification procedures. Turbocharger, air cooler and auxiliary blower are verified through their nameplates. To verify the turbochargers internal parts (marked by the turbocharger manufacturer) dismantling is necessary (procedures are not included (as described in the previous Chapter 3.2.) When the required performance data, (see Appendix B, Table B.2.1 within the given tolerances) are entered, the code will verify compliance of the actual adjustments. Since the setting values may be changed in the future, a record of these changes shall be kept in the record book, verification or the fuel nozzle on board is enough to show compliance (see comments in Appendix B.) (However, other NOX components may be checked, as considered necessary and in compliance with the 'NOX Technical Code' §2.3. and §6.2.2.)	Suppl. Drwg.:	1					Page No.:	9
2004-06-15 SVH SVH - 1 Compliance is confirmed for the actual setting values for the engine when the ISO-corrected performance parameters are within the specified tolerances as given in Table 1.3. (In compliance with the 'NOX Technical Code' §2.4 and §6.2.2.) A slightly more strict requirement than showing the simulated NOx value to be lower or equal the maximum tolerance value (item 17 in particulars of the engine.) The output Tables from the code (Enclosure 1) shall be added to the record book on board. 3.3 Components and settings verification In order to physically verify the components and settings allowed within this certificate, a check of the actual NO components is necessary. The allowed components are specified in Chapter 1.1 (or the last output page from the survey code in Enclosure 1.) and Appendix A specifies the necessary verification procedures. Turbocharger, air cooler and auxiliary blower are verified through their nameplates. To verify the turbochargers internal parts (marked by the turbocharger manufacturer) dismantling is necessary (procedures are not included (as described in the previous Chapter 3.2.) When the required performance data, (see Appendix B, Table B.2.1 within the given tolerances) are entered, the code will verify compliance of the actual adjustments. Since the setting values may be changed in the future, a record of these changes shall be kept in the record book, verification or the fuel nozzle on board is enough to show compliance (see comments in Appendix B.) (However, other NOX components may be checked, as considered necessary and in compliance with the 'NOX Technical Code' §2.3. and §6.2.2.)	Date	Des.	Chk.	Appd.	A.C.	Change/Replacement		C. No.
Compliance is confirmed for the actual setting values for the engine when the ISO-corrected performance parameters are within the specified tolerances as given in Table 1.3. (<i>In compliance with the 'NOx Technical Code' §2.4 and §6.2.2.</i>) A slightly more strict requirement than showing the simulated NOx value to be lower or equal the maximum tolerance value (item 17 in particulars of the engine.) The output Tables from the code (Enclosure 1) shall be added to the record book on board. 3.3 Components and settings verification In order to physically verify the components and settings allowed within this certificate, a check of the actual NO components is necessary. The allowed components are specified in Chapter 1.1 (or the last output page from the survey code in Enclosure 1.) and Appendix A specifies the necessary verification procedures. Turbocharger, air cooler and auxiliary blower are verified through their nameplates. To verify the turbochargers internal parts (marked by the turbocharger manufacturer) dismantling is necessary (<i>procedures are not included</i> (as described in the previous Chapter 3.2.) When the required performance data, (see Appendix B, Table B.2.1 within the given tolerances) are entered, the code will verify compliance of the actual adjustments. Since the setting values may be changed in the future, a record of these changes shall be kept in the record book for futur guidance. When a performance check has been performed and no changes were entered in the record book, verification or <i>components may be checked, as considered necessary and in compliance with the 'NOx Technical Code' §2.3. and §6.2.2.</i>)	2004-06-15	SVH		SVH	-			1
The herbringhee dois in check the second values for the school rait he hased out hata trout entref delute of aur	parameters are w Code' §2.4 and §6 equal the maximu (Enclosure 1) sha 3.3 Compo In order to physica components is ne survey code in En Turbocharger, air internal parts (ma To verify the settii (as described in th within the given to setting values ma guidance. When a performa the fuel nozzle on components may and §6.2.2.)	ithin the 5.2.2.) Im toler Il be ac nents ally ver cessar closure cooler rked by ng valu ne prev plerance y be ch board <i>be che</i>	e spec A sligh ance v Ided to y. The	ified told atty mor- value (it o the rec settin compor- allowe ad Appe- uxiliary I urbocha board, a chapter in the f as been ugh to s as cons	erance e strict en 17 cord bo gs ve nents a d comp ndix A blower rger m a perfor 3.2.) V d, the o uture, perforr how ca idered	s as given in Table 1.3. <i>(In comp</i> requirement than showing the si in particulars of the engine.) The ok on board. Prification and settings allowed within this ce ponents are specified in Chapter specifies the necessary verificat are verified through their namep anufacturer) dismantling is neces rmance check has to be perform. When the required performance of code will verify compliance of the a record of these changes shall be med and no changes were entered ompliance (see comments in App <i>necessary and in compliance will</i>	bliance with the 'NO; mulated NOx value is output Tables from entificate, a check of 1.1 (or the last output ion procedures. lates. To verify the tu ssary (procedures ar ed using the on-boar lata, (see Appendix actual adjustments. be kept in the record board at the 'NOx Technica the 'NOx Technica	the actual NO th
	4. Test re	eport						
4. Test report	4.1 Review A summary of the	of en docum	gine nentati	perfo on from	r man the er	ce and settings ngine test-bed report is included a	as Enclosure 2.	
 4. Test report 4.1 Review of engine performance and settings A summary of the documentation from the engine test-bed report is included as Enclosure 2. 	4.2 Emission The performed er Measurement Pro- emission values a Technical Code'. Enclosure 3.	on chanission ocedure are calc Output	aract meas s for l ulated from l	eristic uremen MO Cer using t MOCAL	ts follo tificatione MAI .C for t	parent engine ws the guidelines given in the Mu on of MAN B&W Two-Stroke Eng N B&W code 'IMOCALC' version he E3/E2 cycle load conditions d	AN B&W procedures ines on Test Bed'. T 3.0 in accordance w uring the official test	: 'Emission The specific vith the 'NOx is given in
 4. Test report 4.1 Review of engine performance and settings A summary of the documentation from the engine test-bed report is included as Enclosure 2. 4.2 Emission characteristics for parent engine The performed emission measurements follows the guidelines given in the MAN B&W procedures 'Emission Measurement Procedures for IMO Certification of MAN B&W Two-Stroke Engines on Test Bed'. The specific emission values are calculated using the MAN B&W code 'IMOCALC' version 3.0 in accordance with the 'NOX Technical Code'. Output from IMOCALC for the E3/E2 cycle load conditions during the official test is given in Enclosure 3.	A summary of the performance reference of the performance reference of the performance reference of the performance of the perf	NOx e rence' a e 1). Th	missic and fin ie corr	on corre ally to 'I ections	cted in SO arr follow	steps from 'measured' to 'ISO a blient at max. tolerance' is given the procedures and equations de	mbient', to 'ISO amb in Table 4.1 (the fina escribed in Appendix	ient & al data are als B, Chapter

			Des	cription	: IMO Technical File		
MBD Info No.	A					← Identification N	0. →
3 00 044	4	Eng	ine Typ	be 6S3	5MC, Plant spec 908926-4	0 xx xx xx	(-X
Suppl. Drwg.:						Page No.:	9
Date	Des.	Chk.	Appd.	A.C.	Change/Replacement		C. No.
2004-06-15	SVH		SVH	-			1
Compliance is a parameters are <i>Code' §2.4 anco</i> equal the maxii (Enclosure 1) s 3.3 Comp In order to phys components is survey code in Turbocharger, internal parts (r	within th §6.2.2.) mum tole hall be ac sically ver necessar Enclosur air cooler narked b	A slight rance v dded to and ify the y. The y. The and all y the tu	settin value (ito value (ito the rec settin compor allowe ad Appe	estrict estrict em 17 cord bo gs ve nents a d comp endix A plower rger ma	s as given in Table 1.3. <i>(In comp</i> requirement than showing the si in particulars of the engine.) The ok on board. rification nd settings allowed within this ce ponents are specified in Chapter specifies the necessary verificat are verified through their namepl anufacturer) dismantling is neces	rtificate, a check of the a 1.1 (or the last output pa ion procedures. ates. To verify the turbo isary (procedures are no	cchnical e lower or code actual NOx age from th chargers of included.
To verify the set (as described i within the giver setting values r guidance. When a perforr the fuel nozzle components m	tting value the prevolution the prevolution tolerance nay be ch nance ch on board	es on vious C es) are nangeo eck ha is eno	s been ugh to s	perform 3.2.) W d, the c uture, a perform how co	mance check has to be performed when the required performance of code will verify compliance of the a record of these changes shall be need and no changes were entered precessary and in compliance with	ed using the on-board su lata, (see Appendix B, T actual adjustments. Sir be kept in the record book ed in the record book, ve bendix B.) (<i>However, oti</i> th the <i>MOx Technical G</i>	arvey code able B.2.1 note the ok for future rification of her NOx ode' \$2.3.1
The performan the opening-up again using the setting values anticipated) su values soonesi	ce data to inspectio last veril are based rvey. Ho possible	o checl on of th lied set l on rei wever, after c	the set e engin ting val corded o it is stro locking	tting va e (one ues. S data ob ongly re (or adju	lues for the survey can be based cylinder unit, usually requested.) ince a performance check canno tained within (a recommended) o ecommended to perform a perfor ustment service or repair on boar	l on data from either bef The engine must be as to be performed in dock, one-month period from a mance check to verify th rd) to ensure continuing	ore or after ssembled the 'missin called (or ne setting compliance
4. Test	repor	t					
4.1 Revie A summary of t	w of er	n gine nentati	perfo	rmano the en	ce and settings gine test-bed report is included a	as Enclosure 2.	
4.2 Emis The performed Measurement I emission value Technical Code Enclosure 3.	sion ch emission Procedure s are calo e'. Output	aract meas s for I culated from I	eristic uremen MO Cer using th MOCAL	ts follow tification tification tification tification tification tification tification	parent engine ws the guidelines given in the MA on of MAN B&W Two-Stroke Eng N B&W code 'IMOCALC' version he E3/E2 cycle load conditions d	AN B&W procedures 'En ines on Test Bed'. The s 3.0 in accordance with t uring the official test is g	nission specific the 'NOx iven in
A summary of performance regiven in Enclose	he NOx e ference' ure 1). Ti	emissio and fin ne corr	on corre ally to 'I ections	cted in SO am follow 1	steps from 'measured' to 'ISO a bient at max. tolerance' is given the procedures and equations de	mbient', to 'ISO ambient in Table 4.1 (the final da scribed in Appendix B, (& ata are also Chapter

			Des	cription	: IMO Technica	I File			
MBD Info No.	A					1		$\leftarrow \text{Identification No.}$	\rightarrow
3 00 044	4	Eng	ine Typ	be 6S38	5MC, Plant spe	ec 908926-4		0 xx xx xx->	<
uppl. Drwg.:							Page No.:		10
Date	Des.	Chk.	Appd.	A.C.	Change/Replacen	nent			C. No.
2004-06-15	SVH		SVH	-					1
	orrectiv	one of	moseu	rod NO	v emission on	tast had			
Power	Meas	sured N	10x	ISO	ambient and	ISO amb.	And	ISO amb. NOx	at max
				test-b	ed perf. NOx	reference per	f. NOx	perf. tolerar	ices
(%)	((g/kWh)			(g/kWh)	(g/kWr)	(g/kWh)	
75		13.43			12.96	14.09		16.03	
50		12.33			12.07	12.52		13.54	
25		10.58			10.35	10.85		11.84	
IMO NOx		12 76			13 / 2	14.24		15.29	
0,010		10.70			10.12				

Engine type:	6S35MC	MCR Pov	ver	4440 kW	VIT:	No	Engine no: ADF 37067
Test cycle:	E2	MCR Spe	ed	173 r/min	Cooling s	ystem:	Fixed temperature (36°C)
Engine group:	ADF-S35-04-1	Vessel na	me/data for:	Delivery Te	est		Survey code ver. 5-3-3
Test hed surv	ev.	-Fill in vello	w colle				
Table 1: Input	-y		W Cells	Measure	d data		7
				Load	(%)		
Date:	2004-04-19		100	75	50	25	
Ambient pressure		mbar	996	1000	1000	1000	_
Compression pres	ssure	bar	120	93	62	42	
Compressor inlet	e temperature	°C	24.7	25.4	25.8	26	
Scavenging air te	mperature	°C	42	35	30	37	
Sea water inlet te	mperature	°C	25	25	25	25	
Turbine back pres	sure	mmWC	270	180	85	10	
Scavenging air pr	essure	bar	2,78	1,92	1,02	0,34	
Engine speed		r/min	173	173	173	173	
Turbocharger spe	ed	r/min	19000	16600	13300	8100	
Table 2: Output		-	100	Load	(%)		
Measured values	lant	borobo	100	75	50	1.26	-
Pricav @ ISO ami Pmax @ ISO ami	pient	barabs	3,82	2,98	2,00	54.4	
Pcomp @ ISO am	bient	barabs	121,9	95,3	64,0	43,5	
Tscav		°C	42,0	35,0	30,0	37,0	
Pback		mmWC	270	180	85	10	
		%	0,0	0,2	0,0	-0,4	4
Pmax maximum		harabe	150.0	124.0	91.0	58.0	-
Pcomp. minimum		barabs	116.0	90.0	62.0	40.0	
Tscav, maximum	(at ISO ambient)	°C	54,0	46,0	42,0	47,0	1
Pback, maximum		mmWC	450,0	340,0	225,0 .	115,0	
∆Power, maximun	n	%	2,2	2,2	2,2	2,2	_
Compliance		T					-
Peomo			yes	yes	yes	yes	
Tscav				yes	yes	yes	8
Pback		1	yes	yes	yes	yes	
Power deviation <	2.2%		yes	yes	yes	yes	
MO NOx		1					E2 cycle value
Member engine s		g/kWh	12,78	14,23	11,94	10,31	13,35
SO NOx at max t	olerances	g/kWh	15 19	16.03	12,52	11 84	14,24
		19/11/1	10,10	10,00	10,04	11,04	10,20
Approval:							
Performed date]		
Performed by							
Approval							

Layout kW Turbochar Make: M Type: N. Max. RPM Max. temp. T/C lub. oil Humidity-r Bunker stat Oil brand Density at D Date I (yymmdd) (h 05-07-21 () 05-	V: rger(s): AAN NA40/SO A: p. °C: il system rrel % ation 15 °C: Hour hh:mm) 08:51 h. 2 dd m. i- r 5	4440 1077 21.400 620 (Tick bo 47 Q8 Dies Brake Load kNm 245,7 Speed setting bar 4,60 Gov.nor index 6,5	Nos.: ox): .6 Q8 Aall el 0.8432 RPM 173 kW indi- cated 4845 kW eff. 4450	1 1 2 3 4 borg Heat va Sulphun g/k indi 169 g/k effe	RPM: Seria 119 Interna 28 Interna 28 Interna 28 SWh Cated 9,00	173 al No. 2189 al system °C 0,04 <i>I</i> 20,81 <i>4</i> 20,72 7 <i>10</i>	Date: No. of c Cylinde Govern TC spec MFP: 10224 Pi bar 2 20,79 5 21.08 8	21-07 yl.: rconstar or: 1,15 Externa 20,35 6 21,00 9	-2005 6 at (kW,b Woodw a: Compr al from N C C Ci 1 144 4	Bore (m ar): ard AD=22 slip fact M.E. syst Cylinder of rculating Turbo of Pmax bar 2 144 5	0,2 0,2 1,0cm ² A or: oil oil 1 1 1 1 1 42 6	Sign: 0,35 245 Type: ₄K=168, 0,70 □ BP BP BP BP BP BP	LWP TCS po PGA 58 3 cm ² Compr. Externa Brand Pcomp bar 2 115	Stroke wer (kW diamete al from g 3 114	Test no: (m): (m): (r): er: cravity tau CL505 Energol (Energol (Energol (F I 1 59	1,400 0,4800 nk Type DE-HT30 DE-HT30 OE-HT30 Vel pum index 2 2 50	0 0 0 0 0 0
Turbochar Make: M Type: N, Max. RPM Max. temp. T/C lub. oil Humidity-r Bunker stat Oil brand Density at D Date I (yymmdd) (h 05-07-21 () 0-07-2	rger(s): AAN VA40/SO A: p. °C: il system rel % ation 15 °C: Hour hh:mm) 08:51 h. 2 ud m. i- r 5	1077 21.400 620 (Tick b 47 28 Dies Brake Load kNm 245,7 Speed setting bar 4,60 Gov.nor index 6,5	Nos.: ox): 6 Q8 Aall1 el 0.8432 RPM 173 kW indi- cated 4845 kW eff. 4450	1 I 2 3 4 borg Heat va Sulphun g/k indi 169 g/k effe	Seria 119 Interna 28 Jule kCal r %: Wh cated 9,00 CWh ctive	al No. 2189 al system °C 0,04 1 20,81 4 20,72 7 10	No. of c Cylinde Govern TC spec MFP: 10224 Pi bar 2 20,79 5 21.08 8	yl.: rconstar or: 1,15 Externs 3 20,35 6 21,00 9	6 at (kW,b Woodw a: Compr. al from N C Ci 1 144 4 143	Bore (m ar): AD=22 slip fact M.E. syst Cylinder of reulating Turbo of Pmax bar 2 144 5	a): 0,2: 0,2: 0,2: 0,2: 0,2: 0,2: 0,2: 0,2	0,35 245 Type: ,K=168, 0,70 BP BP BP BP BP	TCS po PGA 58 3 cm ² Compr. Externa Brand Pcomp bar 2 115	Stroke wer (kW diamete d from g 3 114	(m): (m): (h): er: cravity tan CL505 Energol (Energol (F I 59	1,400 0,4800 nk Type DE-HT30 DE-HT30 DE-HT30 Vuel pum index 2 2 50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Make: M Type: N, Max. RPM Max. temp. T/C lub. oil Humidity-r Bunker sta Oil brand Density at D Date I (yymmdd) (h 05-07-21 ()	AAN VA40/SO A: p. °C: il system rel % ation 15 °C: Hour hh:mm) 08:51 h. 2 ud m. i- r 5	1077 21.400 620 (Tick b 47 28 Dies Brake Load kNm 245.7 Speed setting bar 4,60 Gov.nor index 6,5	ox): .6 Q8 Aall el 0.8432 RPM 173 kW indi- cated 4845 kW eff. 4450	I 2 3 4 borg Heat va Sulphun g/k indi 169	Interna 28 Julue kCal r %: cWh cated 9,00	2189 al system °C 0,04 1 20,81 4 20,72 7 10	Cylinde Govern TC spec MFP: 10224 Pi bar 2 20,79 5 21,08 8	rconstar or: iification 1,15 Externs 20,35 6 21,00 9	tt (kW,b Woodw, a: Compr. al from ? CC Ci 1 144 4	ar): AD=22 slip fact M.E. syst ylinder of rculating Turbo of Pmax bar 2 144 5	0,2 1,0cm ² A or:	245 Type: ,K=168, 0,70 BP BP BP I 113	TCS po PGA 58 3 cm ² Compr. Externa Brand Pcomp bar 2 115	wer (kW diameto dl from g 3 114	V): ravity tar CL505 Energol (Energol (F 1 59	0,4800 nk Type DE-HT30 DE-HT30 DE-HT30 Tuel pum index 2	0 0 11 3
Type: N. Max. RPM Max. temp. T/C lub. oil Humidity-r Bunker sta Oil brand Density at 1 Date 1 (yymmdd) (h 05-07-21 () 05-07-21	A440/SO A: p. °C: il system rel % ation 15 °C: Hour hh:mm) 08:51 h. 2 ud 0 m. i- r 6	1077 21.400 620 (Tick b 47 28 Dies Brake Load kNm 245.7 Speed setting bar 4,60 Gov.nor index 6,5	ox): .6 Q8 Aall el 0.8432 RPM 173 kW indi- cated 4845 kW eff. 4450	2 3 4 Heat va Sulphun g/k indi 169	Interna 28 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	al system °C 0,04 1 20,81 4 20,72 7 10	Govern TC spec MFP: 10224 Pi bar 2 20,79 5 21.08 8	or: 1,15 Externs 20,35 6 21.00 9	Woodw a: Compr. al from N Compr.	AD=22 slip fact M.E. syst Cylinder of rculating Turbo oi Pmax bar 2 144 5	a i locm ² A or: 	Type: ₄K=168, 0,70 □ BP BP BP BP I 113	PGA 58 3 cm ² Compr. Externa Brand Pcomp bar 2 115	diamete al from g 3 114	cL505 Energol (Energol (F 1 50	0,4800 nk Type DE-HT30 DE-HT30 Tuel pum index 2	0 0 1p 3
Max. RPM Max. temp T/C lub. oil Humidity-r Bunker sta Oil brand Density at 1 Date 1 (yymmdd) (h 05-07-21 () 05-07-	1: p. °C: il system rel % ation 15 °C: Hour hh:mm) 08:51 h. 2 ud 0 j. r. 6	21.400 620 (Tick b 47 28 Dies Brake Load kNm 245.7 Speed setting bar 4.60 Gov.nor index 6.5	ox): .6 Q8 Aall el 0.8432 RPM 173 kW indi- cated 4845 kW eff. 4450	3 4 borg Heat va Sulphun g/k indi 160 g/k	Interna 28 Julue kCal r %: cWh cated 9,00	I system °C 0,04 1 20,81 4 20,72 7 10	TC spec MFP: 10224 Pi bar 2 20,79 5 21.08 8	ification 1,15 Externa 20,35 6 21,00 9	11: Compr. al from 1 C C C 1 144 4 143	AD=22 slip fact M.E. syst Cylinder of rculating Turbo of Pmax bar 2 144 5	1,0cm ² A, or: 	K=168, 0,70 BP BP BP BP I 113	3 cm ² Compr. Externa Brand Pcomp bar 2 115	diamete al from g 3 114	er: cL505 Energol (Energol (F 1 59	0,4800 nk Type DE-HT30 DE-HT30 Tuel pum index 2	0 0 0 1 1 2
Max. temp T/C hub. oil Humidity-r Bunker star Oil brand Density at 1 Date 1 (yymmdd) (h 05-07-21 () 05-07-21 () 05-07-21 () 05-07-21 () 05-07-21 () 0,92 Load % 100 Baron milli- bar 996 F adju s 1 5 4	p. °C: il system rel % ation 15 °C: Hour hh:mm) 08:51 h. 2 id 0 m. i- r 5	620 (Tick b 47 28 Dies Brake Load kNm 245,7 Speed setting bar 4,60 Gov.nor index 6,5	ox): .6 Q8 Aall el 0.8432 RPM 173 kW indi- cated 4845 kW eff. 4450	at borg Heat va Sulphun g/k indi 160	Interna 28 alue kCal r %: Wh cated 9,00	al system °C //kg: 0,04 // 20,81 // 20,81 // 20,72 // 7 // 10	MFP: 10224 Pi bar 2 20,79 5 21.08 8	1,15 Externa 20,35 6 21.00 9	Compr. al from 7 Ci Ci 144 4	slip fact M.E. syst Cylinder o rculating Turbo oi Pmax bar 2 144 5	or: 	0,70 BP BP I 113	Compr. Externa Brand Pcomp bar 2 115	diamete al from g 3 114	er: gravity tau CL505 Energol (Energol (F I 50	0,4800 nk Type DE-HT30 DE-HT30 DE-HT30 DE-HT30 Vel pum index 2	0 0 0 1 1 3
T/C hub. oil Humidity-r Bunker star Oil brand Density at 1 Date 1 (yymmdd) (h 05-07-21 ()	il system rel % ation 15 °C: Hour hh:mm) 08:51 h. 2 id 0 m. i- r 5	(Tick b 47 28 Dies Brake Load kNm 245,7 Speed setting bar 4,60 Gov.nor index 6,5	ox): .6 Q8 Aall el 0,8432 RPM 173 kW indi- cated 4845 kW eff. 4450	at borg Heat va Sulphun g/k indi 160 g/k effe	Interna 28 alue kCal r %: Wh cated 9,00	al system °C 0,04 1 20,81 4 20,72 7 10	10224 Pi bar 2 20,79 5 21.08 8	Externs 3 20,35 6 21.00 9	Image: Control of Con	VI.E. syst Cylinder of rculating Turbo of Pmax bar 2 144 5	oil 1 3 142 6	BP BP BP Introduction	Externa Brand Pcomp bar 2 115	3 114	CL505 Energol (Energol (F 1 59	nk Type DE-HT30 DE-HT30 Tuel pum index 2	0 0 0 1 1 2
Humidity-r Bunker sta Oil brand Density at 1 Date 1 (yymmdd) (h 05-07-21 (0	rel % ation 15 °C: Hour hh:mm) 08:51 h. 2 ud 0 m. i- r 5	47 Q8 Dies Brake Load kNm 245,7 Speed setting bar 4,60 Gov.nor index 6,5	6 Q8 Aall el 0,8432 RPM 173 kW indi- cated 4845 kW eff. 4450	at Heat va Sulphun g/k indi 169	28 alue kCal r %: cated 9,00	°C 0,04 1 20,81 4 20,72 7 10	10224 Pi bar 2 20,79 5 21.08 8	3 20,35 6 21.00 9	Ci Ci 1 144 4	ylinder o rculating Turbo oi Pmax bar 2 144 5	oil coil 1 3 142 6	BP BP BP <u>1</u> 113	Pcomp bar 2 115	<u>3</u> 114	CL505 Energol (Energol (F 1 59	Type DE-HT3 DE-HT3 DE-HT3 Tuel pum index 2	0 0 1p 3
Bunker sta Oil brand Density at 1 Date 1 (yymmdd) (h 05-07-21 (4 mech 0.92 Load % 100 Baron milli- bar 996 F adju s 1	ation 15 °C: Hour hh:mm) 08:51 h. 2 dd 0 m. i- r 5	28 Dies Brake Load kNm 245,7 Speed setting bar 4,60 Gov.nor index 6,5	Q8 Aall el 0,84322 RPM 173 kW indi- cated 4845 kW eff. 4450	borg Heat va Sulphun g/k indi 169 g/k effe	ulue kCal r %: Wh cated 9,00	Vkg: 0,04 1 20,81 4 20,72 7 10	10224 Pi bar 2 20,79 5 21.08 8	3 20,35 6 21.00 9	Ci Ci 1 144 4 143	Cylinder of rculating Turbo of Pmax bar 2 144 5	oil ; oil]]]]]]]]]]]]]]]]]]]	BP BP BP <u>1</u> 113	Pcomp bar 2 115	<u>3</u> 114	CL505 Energol (Energol (F 1 59	DE-HT3 DE-HT3 Tuel pum index 2	0 0 1p 3
Oil brand Density at 1 Date 1 (yymmdd) (h 05-07-21 (15 °C: Hour hh:mm) 08:51 h. 2 dd 0 m. i- r 6	28 Dies Brake Load kNm 245,7 Speed setting bar 4,60 Gov.nor index 6,5	el 0,8432 RPM 173 kW indi- cated 4845 kW eff. 4450	Heat va Sulphun g/k indi 16	ulue kCal r % : Wh cated 9,00	Vkg: 0,04 1 20,81 4 20,72 7 10	10224 Pi bar 2 20,79 5 21.08 8	3 20,35 6 21,00 9	Ci 1 144 4 143	rculating Turbo oi Pmax bar 2 144 5	s oil 3 142 6	BP BP <u>1</u> 113	Pcomp bar 2 115	3 114	Energol (Energol (F 1	DE-HT3 DE-HT3 Tuel pum index 2	0 0 1p 3
Density at 1 Date 1 (yymmdd) (h 05-07-21 (mech 0.92 Load % 100 Baron milli- bar 996 F adju 5 4 5	15 °C: Hour hh:mm) 08:51 h. 2 dd 0 m. i- r 5	Brake Load kNm 245,7 Speed setting bar 4,60 Gov.nor index 6,5	0,8432 RPM 173 kW indi- cated 4845 kW eff. 4450	Sulphun g/k indi 169 g/k effe	r %: Wh cated 9,00 Wh ctive	0,04 1 20,81 4 20,72 7 10	Pi bar 2 20,79 5 21.08 8	3 20,35 6 21.00 9	1 144 4 143	Turbo oi Pmax bar 2 144 5	1 3 142 6	BP 1 113	Pcomp bar 2 115	<u>3</u> 114	Energol (F 1 59	OE-HT3 Tuel pum index 2 50	0 np 3
Date (h (yymmdd) (h (b) 05-07-21 (mech 0.92 Load % 100 Baron milli- bar 996 F adju s 1 5 4	Hour hh:mm) 08:51 h. 2 dd 0 m. i- r 6	Brake Load kNm 245,7 Speed setting bar 4,60 Gov.nor index 6,5	RPM 173 kW indi- cated 4845 kW eff. 4450	g/k indi 16 ¹ g/k effe	Wh cated 9,00	1 20,81 4 20,72 7 10	Pi bar 2 20,79 5 21.08 8	3 20,35 6 21.00 9	1 144 4	Pmax bar 2 144 5	3 142 6	<i>1</i> 113	Pcomp bar 2 115	3 114	F 1 59	index	ар <u>3</u>
Date 1 (yymmdd) (h 05-07-21 (mech 0.92 Load % 100 Baron milli- bar 996	Hour hh:mm) 08:51 h. 2 dd 0 m. i- r 6	Load kNm 245,7 Speed setting bar 4,60 Gov.nor index 6,5	RPM 173 kW indi- cated 4845 kW eff. 4450	indi 169 g/k effe	cated 9,00 cWh	1 20,81 4 20,72 7 10	bar 2 20,79 5 21.08 8	3 20,35 6 21,00 9	1 144 4	bar 2 144 5	3 142	<i>1</i> 113	bar 2 115	3 114	1	index 2	3
(yymmad) (II 05-07-21 (I mech (I) 0.92 Load % 100 Baron milli bar 996 I 5 4 5	08:51 h. 2 2 dd 0 m. i- r 5	245,7 Speed setting bar 4,60 Gov.nor index 6,5	173 kW indi- cated 4845 kW eff. 4450	g/k effe	9,00 Wh	1 20,81 4 20,72 7 10	2 20,79 5 21.08 8	20,35 6 21,00 9	1 144 4 143	144 5	142 6	113	115	114	50	50	3
n n mech 0.92 Load % 100 Baron milli bar 996 I 5 4 5	h. 2 dd 0 m. i- r	Speed setting bar 4,60 Gov.nor index 6,5	kW indi- cated 4845 kW eff. 4450	g/l effe	Wh	20,81 <u>4</u> <u>20,72</u> <u>7</u> <u>10</u>	20,79 5 21,08 8	20,35 6 21,00 9	144 4 143	5	6	113	115	114	79	50	
u mech 0.92 Load % 100 Baron millibar 996 F adju s 1 5 4 5	h. 2 dd 0 m. i- 5	setting bar 4,60 Gov.nor index 6,5	indi- cated 4845 kW eff. 4450	g/k effe	(Wh ctive	20.72 7 10	21.08	21.00 9	143	5	· · · · ·	4	5	6	4	5	59
mech 0.92 Load % 100 Baron millibar 996 F adju 5 4 5	n. 2 dd 0 m. i- r	setting bar 4,60 Gov.nor index 6,5	indi- cated 4845 kW eff. 4450	g/k effe	cWh octive	7 10	8	9 21.00	143	1.12	142	117	112	112	4	60	0
0.92 Load % 100 Baron milli- bar 996 F adju s 1 5 4 5	2 d 0 m. i- r 5	4,60 Gov.nor index 6,5	4845 kW eff. 4450	g/k effe	tive	10	0		7	143	143 9	7	8	9	59	8	59
0.92 Load % 100 Baron milli- bar 996 F adju s 1 5 4 5	2 id 0 m. i- r 5	4,00 Gov.nor index 6,5	4845 kW eff. 4450	g/k effe	Wh ctive	10	1			0	,	/	0	,		0	-
% 100 Baron Baron milli- bar 996 F adju 5 4 5 4) m. i- r5	index 6,5	eff. 4450	effe	ctive	10	11	12	10	11	12	10	11	12	10	11	12
7e 100 Baron milli- bar 996 F adju 5 4 5) m. i- r	6,5	4450	ene	PETLC.			12	10		10	10			10	-4	14
100 Baron milli- bar 996 F adju s 1 5 4 5	5 m. i- r 5	6,0	4450		1.00			20.70			142	A		114	1		-
milli- bar 996 F adju s 1 5 4 5	i- r5			18- En	4,00 el oil	Ave	rage	20,79	Ave	rage	143	Aver	age	114	Aver	age	39
bar 996 F adju s 1 5 4 5	r5			C	ons.				Ref.I	max:	144	(bar)					
996 F adju s 1 5 4 5	5			k	g/h												
H adju s 1 5 4 5				8	19												
I adju s 1 5 4 5				Exhau	ist gas te	mp. °C		Exh.	press	Turbo-	Scav	. air pre	ssure	Sca	v. air tem	ıp. °C	
adji 5 4 5	Pmax.								Turb.	char-	Δp	Δp					Aux
1 5 4 5	justment		Ex	chaust va	alve	Tur	bine	Recei-	outlet	ger	Filter	Cooler	Recei-	Inlet	Before	After	liar
1 5 4 5	shims					Inlet	Outlet	ver	mmWC	RPM	mmWC	mmWC	ver	Blower	Cooler	Cooler	blow
5 4 5	2	3	1	2	3	1	1	bar	1	1	1	1	bar	1	1	1	on
5	5	5	405	420	420	480	0	2,57	210	19430	0	225	2,81	32,6	195	38	-
2	5	0	4	3	0	2	4	inning	2	- 2	- 2	2	anning	- 4	4	2	off
7	2	0	415	400	400	Digi 1	Dici 1	1928	2	2	2	2	2108 °C	2	2	2	X
	0	<i>y</i>		0	y	Digi I	Digi I		5	5	3	3	16	5	5	5	
10	11	12	10	11	12	458 Digi 2	285 Digi 2	Local	1	4	4	4	40	4	4	d	
10	11	12	10	11	12	Digitz	Digi 2	2.52	-		4		2 70	-		-	1
				L			0.5.5	2,52	0.17	10.00			2,78	20.4		2.5	
Average	ge	5,0	Ave	rage	410	458	285	bar	210	19430	0	225	bar	32,6	195	38	
Coolin	ing		Co	oling wa	ter temp	erature	°C	m			Lu	bricating	g oil			Fue	l oil
water	er	Air co	oler	T-1 -	Main	engine	dan	Turb.	Press.	00	0	Temper	ature °C	Trent	ahorr	pres	sure
LT	HT	Inlet 1	Outlet 1	Inlet	1 J	Liet cylin 2	aers 3	Outlet 1	System	Inlet	1	2	3	Turbo	chargers	Bet	ar 'ere
23	27	27	46	65	82	92	82	0	oil	engine	56	57	57	MAN	MAN	fil	ter
6,0	▲P	2	2	0.00	4	5	6	2	2,1	45	4	5	6	inlet/	outlet/		
	0.65			1	83	83	83		Cool	Inlet	57	57	55	BBC	ABB	Af	ter
Flow [m	n ³ /h]	3	3		7	8	9	3	oil	camsh.	7	8	9	blower	turbine	fil	ter
LT	HT	-		1										inlet/	outlet/	7	8
89	48	4	4		10	11	12	4	Exh.V	Outlet	10	11	12	1	1	Tem	p. °C
				1			12		oil	camsh	10				57	Bef	ore
	L			1	Ave	rage	83		viii -		Av	erage	57	2	2	pur	nps
Governor		Temp '		Oil :	OE-HT	30			Turb	Thrust	FL	ow.				3	4
Governor.	· _	i embri		0	56-111				oil	segm.	[m ²	/h]		3	3		-
Axial wibre	ation m	nitor ·			0,62	1			2.0	47	86	70					
CATCH WIDTS	ation me	and the			0,02	1			2,0	-1	00,			4	4		
D 1				in un		**									P.460800000000000000000000000000000000000		

	MAN		D.E.:	S35MC			Water b	rake:	Z	.14	No.:	2778					
	B&W		No.:	37075			Yard:	Sonay 2							T	EST BI	ED
Layout 1	«W:	4440			RPM:	173	Date:	21-07	7-2005			Sign:	LWP		Test no:		0
Turboch	arger(s):		Nos.:	1	Seri	al No.	No. of c	yl.:	6	Bore (n	ı):	0,35		Stroke	(m):	1,400	
Make:	MAN			1	119	2189	Cylinde	rconstan	at (kW,b	ar):	0,2	.245	TCS po	wer (kV	();		
Type:	NA40/SC	01077		2			Govern	or:	Woodw	ard		Type:	PGA 58				
Max. RF	'M:	21.400		3			TC spec	ification	1:	AD=22	1,0 cm ² A	₄ K=168,	3 cm ²				
Max. ter	np. °C:	620		4			MFP:	1,15	Compr	. slip fact	or:	0,70	Compr	. diamet	er:	0,4800	
T/C lub.	oil systen	n (Tick b	ox):		Interna	d system		Externa	al from	M.E. syst	•		Externa	al from g	ravity ta	nk	
Humidit	.y-rel %	43	,6	at	28	°C							Brand			Туре	_
Bunker	station		Q8 Aal	borg					(ylinder	oil	BP			CL505		
Oil bran	d	Q8 Dies	sel	Heat va	due kCa	/kg:	10224		Ci	rculating	, oil	BP			Energol	OE-HT3	0
Density	at 15 °C:		0,8432	. Sulphur	r %:	0,04				Turbo o	il	BP			Energol	OE-HT3	0
Date	Hour	Brake	RPM	g/k	Wh		Pi			Pmax			Pcomp		F F	uel pun	пр
(yymmdd)	(hh:mm)	kNm	ICI IVI	indi	cated	1	2	3	1	2	3	1	2	3	1	2	3
05-07-21	11:03	184	173	16	8,36	15,44	15,54	15.22	117	118	115	86	87	86	45	45	44
	٩	Speed	kW			4	5	6	4	5	6	4	5	6	4	5	6
m	ech.	setting	indi-			15,36	15,71	15,57	116	116	115	87	86	85	45	45	45
		bar	cated			7	8	9	7	8	9	7	8	9	7	8	9
0.	,92	4,60	3606														
L	oad	Gov.nor	kW	g/k	Wh	10	11	12	10	11	12	10	11	12	10	11	12
	%	index	eff.	effe	ctive				-	1							
1	75	5,2	3330	182	2,30	Ave	rage	15,47	Ave	rage	116	Aver	age	86	Aver	age	45
Bai	illi-			Fue	el oil				Ref.	Pmax:	117	(bar)					
b	ar			k	g/h				Rein	men		- (041)					
9	97			6	07												
				Exhau	ist gas te	mp. °C		Exh.	press	Turbo-	Scav	. air pre	ssure	Sca	v. air ten	ıp. °C	Γ
	Pmax.				- 0				Turb.	char-	Δp	Δp					Auxi
a	idjustmen	t	E	xhaust va	dve	Tu	bine	Recei-	outlet	ger	Filter	Cooler	Recei-	Inlet	Before	After	liary
1	shims	2	1	1 2	1.2	Inlet	Outlet	ver	mmWC	RPM	mmWC	mmWC	ver	Blower	Cooler	Cooler	blow
1		3	1	2	3	1	1	bar	1	1	1	1	bar	1	1	1	011
3	5	5	370	5	580	435	2	1,08	2	2	2	190	mmHg	2	100	32	off
5	5	5	380	365	360			1260					1425				x
7	8	9	7	8	9	Digi 1	Digi 1	1200	3	3	3	3	°C	3	3	3	-
						414	279	1					42				1
10	11	12	10	11	12	Digi 2	Digi 2	Local	4	4	4	4	Local	4	4	4	
								1,66					1,85				
Aver	age	5,0	Ave	rage	373	414	279	bar	110	17100	0	190	bar	36,0	160	32	
Co	oling		Co	oling wa	ter tem	erature	°C				Lu	bricatin	g oil			Fue	el oil
Wa	ater	Air c	ooler		Main	engine		Turb.	Press.			Temper	ature °(2		pres	sure
Pressu	re [bar]	Inlet	Outlet	Inlet	Ou	tlet cylin	ders	Outlet	bar	°C	01	atlet pist	ons	Turbo	chargers	b	ar
LT	HT	1	1	-	1	2	3	1	System	Inlet	1	2	3			Bel	ore
2,3	2,7	27	40	68	83	82	82	0	oil	engine	55	55	55	MAN	MAN outlat/	11	ter
000000100000000	AP Office	2	2	-	4	3	0	2	4,3	43	4	3	0	ppc	ABD		
	0,64	2	2		82	82	83	7	Cool	inlet	7	20	0	blow	turkin	Al	ter
Flore	1444 / 48	5	5	1	<u> </u>	0	-		00	causil.		0	-	inlat/	outlet/		1
Flow	HT		1	-	10	11	12	1	Feb V	Outlet	10	11	12	1	1	Torr	,1 n. °C
Flow LT	HT	1	4	1	10	11	12	4	E.M. V	cameh	10	11	12		52	Rei	p. C
Flow LT 88	HT 48	4				rage	82			- counsils	A	erage	55	2	2	pu	mps
Flow LT 88	HT 48	4		1	Ave		1		Turb	Thrust	FI	ow				P.M.	0
Flow LT 88	HT 48	4 Temp.:		J Oil.:	Ave OE-HT	30								 A second Control (1) 	2000000000000000		0
Flow LT 88 Governo	HT 48	4 Temp.:		Oil.:	Ave OE-HT	30	-	l,	oil	segm.	[m	3/h]		3	3	3	0
Flow LT 88 Governo	HT 48	4 Temp.:		Oil.:	Ave OE-HT 63	30			oil 2.0	segm.	[m 87	³ /h]		3	3	3	0
Flow LT 88 Governo	HT 48 or.	4 Temp.: onitor.:		Oil.:	Ave OE-HT 63	30			oil	segm. 46	[m 87	³ /h] ,00		3	3		0
Flow LT 88 Governo	HT 48 or.	4 Temp.:		Oil.:	Ave OE-HT 63	30		l	oil 2,0	segm. 46	[m 87	3/h] ,00		3	3		0
Flow LT 88 Governo Axial wil	HT 48 or. bration m	4 Temp.: onitor.:		0il.: 0,	Ave OE-HT 63	30] °C			oil 2,0	segm. 46	[m 87	3/h] ,00	5.	3	3	3	0

0010010000	MAN		D.E.:	S35MC			Water 1	orake:	Z	.14	No.:	2778					
	B&W		No.:	37075			Yard:	Sonay 2	2			1			T	EST BI	ED
Layout	kW:	4440			RPM:	173	Date:	21-01	7-2005			Sign:	LWP		Test no:		
Turboc	harger(s):		Nos.:	1	Seri	al No.	No. of c	yl.:	6	Bore (n	n):	0,35		Stroke	(m):	1,400	
Make:	MAN			1	119	2189	Cylinde	rconsta	nt (kW,b	ar):	0,2	245	TCS pe	wer (kV	V):		
Type:	NA40/SC	01077		2			Govern	or:	Woodw	ard		Type:	PGA 58	3			_
Max. R	PM:	21.400		3			TC spe	cification	a:	AD=22	$1,0 \text{ cm}^2 A$	4K=168,	3 cm^2				
Max. te	emp. °C:	620		4			MFP:	1,15	Compr	. slip fac	tor:	0,70	Compr	. diamet	er:	0,4800	
T/C lut	. oil syster	n (Tick b	ox):		Interna	al system		Extern	al from l	M.E. syst	t.		Extern	al from g	gravity ta	mk	
Humid	ity-rel %	47	,6	at	27	°C							Brand			Туре	
Bunker	station		Q8 Aal	borg					(Cylinder	oil	BP			CL505		
Oil bra	nd	Q8 Dies	sel	Heat va	lue kCa	l/kg:	10224		Ci	rculating	g oil	BP			Energol	OE-HT3	0
Density	at 15 °C:		0,8432	Sulphu	- %:	0,04				Turbo o	il	BP			Energol	OE-HT3	0
D		Brake	DBM	g/k	Wh		Pi			Pmax			Pcomp		I	Fuel pum	р
(yymmdd	(hh:mm)	kNm	RPM	indi	cated	1	2	3	1	2	3	1	2	3	1	2	3
05-07-21	12:02	121	173	17	1,23	10.37	10.42	10.20	83	84	83	59	50	50	32	32	3
	ŋ	Speed	kW			4	5	6	4	5	6	4	5	6	4	5	6
n	nech.	setting	indi-			10.24	10.67	10.47	82	83	82	59	59	58	32	33	31
	entre la	bar	cated			7	8	9	7	8	9	7	8	9	7	8	9
(0,90	4,60	2422														
I	oad	Gov.nor	kW	g/k	Wh	10	11	12	10	11	12	10	11	12	10	11	12
	%	index	eff.	effe	ctive												
	49	3.9	2190	189	9,40	Ave	rage	10.40	Ave	rage	83	Aver	rage	59	Aver	rage	3
Ba	arom.			Fue	el oil	1	9-	L	-	9-	L	-				0.	
n	nilli-			Co	ons.				Ref.	Pmax:	84	(bar)					
-	oan			KĮ	yn 16	1											
	998			4	15]			-	-	1 -			1 -			
	Denor			Exhau	st gas te	mp. °C		Exh	press	Turbo-	Scav	air pre	ssure	Sca	v. air ten	ıp. °C	
	adjustmen	t	E	chaust va	lve	Tu	bine	Recei-	outlet	ger	⊢ P Filter	Cooler	Recei-	Inlet	Before	After	Au
	shims					Inlet	Outlet	ver	mmWC	RPM	mmWC	mmWC	ver	Blower	Cooler	Cooler	blov
1	2	3	1	2	3	1	1	bar	1	1	1	1	bar	1	1	1	01
5	5	5	350	360	360	415	0	0,83	35	13426	0	105	1,00	36,4	110	26	
4	5	6	4	5	6	2	2	mmHg	2	2	2	2	mmHg	2	2	2	of
5	5	5	350	350	350			623					750				X
7	8	9	7	8	9	Digi 1	Digi 1		3	3	3	3	°C	3	3	3	
10	11	12	10	71	12	397	306	T.					33				
10	11	12	10	11	12	Digi 2	Digi 2	Local	4	4	4	4	Local	4	4	4	
								0,82					0,98				
Ave	rage	5,0	Ave	rage	353	397	306	bar	35	13426	0	105	bar	36,4	110	26	
Co	oling		Co	oling wat	ter temp	erature	°C				Lu	bricating	g oil			Fue	l oil
	ater	Air co	Outlet	Talit	Main	engine	d	Turb.	Press.	00	0	Temper	rature °(True 1		pres	sure
Prov	11011	1 Inlet	1	Inlet	1	2	aers 3	1	System	Inlet	1	2	ons 3	Turboo	nargers	Bef	иг өге
W Pressi LT	HT			70	81	82	82	0	oil	engine	54	55	55	MAN	MAN	filt	er
Pressi LT	HT 27	24	30		01	5	6	2	2,2	45	4	5	6	inlet/	outlet/		
W Presso LT 2,3	HT 2,7 ▲P	24 2	30 2	10	4	5				Inlet	66	55	54	BBC	ABB	Aft	er
W Pressi LT 2,3	HT 2,7 AP 0.64	24 2	30 2	10	4	82	82		Cool	ACCOUNTS AND A DOCUMENT	20			 	p.c.c.c.c.c.c.c.c.c.c.c.c.c.c.c.c.c.c.c	1 1.041	**
Pressi LT 2,3 Flow	HT 2,7 AP 0,64 V [m ³ /h]	24 2 3	30 2 3		4 82 7	82 8	82 9	3	Cool.	camsb.	7	8	9	blower	turbine	filt	er
W Presso LT 2,3 Flow LT	HT 2,7 ▲P 0,64 y [m³/h] HT	24 2 3	30 2 3		4 82 7	82 8	82 9	3	Cool. oil	camsh.	7	8	9	blower inlet/	turbine outlet/	filt	er 4
W Pressi LT 2,3 Flow LT 84	HT 2,7 A P 0,64 7 [m ³ /h] HT 48	24 2 3	30 2 3		4 82 7	82 8 11	82 9	3	Cool. oil 2,2 Exh V	camsh. 45 Outlet	7	8	9	blower inlet/	turbine outlet/	filt 8, Terry	4
w Press LT 2,3 Flow LT 84	HT 2,7 ▲P 0,64 y [m ³ /h] HT 48	24 2 3 4	30 2 3 4		4 82 7 10	82 8 11	82 9 12	3	Cool. oil 2,2 Exh.V oil	camsh, 45 Outlet	7 7 10	8	9 12	blower inlet/ 1	turbine outlet/ 1 46	filt 8, Temp Ref	4 p. °C
w Pressi LT 2,3 Flow LT 84	HT 2,7 ▲P 0,64 (m ³ /h) HT 48	24 2 3 4	30 2 3 4		4 82 7 10 Ave	82 8 11 rage	82 9 12 82	3	Cool. oil 2.2 Exh.V oil 2.2	45 Outlet camsh.	10	8 11 rerage	9 12 55	blower inlet/ 1 2	turbine outlet/ 1 46 2	filt 8, Tem Bef pun	4 p. °C ore nps
W Pressi LT 2,3 Flow LT 84	HT 2,7 ▲P 0,64 (m ³ /h) HT 48	24 2 3 4 Temp.:	30 2 3 4	Oil.:	4 82 7 10 Ave OE-HT	82 8 11 rage 30	82 9 12 82	3	Cool. oil 2.2 Exh.V oil 2.2 Turb.	camsh. 45 Outlet camsh.	55 7 10 Av	8 11 erage	9 12 55	blower inlet/ 1 2	turbine outlet/ 1 46 2	filt 8. Temj Bef pun	4 p. °C ore nps
W Pressi LT 2,3 Flow LT 84 Govern	HT (84) HT 2.7 ▲P 0.64 (m ³ /h) HT 48 or.	24 2 3 4 Temp.:	30 2 3 4	Oil.:	4 82 7 10 Ave OE-HT	82 8 11 rage 30	82 9 12 82	3	Cool. oil 2.2 Exh.V oil 2.2 Turb. oil	camsh. 45 Outlet camsh. Thrust segm.	7 10 	11 rerage ow	9 12 55	blower inlet/ 1 2 3	turbine outlet/ 1 46 2 3	filt 8, Tem Bef pun 4	4 p. °C ore nps 0
W Pressi LT 2,3 Flow LT 84 Govern	HT HT 2.7 ▲P 0.64 r[m³/h] HT 48	24 2 3 4 Temp.:	30 2 3 4	Oil.:	4 82 7 10 0E-HT 59	82 8 11 rage 30	82 9 12 82	3	Cool. oil 2.2 Exh.V oil 2.2 Turb. oil 2.0	camsh. 45 Outlet camsh. Thrust segm. 46	53 7 10 Av Fl [m 86	8 11 verage ow 3/h] ,30	9 12 55	blower inlet/ 1 2 3	turbine outlet/ 1 46 2 3	filt 8, Temj Bef pun 4	4 p. °C ore nps 0
W Pressi LT 2,3 Flow LT 84 Govern Axial w	HT HT 2.7 AP 0.64 /[m³/h] HT 48 or.	24 2 3 4 Temp.:	30 2 3 4	Oil.:	4 82 7 10 Ave 0E-HT	82 8 11 rage 30	82 9 12 82	3	Cool. oil 2.2 Exh.V oil 2.2 Turb. oil 2.0	camsh. 45 Outlet camsh. Thrust segm. 46	7 	8 8 11 ow 5/h] 30	9 12 55	blower inlet/ 1 2 3 4	turbine outlet/ 1 46 2 3 3 4	filt 8, Temj Bef pun 4	4 p. °C ore nps 0

		MAN		D.E.:	S35MC			Water h	orake:	Z	14	No.:	2778				0.000	
		B&W		No.:	37075			Yard:	Sonay 2							11	EST B	ED
Lay	out k	W:	4440			RPM:	173	Date:	21-07	7-2005	2		Sign:	LWP	C1 1	Test no:	1 100	0
Tu	rbocha	arger(s):		Nos.:	1	Seri	al No.	No. of c	yl.:	6	Bore (n	1):	0,35	man	Stroke	(m):	1,400	1
Ma	ke:	MAN			1	119	2189	Cylinde	erconstar	nt (kW,b	ar):	0,2	245	TCS po	wer (KV	():		
Typ	pe:	NA40/SC	01077		2			Govern	or:	Woodw	ard	10-24	Type:	PGA 38				
Ma	x, RP.	M:	21.400		3			TC spee	curcation	1:	AD=22	1,0cm A	4K=108,	5 cm			0.4000	
Ma	x. tem	ip. °C:	620		4	T. A.	1	MFP:	1,15	Compr	sup raci	lor:	0,70	Futompr	. diamete	er;	0,4800	
1/0	Iub.	oll system	1 (Tick b	(X):		Interna	a system		Externa	al from f	vi.E. syst	•		Duond	a from §	gravity ta	Тат	
Hu	many	-rel %	48	09 4-1	at	28						-11	DD	branu		CI 505	Type	
Oil	heony		OS Dia	Qo Aai	Heat va	ha kCa	1/kat	10224		Ci	reulating	on oil	RP			Energol	OF-HT3	0
Der	nsity a	t 15 °C:	Qo Die	0.8432	Sulphu	ице кса	0.04	10224			Turbo o	il	BP			Energol	OE-HT3	0
-		. 10 01	Brake	0,0102	g/k	Wh		Pi			Pmax			Pcomp		F	uel pun	1p
D	ate	Hour	Load	RPM				bar	-		bar			bar			index	
(yyr	nmdd)	(hh:mm)	kNm	1.5.1	indi	cated	1	2	3	1	2	3	1	2	3	1	2	3
05-	07-21	12:40	59,6	174	165	5,12	5,58	5,53	5,54	52	52	52	39	40	39	18	18	18
	n	1	Speed	KW			4	3	0	4	5	0	4	5	0	4	3	0
	me	ch.	setting	indi-			5,49	5,68	5,64 Q	52	52	9	39	39	39	18	19	18
-	<u>^</u>	3	4.60	1307			· ·	0	-		0	-	1					1
-	Lo	ad	Gov.nor	kW	g/k	Wh	10	11	12	10	11	12	10	11	12	10	11	12
	9	6	index	eff.	effe	ctive												
	2	5	2.3	1090	105	8.00	Ave	rage	5.58	Ave	rage	52	Aver	rage	39	Aver	age	18
	Bar	om.			Fue	el oil]			1	0				
	mil	li-			Co	ns.				Ref.1	Pmax:	53	(bar)					
	00	ur va			KĮ	2/11	1											
-	99	8		1	2	10]					0		Constant of the second	6			1
		Pmay			Exhau	ist gas te	emp. °C		Exh.	Turb	char-	A n	\wedge n	ssure	Sca	v. air tem	ip. °C	Δυχί
	ac	ljustmen	t	Ex	haust va	dve	Tu	bine	Recei-	outlet	ger	Filter	Cooler	Recei-	Inlet	Before	After	liary
		shims					Inlet	Outlet	ver	mmWC	RPM	mmWC	mmWC	ver	Blower	Cooler	Cooler	blowe
-	1	2	3	1	2	3	1	1	bar	1	1	1	1	bar	1	1	1	on
	5	5	5	335	330	320	380	0	0,25	3	7900	0	40	0,31	35,0	60	23	X
	4		0	4	3	0	2	2	mmHg	2	- 2	2	2	mmrig	2	2	2	011
\vdash	7	5	0	310	330	320	Digi 1	Digi 1	188	3	3	3	3	233 °C	3	3	3	
	-	0	-	· · ·		-	265	210						20				1
	10	11	12	10	11	12	Digi 2	Digi 2	Local	4	4	4	4	Local	4	4	4	1
							1		0.22					0.3				1
-	Avers	age .	5.0	Ave	rage	324	365	318	har	3	7900	0	40	bar	35.0	60	23	1
	Coo	ling	5,0	Co	oling wo	1 Junt amount	anotuno	°C	Uai		1900		hricotin	a oil	55,0	00	En	loil
	wat	ter	Air c	ooler		Main	engine	C	Turb.	Press.	1	Lu	Temper	rature °(2		pres	sure
P	ressur	e [bar]	Inlet	Outlet	Inlet	Ou	tlet cylin	ders	Outlet	bar	°C	01	atlet pist	ons	Turbo	chargers	ь	ar
1	T	HT	1	1		1	2	3	1	System	Inlet	1	2	3			Bet	fore
2	2,3	2,7	23	25	72	80	82	82	0	oil	engine	53	54	53	MAN	MAN	fil	ter
		AP	2	2		4	5	6	2	2,2	44	4	5	0	niet/	outlet/		
	Flow	0,64	2	2		81	82	82	7	Cool.	Inlet	53	54 8	53	bbc	ABB	Af	ter
1	T	ш-/11] ЦТ	5	5			0	,	5	011	canisi.		0	,	inlat	outlet/		er
	84	48	1	1		10	11	12	1	Exh V	Outlat	10	11	12	1	7	Tarr	,8 n °C
	T	+0	4	4		10	11	12	4	ail	cameh	10	11	14	I	44	Rei	fore
					1	Ave	erage	82			candiolis	Av	erage	53	2	2	pu	mps
Go	verno	r.	Temp.:		Oil.:	OE-HT	30		1	Turb.	Thrust	FI	ow				4	4
							-		,	oil	segm.	[m	3/h]		3	3		
	al wib	ration m	onitor.:		0,	69				2,0	46	87	,00					
Axi	-														4	4		
Axi															1.10260000020000	000000000000000000000000000000000000000	1	
Axi																		

AN DAW DIESEN	vo								
				IMC	Technical F	File		Literation No.	
MBD Info No.	A	-						← Identification No	÷
3 00 044	4	En	igine Typ	e 653	ISMC, Plant	t spec 908926	-4	U XX XX XX-X	
Suppl. Drwg.:							Page No	.: E3-1	
Date	De	s. Chk	. Appd.	A.C.	Change/Rep	lacement			C. No.
2004-06-15	SV	н	SVH	-					1
Enclosure 3 E2 Cycle – Summ	ary E	missio	on Data	(Pare	ent engine)				
Test no				_	1P100	1G75	2G50	3G25	
Date				2	2004-04-19	2004-04-19	2004-04-19	2004-04-19	
Load			%		100	75	50	25	
Engine power			kW		4440	3340	2220	1091	
Engine speed			r/min		173.0	173.0	173.0	173.0	
Sample cooler ten	npera	ture	°C		5.0	5.0	5.0	5.0	
Gas sample temp	eratu	re	°C		190	190	190	190	
Ambient Condition	on		204928						
Back ground CO2	(ass	umed)	%	-	0.04	0.04	0.04	0.04	
Measured values									
O2 (dry)			%	_	14.20	14.90	14.90	15.50	
CO2 (dry)			%	_	4.90	4.50	4.50	4.10	
CO (dry)	D (dry) Dx (wet)				76	83	102	114	
NOx (wet)	Dx (wet)				1001	1000	828	609	
HC (wet)			ppmC1	_	130	173	155	165	
Corrected to dry	15%	02							
CO2			%		4.27	4.26	4.27	4.28	
CO			ppm	_	67	80	98	121	
NOx			ppm	_	922	1010	837	677	
HC			ppmC1	-	119	175	157	183	
SO2 (calculated)			ppm		9.2	9.2	9.2	9.3	
H2O (calculated)			%	-	5.45	5.02	5.03	4.70	
Specific emission	n								
02			g/kWh	-	1245.6	1415.6	1450.6	1766.0	
CO2			g/kWh		595.2	586.9	601.9	639.6	
CO			g/kWh		0.594	0.705	0.883	1.154	
NOx (as NO2)			g/kWh	_	13.43	14.54	12.33	10.58	
HC (as CH4)			g/kWh	-	0.606	0.877	0.804	0.997	
SO2 (calculated)			g/kWh		0.187	0.184	0.189	0.201	
H2O (calculated)			g/kWh		286.1	285.9	293.3	319.5	
Air amount				_					
Oxygen based			kg/kWh		8.24	9.06	9.27	10.87	
Carbon based			kg/kWh		8.11	8.70	8.92	10.38	
Used for calculation	n		kg/kWh		8.18	8.88	9.09	10.63	
Exhaust gas amo	unt		kg/h		37132	30271	20607	11813	

R:\klasse\NOx\2_takt\S5729_37075_Sonay 2\MC(C) MEMBER TF v5-1.doc

				INAC	Technical	File			
				IIVIC	/ rechnicar r	-lie		← Identification No.	<u> </u>
MBD Info No.	A	Fr		e 651	35MC Plan	t snec 908926	5-4	0 xx xx xx->	,
3 00 044			igine iyp		551410, 1 1011	1 3000 000020			
Suppl. Drwg.:		1.000			1		Page No.:	E3-1	
Date	Des	. Chk	. Appd.	A.C.	Change/Rep	lacement			C. No.
Enclosure 3 E2 Cycle – Summ Test no	ary E	missio	on Data	(Pare	ent engine)	1675	2G50	3G25	
Date			CONTRACTOR OF THE OWNER	-	2004-04-19	2004-04-19	2004-04-19	2004-04-19	
Load			%		100	75	50	25	
Engine power			kW	+	4440	3340	2220	1091	
Engine speed			r/min	+	173.0	173.0	173.0	173.0	
Sample cooler ten	nperat	ure	°C	+	5.0	5.0	5.0	5.0	
Gas sample temp	eratur	е	°C	-	190	190	190	190	
Ambient Conditio	on			+	100				
Back ground CO2	(assu	med)	%	1	0.04	0.04	0.04	0.04	
Measured values									
O2 (dry)			%	1	14.20	14.90	14.90	15.50	
CO2 (dry)			%		4.90	4.50	4.50	4.10	
CO (dry)			ppm	1	76	83	102	114	
NOx (wet)			ppm		1001	1000	828	609	
HC (wet)	C (wet)				130	173	155	165	
Corrected to dry	15%0)2							
CO2			%		4.27	4.26	4.27	4.28	
СО			ppm		67	80	98	121	
NOx			ppm		922	1010	837	677	
HC			ppmC1		119	175	157	183	
SO2 (calculated)			ppm		9.2	9.2	9.2	9.3	
H2O (calculated)			%		5.45	5.02	5.03	4.70	
Specific emissio	n								
02			g/kWh		1245.6	1415.6	1450.6	1766.0	
CO2			g/kWh		595.2	586.9	601.9	639.6	
СО			g/kWh		0.594	0.705	0.883	1.154	
NOx (as NO2)			g/kWh		13.43	14.54	12.33	10.58	
HC (as CH4)			g/kWh		0.606	0.877	0.804	0.997	
SO2 (calculated)			g/kWh		0.187	0.184	0.189	0.201	
H2O (calculated)			g/kWh		286.1	285.9	293.3	319.5	
Air amount									
Oxygen based			kg/kWh		8.24	9.06	9.27	10.87	
Carbon based			kg/kWh		8.11	8.70	8.92	10.38	
Used for calculation	n		kg/kWh		8.18	8.88	9.09	10.63	
Exhaust gas amo	ount		kg/h		37132	30271	20607	11813	

R:\klasse\NOx\2_takt\S5729_37075_Sonay 2\MC(C) MEMBER TF v5-1.doc

				IMO T	echnical File			
MBD Info No.	A						← Identii	ication No. \rightarrow
3 00 044	4	Eng	gine Typ	pe 6S35	MC, Plant spec	908926-4	0 xx	XX XX-X
Suppl. Drwg.:							Page No.:	E3-2
Date	Des.	Chk.	Appd.	A.C.	Change/Replacemen	t		C. No.
2004-06-15	SVH		SVH	-				1
E2 Cycle – Summ	nary P	erform	ance D	ata	(Parent engine)		
Test no					1P100	1G75	2G50	3G25
Date					2004-04-19	2004-04-19	2004-04-19	2004-04-19
Time					9:47	14:09	14:42	15:18
Load				%	100	75	50	25
Engine power				kW	4440	3340	2220	1091
Engine speed				r/min	173.0	173.0	173.0	173.0
Ambient pressure				mbar	996	1000	1000	1000
Ambient temperati	ure			°C	24.0	26.0	26.2	27.0
Ambient relative h	umidity			%	36.7	31.8	31.4	30.6
Scavenge-air pres	sure			bara	3.78	2.92	2.02	1.34
Cylinder maximum	n press	ure		bara	144.0	120.0	85.0	54.0
Cylinder compress	sion pre	ess.		bara	121.0	94.0	63.0	43.0
MEP pressure				bar				
Exhaust gas press	sure			bara	3.50	2.71	1.86	1.03
Turbine back pres	sure			mmW(2 270	180	85	10
Central cooler, coo	olant in	let tem	ip.	°C	05.0	05.0	25.0	25.0
(or sea-water tem	iplet to	re)		°C	25.0	25.0	25.0	25.0
Air cooler, coolant	iniet te	tomn		°C	25.0	25.0	25.0	25.0
Air cooler, coolant	outlet	temp.		•0	49.0	41.0	32.0	27.0
Compressor inlet	temp.	luces)		0	24.7	25.4	25.8	26.0
Scavenge-air tem	p. (rece	eiver)		•0	42	35	30	37
Turbino inlet tomo	emp.			°C	412	3/3	359	320
Turbine iniet temp	•			•0	451	399	389	348
i urbine outlet tem	p.			C	284	276	303	302
Turbachargar ana	od			r/min	10000	10000	12200	9100
SEOC (actual)	eu			0/L\\/L	19000	10600	190.40	201.22
OF LACIDAD				g/kvvr	187.09	184.67	189.40	201.33

R:\klasse\NOx\2_takt\S5729_37075_Sonay 2\MC(C) MEMBER TF v5-1.doc

Appendix 2. M.A.N. B&W D 2876 Model Diesel Generator Test Bench Report.

L) Technical data of opgina:	Page 2 We	ork no. 5684708 / 3
r.) recifical data of engine.		
Rated power	345	kW
Rated speed	1500	rpm
Compression ratio	15,5:1	-
Bore	128	mm
Stroke	166	mm
Mean effective pressure	21,5	bar
Start of delivery	13 Grad V.O.T.	Degree BTDC(±1°)
Specific fuel consumption	215	g/kWh
Exhaust-gas temperature	435	°C
Exhaust-gas mass flow	1735	kg/h
Actual NOx value of parent engine	8,9	g/kWh
Combustion cycle	4-stroke	-
Cooling medium	Water	-
Piston displacement	-	-
No. of cylinders	6	-
Cylinder configuration	Inline	-
Type of aspiration	Turbocharged intercooled	-
Type of fuel	Distillate ISO8217	-
Combustion chamber	Open	-
/alve	Cylinder head	-
Type of fuel system	Pump-line-injector	-
Other features	none	-
) Fuel injection system 1) Fuel injection nozzle		

2.2) Fuel injection pump

Туре	MAN Identification no.	Identification procedure
BOSCH ROBERT GMBH	51.11103-7700	See item 6.2

		Pa	ge 15		Work no.	5684708 / 3					
missions Test Rep	ort No1D					Ambient a	nd Gaseou	IS Emission	s Data*		Sheet 4/5
ode		-	6	3							
ower / Torque	%	100	75	C EO	4	G	9	2	0	0	10
beed	%	100	1001	001	Q7	10					
me at beginning of r	mode	8:30	8.55	0.15	001	100					
mbient Data		200	0.00	9.13	9.30	9:45					
mosph. pressure	mbar	986	986	986	QRG	200					
ake air temp.	°C	24,2	23.6	243	24 F	2000					
ake air humidity	g/kg %	28	28	28	24,0	1,42					
nospheric factor (fa	(8	1.004	1 004	1 004	1 004	1 004					
Iseous Emissions	Data			1001	1,004	1,004					
DX conc. dry/wet	bpm	1130	1088	895	502	920					
conc. dry/wet	ppm	385	250	135	252	378					
2 conc. dry/wet	%	8,3	7.7	6.6	44	0 0					
conc. dry/wet	%	9,5	10,4	12	15.1	17.6					
conc. dry/wet	ppm	42,9	27	35	177	40					
X hum.corr.factor	KHDIS	0,94	0,94	0,94	0.94	0.94					
el spec.tactor (FFH		1,85	1,85	1,86	1.88	1 89					
//wet corr.factor	KWR	0,92	0,92	0,93	0.95	0.96					
X mass flov	v kg/h	4,15	3,25	2,15	1.06	0.46					
mass flow	v kg/h	0,92	0,48	0.21	0.34	0.41					
22 mass flow	v kg/h	311,7	234,4	161.5	94.1	56.4					
mass flow	v kg/h	259,6	230,4	213,6	234.9	249.2					
mass flow	v kg/h	0,055	0,028	0,028	0.054	0.076					
Z mass flow	v kg/h	1 1 1	1	1							
x specific	g/kWh	8,64	9,00	8,91	8.73	9.33					

Appendix 2. M.A.N. B&W D 2876 Model Diesel Generator Test Bench Report.

Appendix 2. M.A.N. B&W D 2876 Model Diesel Generator Test Bench Report.

		Pa	ge 16		Work no.	5684708 / 3			
Emissions Test Repo	ort No1[0 2				Engine Tes	it Data*		Sheet
Mode		-	2	3	1 1				1
Power / Torque	%	100	75	202	96	0 40	2 0	8	9 10
Speed	%	100	100	100	100	100			
Time at beginning of m	lode	8:30	8.55	0.15	0.30	0.46			
Engine Data		222	000	0.10	00.6	9.40			_
Speed	rpm	1800	1800	1800	1800	1800		-	
Auxiliary power	kW	481	361	141	101				
Dyno setting	kW		2	143	171	43			
Power	kW								
Mean eff. pressure	bar	14.6	11.0	73	37	1 5			
-uel rack	mm				10	0,1			
incorr.spec.fuel cons.	g/kWh	207	207	213	249	371			
-uel flow	kg/h	99.5	74.7	51.4	30.1	18.7			
Air flow GAIRD	kg/h	2571	2075	1658	1442	1214			
Exhaust flow (gexhw)	kg/h	2687.7	2167	1724.7	1478	1327			
Exhaust temp.	°C	396	360	307	222	179			
Exhaust backpress.	mbar	1 1 1							
Cyl. Coolant temp. out	°C	80,6	78,8	75.7	72.6	70.6			
Cyl.Coolant temp. in	°C	77,6	17.1	74.6	717	60.8			
Cyl.Coolant pressure	bar	1	1			2000			
Femp. intercooled air	°C	50,4	45,3	40.8	37.6	33.9			
Charge air pressure	mbar	1,08	0,68	0.36	0.16	0.08			
ubricant temp.	°C	80,4	80,4	80.4	80.4	80.4			
-ubricant pressure	bar	4,75	5,0	5,4	5,9	6.15			
nlet depression	mbar	1 1 1	:	1					

Appendix 2. M.A.N. B&W D 2876 Model Diesel Generator Test Bench Report.

CURRICULUM VITAE

Name Surname: Murat YAPICI

Place and Date of Birth: ISTANBUL/ 09.01.1983

Address: ERENKÖY/ISTANBUL

E-Mail: murat.yapici@pru.edu.tr

B.Sc.: AnadoluUniversity (2012)

Professional Experience and Rewards:

Experience for 12 years (last 3 years as Chief Engineer) in the commercial maritime fleet.

PUBLICATIONS/PRESENTATIONS ON THE THESIS

SCI / SCI-Expanded / SSCI / AHCI Scope Journal

Yapıcı M., Koldemir B., "Developing Innovative Applications of Technical Drawing Course at the Maritime Education", World Conference on Technology, Innovation and Entrepreneurship, Procedia - Social and Behavioral Sciences, Volume 195, pp. 2813-2821.

CONFERANCE PROCEEDINGS

<u>National</u>

Yapıcı M., Koldemir B., "Gemilerden Kaynaklanan Hava Kirliliğini Azaltma Amacıyla Türkiye ve Dünya'da Koruma Uygulamaları", 1. Ulusal Gemi Trafik Hizmetleri Kongresi, İSTANBUL, TÜRKIYE, 8-9 Aralık 2014, cilt.1, ss.45-54.

Yapıcı M., "Tersanelerin İş Sağlığı ve Güvenliği Açısından İncelenmesi", VIII. Ulusal İşçi Sağlığı ve İş Güvenliği Kongresi, 16-18 Nisan 2015, cilt.1, ss.622.

Yapıcı M., Koldemir B., "Yeni Teknoloji ve Alternatif Yakıt Uygulamalarının Römorkör Üretimine Etkilerinin Araştırılması'', 1.Kılavuzluk Römorkörcülük Hizmetleri ve Teknolojileri Kongresi, İZMİR, TÜRKIYE, 23 Ekim 2015.

Yapıcı M., Koldemir B., "Limanlarda Alternatif Yenilenebilir Enerji Kullanımının İncelenmesi'', 2. Ulusal Liman Kongresi, İZMİR, TÜRKİYE, 5-6 Kasım 2015.

<u>International</u>

Yapıcı M., "Investigation of Air Pollution from Ships in the Cruise Tourism", 2nd International Congress of Tourism & Management Researches, AYDIN-KUŞADASI, TURKEY, 1-3 May 2015.

Yapıcı M., Akkartal E., "Evaluating the Advantages of Short Sea Shipping and Comparing to the Other Modes in Turkey", XIII. International Logistics and Supply Chain Congress, İZMİR, TÜRKIYE, 22 Ekim 2015.