# Weighted approximation by $q$-Ibragimov-Gadjiev operators 

Serap Herdem ${ }^{1, *}$ and İbrahim Büyükyazici ${ }^{2}$<br>${ }^{1}$ Department of Mechanical Engineering, Piri Reis University, Postane Mahallesi, Eflatun Sk. No:8, 34940 Tuzla, Istanbul, Turkey<br>${ }^{2}$ Department of Mathematics, Faculty of Science, Ankara University, Dögol Caddesi, 06 100, Tandŏ̆an, Ankara, Turkey

Received May 30, 2019; accepted October 12, 2019


#### Abstract

The present paper deals with a $q$-generalization of Ibragimov-Gadjiev operators, which were constructed by Ibragimov and Gadjiev in 1970. We study convergence properties on the interval $[0, \infty)$ and obtain the rate of convergence in terms of a weighted modulus of continuity. We also give some representation formulas of the operators using $q$-derivatives. AMS subject classifications: 41A25, 41A36 Key words: $q$-Ibragimov-Gadjiev operators, weighted approximation, $q$-integers, $q$-deri-


 vatives
## 1. Introduction

In 1970, İbragimov and Gadjiev [10] introduced the following general sequence of positive linear operators defined on the space $C[0, A]$ :

$$
\begin{equation*}
L_{n}(f ; x)=\sum_{\nu=0}^{\infty} f\left(\frac{\nu}{n^{2} \Psi_{n}(0)}\right)\left[\left.\frac{\partial^{\nu}}{\partial u^{\nu}} K_{n}(x, t, u)\right|_{\substack{u=\alpha_{n} \Psi_{n}(t) \\ t=0}}\right] \frac{\left(-\alpha_{n} \Psi_{n}(0)\right)^{\nu}}{\nu!} \tag{1}
\end{equation*}
$$

which contains the well-known operators of Bernstein, Bernstein-Chlodowsky, Szász and Baskakov as a particular case. Over time, these operators, called IbragimovGadjiev operators, have been deeply investigated and different generalizations have been obtained in numerous papers, see $[1-4,8,9,11]$ and the literature cited therein.

In [9], an extension in $q$-Calculus of Ibragimov-Gadjiev operators was constructed. Here we briefly describe some details. First of all, we should mention some basic definitions of $q$-Calculus. We refer to [13] as a good guide. Let $q>0$. For any natural number $n \in \mathbb{N} \cup\{0\}$, the $q$-integer $[n]=[n]_{q}$ is defined by:

$$
[n]=\frac{1-q^{n}}{1-q}, \quad[0]=0
$$

and the $q$-factorial $[n]!=[n]_{q}!$ by

$$
[n]!=[1][2] \cdots[n], \quad[0]!=1
$$

[^0]For integers $0 \leq k \leq n$, the $q$-binomial coefficient is defined by:

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]!}{[n-k]![k]!}
$$

Clearly, for $q=1$,

$$
[n]_{1}=n, \quad[n]_{1}!=n!, \quad\left[\begin{array}{l}
n \\
k
\end{array}\right]_{1}=\binom{n}{k}
$$

The $q$-derivative of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by:

$$
D_{q} f(x)= \begin{cases}\frac{f(x)-f(q x)}{(1-q) x}, & x \neq 0 \\ f^{\prime}(0), & x=0\end{cases}
$$

for functions which are differentiable at $x=0$ and the higher $q$-derivatives are

$$
D_{q}^{0} f=f, D_{q}^{n} f=D_{q}\left(D_{q}^{n-1} f\right), \quad n=1,2,3, \ldots
$$

The product rule is

$$
\begin{equation*}
D_{q}(f(x) g(x))=D_{q} f(x) g(q x)+D_{q} g(x) f(x) \tag{2}
\end{equation*}
$$

The $q$-analogue of $(x-a)^{n}$ is the polynomial

$$
(x-a)_{q}^{n}= \begin{cases}1, & n=0 \\ (x-a)(x-q a) \cdots\left(x-q^{n-1} a\right), & n \geq 1\end{cases}
$$

The $q$-exponential functions are given as follows:

$$
\begin{align*}
& e_{q}(x)=\sum_{k=0}^{\infty} \frac{x^{k}}{[k]!}=\frac{1}{(1-(1-q) x)_{q}^{\infty}},|x|<\frac{1}{1-q}, \quad|q|<1  \tag{3}\\
& E_{q}(x)=\sum_{k=0}^{\infty} q^{\frac{k(k-1)}{2}} \frac{x^{k}}{[k]!}=(1+(1-q) x)_{q}^{\infty}, x \in \mathbb{R}, \quad|q|<1 \tag{4}
\end{align*}
$$

It is clear from equations (3) and (4) that

$$
e_{q}(x) E_{q}(-x)=1
$$

The following $q$-generalization of Taylor's formula was introduced by Jackson (see [6]).

Theorem 1. If the function $f$ can be expanded in a convergent power series and if $q$ is not a root of unity, then

$$
f(x)=\sum_{n=0}^{\infty} D_{q}^{n} f(a) \frac{(x-a)_{q}^{n}}{[n]!}
$$

In [9], the authors introduced a $q$-analogue of the Ibragimov-Gadjiev operators that are called the $q$-Ibragimov-Gadjiev operators as follows:

Let $0<q<1$ and let $A>0$ be a given number and $\left\{\psi_{n}(t)\right\}$ a sequence of functions in $C[0, A]$ such that $\psi_{n}(t)>0$ for each $t \in[0, A], \lim _{n \rightarrow \infty} \frac{1}{[n]^{2} \psi_{n}(0)}=0$. Also, let $\left\{\alpha_{n}\right\}$ be a sequence of positive real numbers such that $\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{[n]}=1$.

Assume that a function $K_{n, \nu}^{q}(x, t, u)(x, t \in[0, A],-\infty<u<\infty)$ depending on the three parameters $n, \nu$ and $q$ satisfies the following conditions:
(i) The function $K_{n, \nu}^{q}(x, t, u)$ is infinitely $q$-differentiable with respect to $u$ for fixed $x, t \in[0, A]$,
(ii) For any $x \in[0, A]$ and for all $n \in \mathbb{N}$,

$$
\sum_{\nu=0}^{\infty} q^{\frac{\nu(\nu-1)}{2}}\left[\left.D_{q, u}^{\nu} K_{n, \nu}^{q}(x, t, u)\right|_{\substack{u=\alpha_{n} \psi_{n}(t) \\ t=0}}\right] \frac{\left(-q \alpha_{n} \psi_{n}(0)\right)^{\nu}}{[\nu]!}=1
$$

(iii) $\left\{\left.(-1)^{\nu} D_{q, u}^{\nu} K_{n, \nu}^{q}(x, t, u)\right|_{\substack{u=\alpha_{n} \psi_{n}(t) \\ t=0}}\right\} \geq 0(\nu, n=1,2, \ldots, x \in[0, A])$,
(This notation means that if the $q$-derivative with respect to $u$ is taken $\nu$ times, then one sets $u=\alpha_{n} \psi_{n}(t)$ and $t=0$.)
(iv) $\left.D_{q, u}^{\nu} K_{n, \nu}^{q}(x, t, u)\right|_{\substack{\alpha_{n} \psi_{n}(t) \\ t=0}}=-[n] x q^{1-\nu}\left[\left.D_{q, u}^{\nu-1} K_{n+m, \nu-1}^{q}(x, t, u)\right|_{\substack{u=\alpha_{n} \psi_{n}(t) \\ t=0}}\right]$ $(\nu, n=1,2, \ldots, x \in[0, A])$, where $m$ is a number such that $m+n$ is zero or a natural number.

According to these conditions, the $q$-Ibragimov-Gadjiev operators have the following form:
$L_{n}(f ; q ; x)=\sum_{\nu=0}^{\infty} q^{\frac{\nu(\nu-1)}{2}} f\left(\frac{[\nu]}{[n]^{2} \psi_{n}(0)}\right)\left[\left.D_{q, u}^{\nu} K_{n, \nu}^{q}(x, t, u)\right|_{\substack{u=\alpha_{n} \psi_{n}(t) \\ t=0}}\right] \frac{\left(-q \alpha_{n} \psi_{n}(0)\right)^{\nu}}{[\nu]!}$
for $x \in \mathbb{R}_{+}$and any function $f$ defined on $\mathbb{R}_{+}$.
By $\nu$-multiple application of property $(i v), L_{n}(f ; q ; x)$ can be reduced to the form:

$$
\begin{align*}
L_{n}(f ; q ; x)= & \sum_{\nu=0}^{\infty} f\left(\frac{[\nu]}{[n]^{2} \psi_{n}(0)}\right) \frac{[n][n+m][n+2 m] \cdots[n+(\nu-1) m]}{[\nu]!} \\
& \times\left(x q \alpha_{n} \psi_{n}(0)\right)^{\nu} K_{n+\nu m, 0}^{q}\left(x, 0, \alpha_{n} \psi_{n}(0)\right) \tag{6}
\end{align*}
$$

Note that for $q=1$, the operators $L_{n}(f ; q ;$.$) are classical Ibragimov-Gadjiev oper-$ ators. In [9], the authors showed that by taking $q_{n} \in(0,1)$ such that $\lim _{n \rightarrow \infty} q_{n}=1$, $L_{n}(f ; q ;$.$) satisfies the conditions of the Bohman-Korovkin theorem, and obtained$ the other convergence properties on the space $C[0, A]$. Furthermore, they showed
that in special cases, this sequence of operators consist of $q$-positive linear operators. For instance, by choosing $K_{n, \nu}^{q}(x, t, u)=\left(1-\frac{q^{1-\nu} u x}{1+t}\right)_{q}^{n}$ and $\alpha_{n}=\frac{[n]}{q}$, $\psi_{n}(0)=\frac{1}{[n]}$, the operators defined by (5) are transformed into $q$-Bernstein polynomials which were introduced by Phillips [15], for $\alpha_{n}=\frac{[n]}{q}, \psi_{n}(0)=\frac{1}{[n] b_{n}}$ $\left(\lim _{n \rightarrow \infty} b_{n}=\infty, \lim _{n \rightarrow \infty} \frac{b_{n}}{[n]}=0\right)$ the operators become $q$-Chlodowsky polynomials defined by Karslı and Gupta [14]. For $K_{n, \nu}^{q}(x, t, u)=E_{q}\left(-[n]\left(t+q^{1-\nu} u x\right)\right)$, $\alpha_{n}=\frac{[n]}{q}, \psi_{n}(0)=\frac{1}{[n] b_{n}}\left(\lim _{n \rightarrow \infty} b_{n}=\infty, \lim _{n \rightarrow \infty} \frac{b_{n}}{[n]}=0\right)$, the $q$-analogue of the classical Szász-Mirakjan operators, which were defined by Aral [5], can be obtained.

The aim of this paper is to establish Korovkin type theorems for continuous and unbounded functions defined on $[0, \infty)$ by the $q$-Ibragimov-Gadjiev operators. We also give some representations of these operators using the $q$-differences and divided differences.

## 2. Preliminary results

We define a suitable q-difference operator as follows:

$$
\begin{equation*}
\triangle_{q}^{0} f_{\nu}=f_{\nu}, \Delta_{q}^{r} f_{\nu}=\Delta_{q}^{r-1} f_{\nu+1}-q^{r-1} \Delta_{q}^{r-1} f_{\nu}, r \geq 1 \tag{7}
\end{equation*}
$$

where $f_{\nu}=f\left(\frac{[\nu]}{[n]^{2} \psi_{n}(0)}\right), \nu \in \mathbb{N}_{0}$.
Now, suppose that in addition to conditions $(i)-(i v)$ function $K_{n, \nu}^{q}(x, t, u)$ satisfies
(v) $K_{n, \nu}^{q}(x, t, u)$ is infinitely $q$ - differentiable with respect to $x$ for fixed $t \in[0, A]$, $u \in \mathbb{R}$

$$
\left.D_{q, x} K_{n, \nu}^{q}(x, t, u)\right|_{\substack{u=\alpha_{n} \psi_{n}(t) \\ t=0}}=-[n] \alpha_{n} \psi_{n}(0) q^{1-\nu} K_{n+m, \nu-1}^{q}\left(x, 0, \alpha_{n} \psi_{n}(0)\right)
$$

where $m$ is the natural number defined in (iv),
(vi) $K_{n, \nu}^{q}(0,0, u)=1$ for all $n, \nu$ and $u \in \mathbb{R}$.

In what follows we take another look at our operators.
Theorem 2. Let $q \in(0,1)$. The generalized $q$-Ibragimov-Gadjiev operators may be expressed in the form:

$$
\begin{aligned}
L_{n}(f ; q ; x)= & \sum_{\nu=0}^{\infty} \triangle_{q}^{\nu} f_{0} \frac{[n][n+m] \cdots[n+(\nu-1) m]}{[\nu]!}\left(q \alpha_{n} \psi_{n}(0)\right)^{\nu} \\
& \times K_{n+\nu m,-\nu}^{q}\left(0,0, \alpha_{n} \psi_{n}(0)\right) x^{\nu}
\end{aligned}
$$

$x \in[0, A]$, where $\triangle_{q}^{\nu} f_{0}$ is defined as in (7).

Proof. Applying a $q$-derivative operator to (6) and taking into account product rule $(2)$ and property ( $v$ ), we have:

$$
\begin{aligned}
& D_{q, x} L_{n}(f ; q ; x) \\
& \quad=\sum_{\nu=0}^{\infty} \triangle_{q}^{1} f_{\nu} \frac{[n][n+m] \cdots[n+\nu m]}{[\nu]!}\left(q \alpha_{n} \psi_{n}(0)\right)^{\nu+1} K_{n+(\nu+1) m,-1}^{q}\left(x, 0, \alpha_{n} \psi_{n}(0)\right) x^{\nu}
\end{aligned}
$$

for $n \in \mathbb{N}$ and $x \in[0, A]$. By induction with respect to $r$ we can prove:

$$
\begin{aligned}
& D_{q, x}^{r} L_{n}(f ; q ; x) \\
& \quad=\sum_{\nu=0}^{\infty} \triangle_{q}^{r} f_{\nu} \frac{[n][n+m] \cdots[n+(\nu+r-1) m]}{[\nu]!}\left(q \alpha_{n} \psi_{n}(0)\right)^{\nu+r} \\
& \quad \times K_{n+(\nu+r) m,-r}^{q}\left(x, 0, \alpha_{n} \psi_{n}(0)\right) x^{\nu}
\end{aligned}
$$

From the expansion of the above series by choosing $x=0$, we observe that all terms except the first one are zero,

$$
\begin{aligned}
D_{q, x}^{r} L_{n}(f ; q ; 0)= & \triangle_{q}^{r} f_{0} \frac{[n][n+m] \cdots[n+(r-1) m]}{[0]!}\left(q \alpha_{n} \psi_{n}(0)\right)^{r} \\
& \times K_{n+r m,-r}^{q}\left(0,0, \alpha_{n} \psi_{n}(0)\right), r=0,1,2, \ldots
\end{aligned}
$$

Hence, choosing $a=0$ in Theorem 1, we obtain

$$
\begin{align*}
L_{n}(f ; q ; x)= & \sum_{\nu=0}^{\infty} \triangle_{q}^{\nu} f_{0} \frac{[n][n+m] \cdots[n+(\nu-1) m]}{[\nu]!}\left(q \alpha_{n} \psi_{n}(0)\right)^{\nu} \\
& \times K_{n+(\nu) m,-\nu}^{q}\left(0,0, \alpha_{n} \psi_{n}(0)\right) x^{\nu} \tag{8}
\end{align*}
$$

which completes the proof.
Now, we will give another representation of operators (5) in terms of divided differences, using the following theorem given in $\left[16\right.$, p. 44]. Here, $\left[x_{0}, x_{1,}, \ldots, x_{k ;} ; f\right]$ denotes the divided difference of the function $f$ with respect to distinct points in the domain of $f$,

$$
\begin{aligned}
{\left[x_{0} ; f\right] } & =f\left(x_{0}\right),\left[x_{0}, x_{1} ; f\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}, \ldots, \\
{\left[x_{0}, x_{1}, \ldots, x_{k} ; f\right] } & =\frac{\left[x_{1}, \ldots, x_{k} ; f\right]-\left[x_{0}, \ldots, x_{k-1} ; f\right]}{x_{k}-x_{0}}
\end{aligned}
$$

Theorem 3. For all $j, k \geq 0$,

$$
f\left[x_{j}, x_{j+1}, \ldots, x_{j+k}\right]=\frac{\Delta_{q}^{k} f_{j}}{q^{k(2 j+k-1) / 2}[k]!}
$$

where $x_{j}=[j]$ and $[k]!=[k][k-1] \cdots[1]$.

Corollary 1. The q-Ibragimov-Gadjiev operators can be represented as:

$$
\begin{aligned}
L_{n}(f ; q ; x)= & \sum_{\nu=0}^{\infty} \frac{\left(q \alpha_{n} x\right)^{\nu}}{[n]^{2 \nu}}\left[0, \frac{[1]}{[n]^{2} \psi_{n}(0)}, \frac{[2]}{[n]^{2} \psi_{n}(0)}, \ldots, \frac{[\nu]}{[n]^{2} \psi_{n}(0)} ; f\right] \\
& \times q^{\frac{(\nu-1) \nu}{2}}[n][n+m] \cdots[n+(\nu-1) m] K_{n+\nu m,-\nu}^{q}\left(0,0, \alpha_{n} \psi_{n}(0)\right) .
\end{aligned}
$$

Proof. The proof is obvious from equality (8) and Theorem 3.
Remark 1. It will be noted that for $q=1$, this is the result obtained by Ibragimov and Gadjiev [10] for the operators defined by (1).

Lemma 1. For the operators defined by (5), the following equalities hold:

$$
\begin{align*}
L_{n}(1 ; q ; x)= & 1  \tag{9}\\
L_{n}(t ; q ; x)= & \frac{q \alpha_{n}}{[n]} x,  \tag{10}\\
L_{n}\left(t^{2} ; q ; x\right)= & \left(\frac{q \alpha_{n}}{[n]} x\right)^{2} \frac{q[n+m]}{[n]}+\left(\frac{q \alpha_{n}}{[n]} x\right) \frac{1}{[n]^{2} \psi_{n}(0)},  \tag{11}\\
L_{n}\left(t^{3} ; q ; x\right)= & \frac{q^{6} \alpha_{n}^{3}[n+m][n+2 m] x^{3}}{[n]^{5}}+\frac{\left(q^{4}+2 q^{3}\right) \alpha_{n}^{2}[n+m] x^{2}}{[n]^{5} \psi_{n}(0)}+\frac{q \alpha_{n} x}{[n]^{5} \psi_{n}^{2}(0)},  \tag{12}\\
L_{n}\left(t^{4} ; q ; x\right)= & \frac{q^{10} \alpha_{n}^{4}[n+m][n+2 m][n+3 m] x^{4}}{[n]^{7}} \\
& +\frac{\left(q^{8}+2 q^{7}+3 q^{6}\right) \alpha_{n}^{3}[n+m][n+2 m] x^{3}}{[n]^{7} \psi_{n}(0)} \\
& +\frac{\left(q^{5}+3 q^{4}+3 q^{3}\right) \alpha_{n}^{2}[n+m] x^{2}}{[n]^{7} \psi_{n}^{2}(0)}+\frac{q \alpha_{n} x}{[n]^{7} \psi_{n}^{3}(0)} \tag{13}
\end{align*}
$$

Proof. For $s=0,1,2$, the equalities of $L_{n}\left(t^{s} ; q ;.\right)$ were obtained in view of the definition of the operators defined by (5) in [9]. So this part of proof is omitted. Hence for $s=3,4$, we will prove this lemma in terms of $q$-differences. Using equality (7) for $s=3$ one has

$$
\begin{aligned}
\triangle_{q}^{0} f_{0}= & f_{0}=0 \\
\triangle_{q}^{1} f_{0}= & f_{1}-f_{0}=\left(\frac{1}{[n]^{2} \psi_{n}(0)}\right)^{3} \\
\triangle_{q}^{2} f_{0}= & f_{2}-(1+q) f_{1}+q f_{0}=\left(\frac{[2]}{[n]^{2} \psi_{n}(0)}\right)^{3}-(1+q)\left(\frac{1}{[n]^{2} \psi_{n}(0)}\right)^{3} \\
\triangle_{q}^{3} f_{0}= & f_{3}-\left(1+q+q^{2}\right) f_{2}+\left(q+q^{2}+q^{3}\right) f_{1}-q^{3} f_{0} \\
= & \left(\frac{[3]}{[n]^{2} \psi_{n}(0)}\right)^{3}-\left(1+q+q^{2}\right)\left(\frac{[2]}{[n]^{2} \psi_{n}(0)}\right)^{3} \\
& +\left(q+q^{2}+q^{3}\right)\left(\frac{1}{[n]^{2} \psi_{n}(0)}\right)^{3}
\end{aligned}
$$

By using Theorem 2, we can write:

$$
\begin{aligned}
L_{n}\left(t^{3} ; q ; x\right)= & \triangle_{q}^{0} f_{0}+\triangle_{q}^{1} f_{0} \frac{[n]}{[1]!} q \alpha_{n} \psi_{n}(0) K_{n+m,-1}^{q}\left(0,0, \alpha_{n} \psi_{n}(0)\right) x+ \\
& +\triangle_{q}^{2} f_{0} \frac{[n][n+m]}{[2]!}\left(q \alpha_{n} \psi_{n}(0)\right)^{2} K_{n+2 m,-2}^{q}\left(0,0, \alpha_{n} \psi_{n}(0)\right) x^{2}+ \\
& +\triangle_{q}^{3} f_{0} \frac{[n][n+m][n+2 m]}{[3]!}\left(q \alpha_{n} \psi_{n}(0)\right)^{3} K_{n+3 m,-3}^{q}\left(0,0, \alpha_{n} \psi_{n}(0)\right) x^{3} .
\end{aligned}
$$

Taking into account condition (vi), by a straightforward calculation, we obtain equality (12).

We now prove (13). For $s=4$, we have:

$$
\begin{aligned}
\triangle_{q}^{0} f_{0}= & f_{0}=0 \\
\triangle_{q}^{1} f_{0}= & f_{1}-f_{0}=\left(\frac{1}{[n]^{2} \psi_{n}(0)}\right)^{4} \\
\triangle_{q}^{2} f_{0}= & f_{2}-(1+q) f_{1}+q f_{0}=\left(\frac{[2]}{[n]^{2} \psi_{n}(0)}\right)^{4}-(1+q)\left(\frac{1}{[n]^{2} \psi_{n}(0)}\right)^{4} \\
\triangle_{q}^{3} f_{0}= & f_{3}-\left(1+q+q^{2}\right) f_{2}+\left(q+q^{2}+q^{3}\right) f_{1}-q^{3} f_{0} \\
= & \left(\frac{[3]}{[n]^{2} \psi_{n}(0)}\right)^{4}-\left(1+q+q^{2}\right)\left(\frac{[2]}{[n]^{2} \psi_{n}(0)}\right)^{4}+ \\
& +\left(q+q^{2}+q^{3}\right)\left(\frac{1}{[n]^{2} \psi_{n}(0)}\right)^{4} \\
\Delta_{q}^{4} f_{0}= & f_{4}-\left(1+q+q^{2}+q^{3}\right) f_{3}+\left(q+q^{2}+2 q^{3}+q^{4}+q^{5}\right) f_{2} \\
& -\left(q^{3}+q^{4}+q^{5}+q^{6}\right) f_{1}+q^{6} f_{0} \\
= & \left(\frac{[4]}{[n]^{2} \psi_{n}(0)}\right)^{4}-\left(1+q+q^{2}+q^{3}\right)\left(\frac{[3]}{[n]^{2} \psi_{n}(0)}\right)^{4} \\
& +\left(q+q^{2}+2 q^{3}+q^{4}+q^{5}\right)\left(\frac{[2]}{[n]^{2} \psi_{n}(0)}\right)^{4}-\left(q^{3}+q^{4}+q^{5}+q^{6}\right)\left(\frac{1}{[n]^{2} \psi_{n}(0)}\right)^{4}
\end{aligned}
$$

Thus applying again Theorem 2 and using condition (vi), proceeding similarly, we get (13).

## 3. Weighted approximation

This section is devoted to obtaining weighted approximation properties of the $q$ -Ibragimov-Gadjiev operators. Note that we will use a weighted Korovkin type theorem proved by Gadjiev [7]. When considering that theorem we should mention some notations: Let $\rho(x)=1+x^{2}$ be a weight function and $B_{\rho}[0, \infty)$ the set of all functions $f$ defined on the semi-axis $[0, \infty)$ satisfying the condition $|f(x)| \leq M_{f} \rho(x)$, where $M_{f}$ is a constant depending only on $f . C_{\rho}[0, \infty)$ denotes the subspace of all continuous functions belonging to $B_{\rho}[0, \infty)$ and $C_{\rho}^{k}[0, \infty)$ denotes the subspace of
all functions $f \in C_{\rho}[0, \infty)$ with $\lim _{|x| \rightarrow \infty} \frac{f(x)}{\rho(x)}=k_{f}<\infty$. Obviously $C_{\rho}^{k}[0, \infty)$ is a linear normed space with the $\rho$-norm:

$$
\|f\|_{\rho}=\sup _{x \in\left[0, b_{n}\right)} \frac{|f(x)|}{\rho(x)}
$$

where $\left\{b_{n}\right\}$ is a sequence of positive numbers, which has a finite or an infinite limit.
Theorem 4 (see [7]). Let $\left\{T_{n}\right\}$ be a sequence of linear positive operators which are mappings from $C_{\rho}$ into $B_{\rho}$ satisfying the conditions:

$$
\lim _{n \rightarrow \infty}\left\|T_{n}\left(t^{k} ; x\right)-x^{k}\right\|_{\rho}=0, \quad k=0,1,2
$$

Then, for any function $f \in C_{\rho}^{k}$,

$$
\lim _{n \rightarrow \infty}\left\|T_{n} f-f\right\|_{\rho}=0
$$

In order to study convergence properties of operators (5) into the weighted approximation fields we consider the following modified form of the $q$-IbragimovGadjiev operators.

Let $\left\{b_{n}\right\}$ be a sequence of positive numbers, which has a finite or an infinite limit and $\left\{\psi_{n}(t)\right\}$ be a sequence of functions in $C\left[0, b_{n}\right]$ such that $\psi_{n}(t)>0$ for each $t \in\left[0, b_{n}\right]$, satisfying the condition:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{[n]^{2} \psi_{n}(0)}=0 \tag{14}
\end{equation*}
$$

Also, let $\left\{\alpha_{n}\right\}$ be a sequence of positive real numbers such that

$$
\begin{equation*}
\frac{\alpha_{n}}{[n]}=1+O\left(\frac{1}{[n]^{2} \psi_{n}(0)}\right) \tag{15}
\end{equation*}
$$

Now, assume that a function $K_{n, \nu}^{q}(x, t, u)\left(x, t \in\left[0, b_{n}\right],-\infty<u<\infty\right)$ depending on the three parameters $n, \nu$ and $q$ satisfies the following conditions:
$\left(i^{o}\right)$ The function $K_{n, \nu}^{q}(x, t, u)$ is infinitely $q$-differentiable with respect to $u$ for fixed $x, t \in\left[0, b_{n}\right]$,
( $i i^{o}$ ) For any $x \in\left[0, b_{n}\right]$ and for all $n \in \mathbb{N}$,

$$
\begin{gathered}
\sum_{\nu=0}^{\infty} q^{\frac{\nu(\nu-1)}{2}}\left[\left.D_{q, u}^{\nu} K_{n, \nu}^{q}(x, t, u)\right|_{\substack{u=\alpha_{n} \psi_{n}(t) \\
t=0}}\right] \frac{\left(-q \alpha_{n} \psi_{n}(0)\right)^{\nu}}{[\nu]!}=1, \\
\left(i i i^{o}\right)\left\{\left.(-1)^{\nu} D_{q, u}^{\nu} K_{n, \nu}^{q}(x, t, u)\right|_{\substack{u=\alpha_{n} \psi_{n}(t) \\
t=0}}\right\} \geq 0\left(\nu, n=1,2, \ldots, x \in\left[0, b_{n}\right]\right), \\
\left.\left(i v^{o}\right) D_{q, u}^{\nu} K_{n, \nu}^{q}(x, t, u)\right|_{\substack{u=\alpha_{n} \psi_{n}(t) \\
t=0}}=-[n] x q^{1-\nu}\left[\left.D_{q, u}^{\nu-1} K_{n+m, \nu-1}^{q}(x, t, u)\right|_{u=\alpha_{n} \psi_{n}(t)} ^{t=0}\right] \\
\\
\\
\left(\nu, n=1,2, \ldots, x \in\left[0, b_{n}\right]\right), \text { where } m \text { is a number such that } m+n \text { is zero or a } \\
\end{gathered}
$$

Under above conditions we call operators (5) $L_{n}^{*}(f ; q ;$.$) . It is clear that L_{n}^{*}(f ; q ;$. holds for the equalities in Lemma 1 . In the case $\lim _{n \rightarrow \infty} b_{n}=A$ and $\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{[n]}=1$ we obtain $q$-İbragimov-Gadjiev operators defined by (5).
Theorem 5. Let $q=q_{n}, 0<q_{n}<1$, satisfy the condition $\left(q_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$. Then for each function $f \in C_{\rho}^{k}[0, \infty)$,

$$
\lim _{n \rightarrow \infty}\left\|L_{n}^{*}(f ; q ; .)-f\right\|_{\rho,\left[0, b_{n}\right]}=0
$$

Proof. Making use of the Korovkin type theorem on weighted approximation, it is sufficient to verify the following three conditions:

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|L_{n}^{*}\left(t^{k} ; q ; x\right)-x^{k}\right\|_{\rho}=0, k=0,1,2 \tag{16}
\end{equation*}
$$

From equality (9) clearly $\left\|L_{n}\left(1, q_{n}, x\right)-1\right\|_{\rho} \rightarrow 0$ as $n \rightarrow \infty$ on $\left[0, b_{n}\right]$. From equalities (10) and (14) we have:

$$
\begin{aligned}
\sup _{x \in\left[0, b_{n}\right)} \frac{\left|L_{n}^{*}(t ; q ; x)-x\right|}{1+x^{2}} & \leq\left|\frac{q \alpha_{n}}{[n]}-1\right| \sup _{x \in\left[0, b_{n}\right)} \frac{x}{1+x^{2}} \\
& \leq\left|\frac{q \alpha_{n}}{[n]}-1\right|
\end{aligned}
$$

hence the condition in (16) holds for $k=1$.
Similarly, using equality (11) for $k=2$ we can write:

$$
\begin{aligned}
\sup _{x \in\left[0, b_{n}\right)} \frac{\left|L_{n}^{*}\left(t^{2} ; q ; x\right)-x^{2}\right|}{1+x^{2}} \leq & \left|\left(\frac{q \alpha_{n}}{[n]}\right)^{2} \frac{q[n+m]}{[n]}-1\right| \sup _{x \in\left[0, b_{n}\right)} \frac{x^{2}}{1+x^{2}} \\
& +\frac{q \alpha_{n}}{[n]} \frac{1}{[n]^{2} \psi_{n}(0)} \sup _{x \in\left[0, b_{n}\right)} \frac{x}{1+x^{2}} \\
& \leq\left|\left(\frac{q \alpha_{n}}{[n]}\right)^{2} \frac{q[n+m]}{[n]}-1\right|+\frac{q \alpha_{n}}{[n]} \frac{1}{[n]^{2} \psi_{n}(0)},
\end{aligned}
$$

which implies that (16) also holds for $k=2$. Therefore, the desired result follows from Theorem 4.

Now, we will give an estimate concerning the rate of convergence for the $q$ -Ibragimov-Gadjiev operators. As known, the first modulus of continuity $\omega(f ; \delta)$ does not tend to zero as $\delta \rightarrow 0$ on the infinite interval. For this reason, we consider

$$
\Omega(f ; \delta)=\sup _{|h| \leq \delta, x \geq 0} \frac{|f(x+h)-f(x)|}{\left(1+h^{2}\right)\left(1+x^{2}\right)}
$$

a weighted modulus of smoothness associated to the space $C_{\rho}^{k}[0, \infty)$.
$\Omega(f ; \delta)$ possesses the following properties (see [12]):

- $\Omega(f ; \delta)$ is a monotonically increasing function of $\delta, \delta \geq 0$,
- for every $f \in C_{\rho}^{k}[0, \infty), \lim _{\delta \rightarrow 0} \Omega(f ; \delta)=0$,
- for each positive value of $\lambda$

$$
\begin{equation*}
\Omega(f ; \lambda \delta) \leq 2(1+\lambda)\left(1+\delta^{2}\right) \Omega(f ; \delta) \tag{17}
\end{equation*}
$$

From inequality (17) and the definition of $\Omega(f ; \delta)$ we get

$$
\begin{equation*}
|f(t)-f(x)| \leq 2\left(1+\frac{|t-x|}{\delta}\right)\left(1+\delta^{2}\right) \Omega(f ; \delta)\left(1+x^{2}\right)\left(1+(t-x)^{2}\right) \tag{18}
\end{equation*}
$$

for every $f \in C_{\rho}^{k}[0, \infty)$ and $x, t \in[0, \infty)$.

Theorem 6. Let $q=q_{n}, 0<q_{n}<1$ satisfies the condition $q_{n} \rightarrow 1$ as $n \rightarrow \infty$. If $f \in C_{\rho}^{k}[0, \infty)$, then the inequality

$$
\sup _{x \geq 0} \frac{\left|L_{n}^{*}(f ; q ; x)-f(x)\right|}{\left(1+x^{2}\right)^{3}} \leq M \Omega\left(f ;\left([n]^{2} \psi_{n}(0)\right)^{-1 / 2}\right)
$$

is satisfied for a sufficiently large $n$, where $M$ is a constant independent of $\alpha_{n}$, $\psi_{n}(0)$.

Proof. From (18) we can write:

$$
\begin{aligned}
\left|L_{n}^{*}(f ; q ; x)-f(x)\right| \leq & 2\left(1+\delta_{n}^{2}\right) \Omega\left(f ; \delta_{n}\right)\left(1+x^{2}\right) \sum_{\nu=0}^{\infty} P_{\nu, n}^{q}(x) \\
& \times\left(1+\frac{\left|\frac{[\nu]}{[n]^{2} \psi_{n}(0)}-x\right|}{\delta_{n}}\right)\left(1+\left(\frac{[\nu]}{[n]^{2} \psi_{n}(0)}-x\right)^{2}\right) \\
\leq & 4\left(1+x^{2}\right) \Omega\left(f ; \delta_{n}\right)\left\{1+\frac{1}{\delta_{n}} \sum_{\nu=0}^{\infty}\left|\frac{[\nu]}{[n]^{2} \psi_{n}(0)}-x\right| P_{\nu, n}^{q}(x)\right. \\
& +\sum_{\nu=0}^{\infty}\left(\frac{[\nu]}{[n]^{2} \psi_{n}(0)}-x\right)^{2} P_{\nu, n}^{q}(x) \\
& \left.+\frac{1}{\delta_{n}} \sum_{\nu=0}^{\infty}\left|\frac{[\nu]}{[n]^{2} \psi_{n}(0)}-x\right|\left(\frac{[\nu]}{[n]^{2} \psi_{n}(0)}-x\right)^{2} P_{\nu, n}^{q}(x)\right\}
\end{aligned}
$$

where $P_{\nu, n}^{q}(x)=q^{\frac{\nu(\nu-1)}{2}}\left[\left.D_{q, u}^{\nu} K_{n, \nu}^{q}(x, t, u)\right|_{\substack{u=\alpha_{n} \psi_{n}(t) \\ t=0}}\right] \frac{\left(-q \alpha_{n} \psi_{n}(0)\right)^{\nu}}{[\nu]!}$ and $\delta_{n}>0$. Applying the Cauchy-Schwarz inequality we obtain

$$
\begin{equation*}
\left|L_{n}^{*}(f ; q ; x)-f(x)\right| \leq 4\left(1+x^{2}\right) \Omega\left(f ; \delta_{n}\right)\left(1+\frac{2}{\delta_{n}} \sqrt{K_{1}}+K_{1}+\frac{1}{\delta_{n}} K_{2}\right) \tag{19}
\end{equation*}
$$

where

$$
\begin{aligned}
K_{1} & =\sum_{\nu=0}^{\infty}\left(\frac{[\nu]}{[n]^{2} \psi_{n}(0)}-x\right)^{2} P_{\nu, n}^{q}(x) \\
K_{2} & =\sum_{\nu=0}^{\infty}\left(\frac{[\nu]}{[n]^{2} \psi_{n}(0)}-x\right)^{4} P_{\nu, n}^{q}(x)
\end{aligned}
$$

Using Lemma 1, we have

$$
\begin{aligned}
K_{1} & =L_{n}^{*}\left((t-x)^{2} ; q ; x\right) \\
& =\left(1-2 q\left(\frac{\alpha_{n}}{[n]}\right)+\left(\frac{\alpha_{n}}{[n]}\right)^{2} \frac{q^{3}[n+m]}{[n]}\right) x^{2}+q\left(\frac{\alpha_{n}}{[n]}\right) \frac{1}{[n]^{2} \psi_{n}(0)} x
\end{aligned}
$$

and

$$
\begin{aligned}
K_{2}= & L_{n}^{*}\left((t-x)^{4} ; q ; x\right) \\
= & \left(\left(\frac{\alpha_{n}}{[n]}\right)^{4} \frac{q^{10}[n+m][n+2 m][n+3 m]}{[n]^{3}}-4\left(\frac{\alpha_{n}}{[n]}\right)^{3} \frac{q^{6}[n+m][n+2 m]}{[n]^{2}}\right. \\
& \left.+6\left(\frac{\alpha_{n}}{[n]}\right)^{2} \frac{q^{3}[n+m]}{[n]}-4 q\left(\frac{\alpha_{n}}{[n]}\right)+1\right) x^{4} \\
& +\left(\left(\frac{\alpha_{n}}{[n]}\right)^{3} \frac{\left(q^{8}+2 q^{7}+3 q^{6}\right)[n+m][n+2 m]}{[n]^{2}} \frac{1}{[n]^{2} \psi_{n}(0)}\right. \\
& \left.-4\left(\frac{\alpha_{n}}{[n]}\right)^{2} \frac{\left(q^{4}+2 q^{3}\right)[n+m]}{[n]} \frac{1}{[n]^{2} \psi_{n}(0)}+6 q\left(\frac{\alpha_{n}}{[n]}\right) \frac{1}{[n]^{2} \psi_{n}(0)}\right) x^{3} \\
& +\left(\left(\frac{\alpha_{n}}{[n]}\right)^{2} \frac{\left(q^{5}+3 q^{4}+3 q^{3}\right)[n+m]}{[n]} \frac{1}{\left([n]^{2} \psi_{n}(0)\right)^{2}}-4 q\left(\frac{\alpha_{n}}{[n]}\right) \frac{1}{\left([n]^{2} \psi_{n}(0)\right)^{2}}\right) x^{2} \\
& +q\left(\frac{\alpha_{n}}{[n]}\right)^{2} \frac{1}{\left([n]^{2} \psi_{n}(0)\right)^{3}} x .
\end{aligned}
$$

Using condition (15) we can write

$$
K_{1}=O\left(\frac{1}{[n]^{2} \psi_{n}(0)}\right)\left(x^{2}+x\right)
$$

and

$$
K_{2}=O\left(\frac{1}{[n]^{2} \psi_{n}(0)}\right)\left(x^{4}+x^{3}+x^{2}+x\right)
$$

thus by substituting these equalities (19) becomes

$$
\begin{aligned}
\left|L_{n}^{*}(f ; q ; x)-f(x)\right| \leq & 4\left(1+x^{2}\right) \Omega\left(f ; \delta_{n}\right)\left\{1+\frac{2}{\delta_{n}} \sqrt{O\left(\frac{1}{[n]^{2} \psi_{n}(0)}\right)\left(x^{2}+x\right)}+\right. \\
& \left.+O\left(\frac{1}{[n]^{2} \psi_{n}(0)}\right)\left(x^{2}+x\right)+\frac{1}{\delta_{n}} O\left(\frac{1}{[n]^{2} \psi_{n}(0)}\right)\left(x^{4}+x^{3}+x^{2}+x\right)\right\}
\end{aligned}
$$

By choosing $\delta_{n}=\left([n]^{2} \psi_{n}(0)\right)^{-1 / 2}$, for sufficiently large $n$ 's, we obtain the desired result.

Remark 2. It will be noted that, for $q=1$, this is the result obtained by Gadjiev and Ispir [8] for Ibragimov-Gadjiev operators defined by (1).

## Acknowledgement

The authors would like to thank the referees for their helpful suggestions.

## References

[1] T. AcAR, Rate of convegence for Ibragimov-Gadjiev-Durrmeyer operators, Demonstr. Math. 50(2017), 119-129;
[2] A. Altin, O. Dogru, Direct and inverse estimations for a generalization of positive linear operators, WSEAS Trans. on Math. 3(2004), 602-606.
[3] A. Aral, T. Acar, On approximation properties of generalized Durrmeyer operators, in: Modern Mathematical Methods and High Performance Computing in Science and Technology, (V.K. Singh, H. M. Srivastava, E. Venturino, M. Resch, V. Gupta, Eds.), Springer, 2016, 1-15.
[4] A. Aral, Approximation by Ibragimov-Gadjiev operators in polynomial weighted space, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 19(2003), 35-44.
[5] A. Aral, A generalization of Szász-Mirakyan operators based on q-integers, Math. Comput. Modelling 47(2008), 1052-1062.
[6] T. Ernst, The History of Q-calculus and a New Method. Department of Mathematics, Uppsala University, Sweden, 2000.
[7] A. D. Gadjiev, On Korovkin type theorems, Math. Zametki 20(1976), 781-786 (in Russian).
[8] A. D. Gadjiev, N. Ispir, On a sequence of linear positive operators in weighted space, Proc. Inst. Math. Mech. Acad. Sci. Azerb. 11(1999), 45-56.
[9] S. Herdem, I. Büyükyazici, Ibragimov-Gadjiev operators based on q-integers, Adv. Difference Equ. (2008), Article No. 304, 10 pp.
[10] I. I. Ibragimov, A. D. Gadjiev, On a sequence of linear positive operators, Soviet Math. Dokl. 11(1970), 1092-1095.
[11] N. Ispir, A. Aral, O. Dogru, On Kantorovich process of a sequence of the generalized linear positive operators, Numer Funct. Anal. Optim. 29(2008), 574-589.
[12] N. Ispir, On modified Baskakov operators on weighted spaces, Turk. J. Math. 26(2001), 355-365.
[13] V. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002.
[14] H. Karsli, V. Gupta, Some approximation properties of $q$-Chlodowsky operators, Appl. Math. Comput. 195(2008), 220-229.
[15] G. M. Phillips, Bernstein polynomials based on the $q$ - integers, Annals of Numerical Mathematics 4(1997), 511-518.
[16] G. M. Phillips, Interpolation and approximation by polynomials, CMS Books in Mathematics, Vol. 14, Springer, Berlin, 2003.


[^0]:    *Corresponding author. Email addresses: skaya@pirireis.edu.tr (S.Herdem), ibuyukyazici@gmail.com (İ. Büyükyazıcı)
    http://www.mathos.hr/mc
    (C) 2020 Department of Mathematics, University of Osijek

