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Abstract: The purpose of this study was to assess the effects of transverse friction massage (TFM) on
the electromechanical delay components and complexity of the surface electromechanical activity
in the rectus femoris (RF) and vastus medialis (VM) muscles and to identify possible mechanisms
behind TFM-induced alterations in the dynamics of RF and VM activity. Seven female and five
male healthy subjects participated in this study. The subjects generated five maximal voluntary
isometric contractions (MVICs) consecutively before and after TFM. Meanwhile, electromyography
(EMG), mechanomyography (MMG), and force were recorded. The onset times of the recorded
signals were detected offline by setting the threshold to three times the SD of the baseline. The
delays between EMG and MMG (∆t(EMG–MMG)), MMG and force (∆t(MMG–Force)), and EMG
and force (∆t(EMG–Force)) were computed from the detected onsets. The fractal dimension (FD)
of the EMG time series was computed using the correlation dimension method. TFM increased
∆t(MMG–Force) and ∆t(EMG–Force) significantly in the RF but decreased ∆t(EMG–MMG) and
increased ∆t(MMG–Force) in the VM. TFM decreased the FD in the RF and increased it in the VM.
The results imply that TFM decreased the stiffness of both the RF and VM and decreased the duration
of the electrochemical processes in the VM. It is proposed that the decrease in EMG complexity in
the RF may be associated with the decreased stiffness of the RF, and the increase in EMG complexity
in the VM may be associated with the decreased electrochemical processes in this muscle. It is
also suggested that the opposite changes in EMG complexity in the RF and VM can be used as a
discriminating parameter to search for the effects of an intervention in the quadriceps muscles. The
present study also demonstrates how to discriminate the nonlinear dynamics of a complex muscle
system from a noisy time series.

Keywords: transverse friction massage; electromyography; mechanomyography; correlation
dimension; complexity; electromechanical delay; rectus femoris; vastus medialis

1. Introduction

Massage has been widely used by physical therapists to increase the joint range of mo-
tion and to decrease muscle stiffness in many orthopedic disorders such as patellofemoral
pain, degenerative knee joints, and low back pain syndrome [1,2]. Massage has also been
used in sports as part of a warm-up in order to stretch tendons and connective tissues,
increase joint range of motion (ROM), reduce pain, and prevent injuries [3–6]. There are a
number of studies that have been performed to identify the mechanisms behind the effects
of massage on the musculoskeletal system. It has been proposed that massage produces
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its effects by decreasing the activity of Ia fibers due to the lengthened muscle–tendon unit,
reducing the excitability of the motoneuron pool through Golgi tendon organs [7–9] and
increasing passive muscle compliance through elongated connective tissue [10]. On the
other hand, there are studies suggesting that massage introduces its effects by improving
stretch tolerance rather than decreasing spinal motor neuron excitability [11]. Also, there
are studies reporting that deep soft-tissue massage did not produce any effects on the me-
chanical properties of calf and ankle angular excursion [12], and that post-exercise massage
had no effects on the stiffness of the quadriceps, hamstring and calf muscles [13]. As can be
seen, diverse effects have been reported in different studies, and there is no agreement on
the mechanisms behind the effects of massage.

Furthermore, in general, the Hoffman reflex (H-reflex) mechanism, changes in EMG
parameters, and torque have been examined to identify the mechanisms behind the ef-
fects of massage [7,9,14,15]. Recently, Eriksson Crommert et al. [16] performed stiffness
measurements by using ultrasound shear-wave elastography in the medial gastrocnemius
muscle in order to identify whether the massage-induced increase in ROM is related to
inhibition of the activity of the motor neuron pool or to stretch tolerance. They found that
a 7 min massage decreased the stiffness of the medial gastrocnemius muscle. The elec-
tromechanical delay (EMD) analysis method has also been used to search for the role of the
electrochemical- and biomechanical-related processes behind the effects of massage. It was
found that the transverse friction massage (TFM) of the plantar flexors musculotendinous
junction (MTJ) decreased the H-reflex/M-wave ratio in the soleus muscle without a change
in the EMD [9]. Also, it was observed that deep TFM applied on the hamstring muscle did
not affect the EMD and peak torque in the quadriceps muscles [17]. On the other hand,
there are studies demonstrating that the electrochemical and biomechanical components
of the EMD were altered with TFM in the rectus femoris muscle [8] or with pressure on
the biceps brachii myotendinous junction [18]. As can be seen, there are contradictory
observations on the effect of massage on this issue as well. Therefore, further studies are
needed to determine the role of the electrochemical and biomechanical processes behind
the massage-induced changes in the dynamics of the musculoskeletal system.

The fractal dimension (FD) of a signal is a quantitative value that implies the structure
of the processes generating the signal and indicates the degree of freedom, i.e., the com-
plexity of the system. Thus, the FD is used as a parameter to examine how complex the
mechanism behind the generation of various physiological signals is. The characteristics
of the electrical activity of muscles (electromyography, EMG) depend on the membrane
properties of muscle fibers and the timing of motor unit action potentials (MUAPs). There-
fore, surface EMG carries information about both the peripheral and central properties
of the neuromuscular system. Numerous studies have shown that EMG recorded on the
surface of the body has nonlinear properties [19–23]. The FD of an EMG signal changes
depending on the firing frequency of motor neurons, the recruitment of motor units (MUs),
and the conduction of MUAPs along muscle fibers and over tissues, as well as the form of
each action potential of the muscle. Also, the FD of an EMG signal changes depending on
the type of contraction, the task that the muscle performs and whether there is a disorder
in the musculoskeletal system [24–27]. Therefore, FD analysis methods are frequently
used in addition to time-domain analysis methods to identify how the dynamics of the
musculotendon system change following an intervention, to understand the role of central
and muscle-related mechanisms behind these changes and to examine whether the FD
could be used as a discriminating parameter [28–33].

Therefore, the main purpose of the study was to identify the effects of TFM on the
dynamics of the rectus femoris (RF) and vastus medialis (VM) muscles by means of the
electromechanical delay and fractal dimension analysis methods. Specifically, this study
focused on the following: (i) how TFM affects the processes related to the electromechanical
delay components in the RF and VM; (ii) whether TFM alters the FD of EMG signals in the
RF and VM; and (iii) the possible mechanisms behind the changes in the dynamics of the RF
and VM muscles. The FD of EMG signals was tested by means of the correlation dimension
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method. The correlation dimension method allows researchers to examine the complexity
of the attractor of the nonlinear system (EMG signal) as well as the source of the noise
influencing the EMG measurement. To our knowledge, this is the only study that examines
the effects of TFM on the FD of EMG signals in the RF and VM muscles and evaluates the
results obtained from EMD and FD analysis to understand how the complexity of the RF
and VM changes with TFM.

2. Materials and Methods

The present study was part of a research project exploring the effects of stretching and
TFM on the EMD components and FD of EMG signals in the RF and VM muscles. The
results of the study showed that, in the control group, a resting period of 20–30 min did
not significantly alter the EMD components and FD values. The results obtained from the
stretching and control groups have already been published [31,34,35]. However, the results
on the effects of TFM on the RF and VM have not been previously published.

2.1. Subjects

Seven female and five male healthy volunteers participated in this study. The de-
scriptive characteristics of the subjects are as follows: age, 25.1 ± 4.8 years; weight,
61.7 ± 6.5 kg; height, 1.69 ± 0.05 m; body mass index (BMI), 21.6 ± 1.8. All subjects
had no neurological or knee problems and had not been involved in regular sports activity.
The experimental procedure and the purpose of this study were explained to the subjects
before the experiments.

2.2. Experimental Setup

The experimental setup and recording technique used in the present study were
previously presented in detail [34,35]. All recordings were performed on the subject’s
dominant leg. Initially, the skin was shaved and cleaned with ethyl alcohol to decrease the
skin impedance to below 2 KΩ. A pair of surface electrodes (Ag/AgCl) with a distance
of 2 cm between the centers was placed over the RF, at a distance of 50% between the
anterior spina iliaca superior and the superior pole of the patella [34,35]. For the VM
muscle, electrodes were placed at 80% of the line between the anterior spina iliaca superior
and the joint space in front of the anterior border of the medial ligament [34,35]. A ground
electrode was placed over the lateral line of the knee joint. Accelerometers (ADXL335-
Small, Low-power, 3-Axis ± 3 g Accelerometer) were placed between the EMG electrodes
to record MMG signals. The X-axis of the accelerometers was parallel to the fiber direction.
EMG signals were amplified initially by 1000 times and then filtered with a bandwidth of
10–500 Hz. MMG signals were amplified by 200 times and then filtered with a bandwidth
of 5–100 Hz [34,35].

The quadriceps force was recorded using a linearly operating load cell (CAS-500 N,
between 0 and 250 N). The load cell was attached to the custom-made apparatus where
subjects were seated, as described in detail previously [35]. The force signal was filtered
with a low-pass filter (fc = 100 Hz).

A 16-bit USB-1608G data acquisition card (Measurement Computing, DAQ) was used
to digitize the EMG, MMG, and force signals. The sampling frequency was adjusted to
5 KHz. The data were stored on a personal computer via a custom-written program in
Matlab (R2014b).

2.3. Experimental Procedure

Subjects were seated on a specially constructed apparatus with their dominant leg
at a 15◦ flexion knee angle, as described previously [34,35]. All familiarization sessions
and experiments were conducted on the same day. Initially, each subject performed
a familiarization session to become accustomed to the experimental procedure. In the
experiments, first, the subjects were requested to perform 5 maximal voluntary isometric
contractions (MVICs) consecutively as fast as possible, with each contraction lasting 5 s
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with a resting period of 10 s in between (pre-massage data). Afterwards, the subjects
were subjected to transverse friction massage therapy. Thereafter, the subjects repeated
the same experimental procedure as in the first series of experiments (post-massage data).
Verbal encouragement was given to the subjects during the experiments to generate MVICs
as quickly as possible. Visual feedback of the EMG, MMG, and force signals was also
displayed on a screen to enable the subjects to control their contractions and resting period.

2.4. Transverse Friction Massage Therapy

Initially, a 20 min transverse friction massage was applied directly on the quadriceps
tendon. Thereafter, 5 min patellar mobilization was applied in both the supero-inferior and
medio-lateral directions.

2.5. Signal Processing
2.5.1. Time Delays

All EMG, MMG, and force data were real time series, digitized at 5 KHz. Two level
conditions were used to determine the onset times of EMG, MMG, and force; one condition
was the amplitude threshold, and the other was the time threshold. Initially, the band-pass
filtered EMG signal was full-wave rectified. Following that, the standard deviations (SDs)
of the baselines of each signal were calculated for a window of 200 ms. Three times the SD
of the baseline was set as the amplitude threshold value for each signal [18,34]. The onset
of a signal was computed as the point that the signal passed the amplitude threshold level
of that signal the first time and remained above that level for at least 2 ms (time threshold).
The time delay between EMG and MMG (∆t(EMG–MMG)) was calculated by subtracting
the onset of EMG from the onset of MMG. Similarly, the time delay between MMG and
force (∆t(MMG–Force)) was calculated by taking the difference between the onsets of MMG
and force, and the time delay between EMG and force (∆t(EMG–Force)) was obtained
by taking the difference between the onsets of EMG and force [18,34]. Time delays were
computed for each contraction.

2.5.2. Root Mean Square

The root mean square (RMS) value was computed using Equation (1) to determine
the amplitude of the EMG signals. The RMS value was computed over 10,000 data points,
starting 500 ms after the onset of EMG. Fractal dimension analysis was also conducted on
this EMG data region.

RMS =

√√√√√√ 1
N

N

∑
i=1

(xi)
2 (1)

2.5.3. Correlation Dimension

The correlation dimension method was used in the present study to find the fractal
dimension of the EMG time series. Some examples of the application of the correlation
dimension method to EMG are presented in [19,23,25,27].

Computation of the correlation dimension is based on the implementation of a correla-
tion integral. The correlation integral is defined as [36]

C(r) =
1

N(N − 1)

N

∑
i=1

N

∑
j=1

Θ(r− |Xi− Xj|) (i 6= j) (2)

where Θ is the Heaviside step function with Θ(x) = 1 if x > 0 and 0 if x ≤ 0; Xi is the state
vector of point i; Xj is the state vector of point j; N is the number of constructed state vectors
in the m dimension. The correlation integral describes the spatial correlation between the
points on the attractor and returns a quantitative value concerning the number of pairs
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of points on the attractor where the distance between the pairs is less than a chosen r
value [36–38].

Grassberger and Procaccia [36] proposed that the correlation integral is a function of
the distance with a power law for small r values and defined the relationship as C(r) ~ rν,
where ν is the dimension of the attractor. Thus, the correlation dimension is computed as
the slope of the log(C(r)) vs. log(r) curve for small distances [36–38]. However, the method
itself has some systematic errors because of the deviation of the curve from a straight line
at very small distances and the presence of a few points in this region. To manage the
systematic error, Grassberger and Procaccia [37] proposed to carry out the computation for
increasing m values until a constant slope of the curve can be obtained. The constant slope
is considered as the correlation dimension of the system.

The correlation dimension computation of the present study was implemented in
accordance with the Grassberger and Procaccia [36] procedure by using a custom-written
program coded in Matlab (R2014b). The procedure of the calculation was reported in detail
previously [31,35]. Initially, state vectors (Xi) were constructed from the EMG time series
data (xi, where i = 1. . .n) according to Takens’ theorem (Equation (3)) [39]:

Xi = {xi, xi+τ . . .xi+(m−1)τ} (3)

where m is the embedding dimension and τ is the time delay. Following that, the correlation
integral was computed for embedding dimensions between 4 and 14 using Equation (2).
The correlation integral was calculated over 10,000 data points, starting 500 ms after the
onset of the EMG signal. The time delay (τ) was calculated using the autocorrelation
function as the first crossing point on the time axis.

Since EMG is a noisy signal, special care should be taken when determining the
correlation dimension using the correlation integral curve (log(C(r)) vs. log(r) curve). For
a noisy signal, the correlation integral curve is bounded below by the noise level [40]. It
is proposed to use the middle third of the log(r) range to detect the region (true scaling
region) that represents the actual dimension of the system attractor [40]. However, this
might still cause misleading results because of the overlap of noise and the true dynamics
of the attractor. In our study, the correlation integral curves had three distinct slope regions.
Therefore, to extract the true dimension of the nonlinear behavior of the system, the slopes
for the small- and middle-distance regions were calculated using the least squares linear
regression method, and the variation in the slope with the embedding dimension was
identified in each region.

Computation of Slope

The slopes of the correlation integral curve for the small- and middle-distance regions
were obtained by computing the best-fitting line for the data using a least squares linear
model. Initially, a linear range in the small-distance or middle-distance region was chosen
on the correlation integral curve, and the data were arranged accordingly.

X1 = log(rL)log(rL+1) . . . log(rH); independent value
Y1 = log(C(rL))log

(
C(r L+1

)
) . . . log(C(rH)); dependent value

where rL is the lower limit of the range, rH is the upper limit of the range, and N1 is the
number of data between rH and rL.

The slope (b1) and intercept (b0) of the best-fitting line were determined using least
squares estimation equations as [41]

b0 = Y1− b1X1 (4)
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b1 =
∑N1

i=1
(
X1i − X1

)(
Y1i −Y1

)
∑N1

i=1(X1i−X1
)2 =

∑rh
i=rl X1iY1i −

(∑N1
i=1 Y1i)(∑N1

i=1 X1i)
N1

∑N1
i=1 X12

i −
(∑N1

i=1 X1i)
2

N1

(5)

where Y1 = 1
N1 ∑N1

i=1 Y1i and X1 = 1
N1 ∑N1

i=1 X1i.
If Y2 is the equation of the best-fitting line with Y2 = b0 + b1X1, then the residual sum

of squares is

RSS(b0, b1) =

N1

∑
i=1

(Y1i −Y2i)
2 (6)

The coefficient of determination R2 is

R2 =
N1∑N1

i=1 X1iY1i −∑N1
i=1 X1i∑N1

i=1 Y1i√[
N1∑N1

i=1 X12
i −

(
∑N1

i=1 X1i

)2
][

N1∑N1
i=1 Y12

i −
(

∑N1
i=1 Y1i

)2
] (7)

In the present study, the slope, intercept, and coefficient of determination (R2) were
computed using a program written in Matlab (R2014b) Toolbox codes. The computation
was performed for different ranges in each region until the highest R2 value was obtained.

The slope of the small-distance region increased with m, which is a typical response of
Gaussian noise. However, the slope of the middle-distance region (scaling region) saturated
as m increased [19,35–38,40,42]. Therefore, only the slope obtained for the scaling region
was evaluated in the present study. The FD values obtained by that means are presented in
the Section 3. The slope obtained for the small-distance region was used to check whether
it is related to a stochastic process (noise) or the nonlinear dynamics of the system.

In addition, the local slope of the integral curve was drawn using Equation (8) to
observe how the local slope changes with the distance and m value.

Local Slope =
∆log(C(r))

∆log(r)
=

log(C(ri+1)− log(C(ri))

log(ri+1)− log(ri)
(8)

Testing Nonlinearity

Through a phase randomization process, ten surrogate data were generated for each
EMG signal to test the nonlinearity of the EMG signal for the middle-distance region
according to Theiler et al. [43]. The statistical significance of the difference between the
correlation dimension of the original signal and the average of the correlation dimensions
of the 10 surrogate data was computed using the sigma value (Equation (9)).

S =
Qo− µQ

σQ
(9)

where Qo is the correlation dimension of the original signal, µQ is the mean of the correlation
dimensions of the 10 surrogate data, and σQ is the standard deviation of the correlation
dimensions of the 10 surrogate data. A sigma value above 2 was used to indicate a
significant difference [31,35,42–44].

2.6. Statistical Analysis

SPSS (IBM SPSS Statistics 25) analysis tools were used for statistical analysis. Initial
analysis of the data via two-way analysis of variance (ANOVA) for repeated measures
with two treatments (pre-massage and post-massage) and five time levels (five contrac-
tions) showed that there were no effects of time on any of the analyzed parameters (EMD
components, FD, RMS, and force values). Therefore, the data were analyzed via one-way
analysis of variance for repeated measures with two treatments over the averages of five
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contractions for each subject. Normality tests were performed using the Shapiro–Wilk test.
The Greenhouse–Geisser correction was adopted when it was necessary. The Bonferroni
test was applied for post hoc analysis. Changes in the amplitude of the EMG signals (RMS)
and force with TFM are presented as a percentage of the pre-massage values. The level of
significance was set to p < 0.05. Data are expressed as the mean ± SD. The magnitude of
the effect was determined using the partial eta squared (ηp

2) value.

3. Results

The effects of TFM on the electromechanical delay components in the RF and VM
are illustrated in Figure 1. ∆t(EMG–MMG) was 14.5 ± 4.1 ms before and 15.8 ± 3.8 ms
after TFM in the RF. One-way analysis of variance for repeated measures showed that
there was no significant effect of TFM on ∆t(EMG–MMG). However, ∆t(MMG–Force)
and ∆t(EMG–Force) were increased significantly from 49.1 ± 16.6 ms to 59.4 ± 16.5 ms
(F = 5.668, p = 0.036, η2 = 0.340) and from 63.6 ± 16.0 ms to 73.8 ± 15.6 ms (F = 4.938,
p = 0.048, η2 = 0.310), respectively, after TFM in the RF (Figure 1a).
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Figure 1. Effects of TFM on ∆t(EMG–MMG), ∆t(MMG–Force) and ∆t(EMG–Force) in the RF (a) and
VM (b). Values are expressed as the mean ± SD (n = 12). * indicates a significant difference between
the pre- and post-massage groups at p < 0.05.

In the VM, TFM decreased ∆t(EMG–MMG) significantly from 19.9 ± 6.7 ms to
17.8 ± 5.0 ms (F = 4.957, p = 0.048, η2 = 0.311), while it increased ∆t(MMG–Force) from
48.3 ± 11.2 ms to 57.4 ± 17.8 ms (F = 5.751, p = 0.035, η2 = 0.343) (Figure 1b). There was no
significant effect of TFM on ∆t(EMG–Force) in the VM. ∆t(EMG–Force) was 71.9 ± 20.1 ms
for the pre-massage group and 71.1 ± 13.7 ms for the post-massage group.

An EMG signal recorded from the RF muscle of a subject during an MVIC and a
plot of the variation in the correlation integral with distance for embedding dimensions
m = 4 – 14 computed from the same EMG signal are presented in Figure 2a,b, respectively.
The local slope of the integral curve (∆log(C(r))/∆log(r)) is also illustrated in Figure 2c.
Three distinct regions were recognized on the correlation integral (log(C(r)) vs. log(r)) curves
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(Figure 2b). These distinct regions were also reflected on the local slopes. The local slope
of the integral curve had large variations in the very small distance region because of the
low number of data points in this region. Following that, the local slope decreased steeply
towards the middle-distance region where the local slope almost became flat. This flat
region corresponded to the scaling region. The change in the local slope with distance
showed a similar feature for all m values between 4 and 14, except that the curves and
the flat region were shifted towards the right side. Figure 2d illustrates an example of
the regression analysis for m = 14. The slope of the fitted line was 9.8 (R2 = 0.946) for the
small-distance region and 1.41 (R2 = 0.997) for the middle-distance region. In addition, the
slope of the fitted line (correlation dimension) for small distances below −1.5 increased
constantly as the embedding dimension increased (Figure 2e); the slope almost reached the
m value in a high embedding dimension, which indicates that the system generating the
signal had a high dimension. In fact, for a noisy signal, the small-distance region is related
to the dynamics of the noise, and the observed increase in the correlation dimension with
the increasing embedding dimension reflects the characteristics of the noise. In the present
case, the dynamics illustrated in Figure 2e indicate that Gaussian noise contributed to the
EMG signal.
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Figure 2. Computation of the correlation dimension of an EMG signal. (a) An EMG signal recorded
from the rectus femoris muscle (RF) of a subject during a maximal voluntary isometric contraction
and (b) its correlation integral curves (log(C(r)) vs. log(r)) for embedding dimensions m = 4–14. The
middle-distance (scaling) region is shown by two vertical dashed lines. (c) The variation in the
local slope (∆log(C(r))/∆log(r)) of the correlation integral curve with distance. (d) The correlation
integral curve for m = 14 and lines fitted to the data in the small- and middle-distance regions via
regression analysis. The slope of the fitted line was 9.8 (R2 = 0.946) for the small-distance region
(−1.90 < r < −1.65) and 1.41 (R2 = 0.997) for the middle-distance region (−1.40 < r < −1.10). (e) The
variation in the correlation dimension (slope of the correlation integral curve) with m for the small-
distance region below −1.5. (f) The variation in the correlation dimension with m for the middle-
distance region. The sigma value was 3.269 for the middle-distance region.
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However, for the middle-distance region shown by the dashed lines in Figure 2b, the
slope of the correlation integral curve computed via regression analysis reached a constant
level as the embedding dimension increased (Figure 2f), which indicates that the structure
of the reconstructed attractor did not change as m increased. Surrogate analysis revealed
that the sigma values for this region were above 2, which implies that the EMG signal
had deterministic nonlinear behavior within the middle-distance region. Thus, correlation
dimension computations were performed for the middle-distance region, and the constant
value of the correlation dimension vs. embedding dimension curve was accepted for the
actual correlation dimension (D2, FD) of EMG.

The TFM application introduced significant effects on the FD in both the RF and VM.
The FD decreased from 1.401 ± 0.030 to 1.384 ± 0.032 (F = 7.554, p = 0.023, η2 = 0.456) in
the RF and increased from 1.383 ± 0.038 to 1.399 ± 0.047 (F = 6.046, p = 0.036, η2 = 0.402) in
the VM after the massage (Figure 3).
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There were no significant effects of TFM on the amplitude of the EMG signals in the
RF and VM and force measured in the quadriceps muscle. The mean percentage RMS
values of the EMG signals for the post-massage group were 109.3 ± 34.7% (p = 0.373) in the
RF and 107.2 ± 20.1% (p = 0.237) in the VM with respect to the pre-massage values. The
mean percentage force level for the post-massage group was 93.1 ± 26.4% (p = 0.431) with
respect to the pre-massage values.

4. Discussion

The present study was designed to examine the effects of TFM on the dynamics of the
RF and VM muscles during MVICs, and to explore the possible mechanisms behind the
dynamic changes. In order to fulfill these aims, we applied EMD and fractal dimension
analysis methods. The main findings were that TFM increased ∆t(MMG–Force) and
∆t(EMG–Force) and decreased the FD of the EMG signal in the RF. TFM did not influence
∆t(EMG–MMG) in the RF. In contrast, in the VM, TFM decreased ∆t(EMG–MMG), while it
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increased ∆t(MMG–Force). In addition, the massage increased the FD of the EMG signal
in the VM. TFM did not significantly affect the RMS values of the EMG signals in the RF
and VM or the force generated in the quadriceps muscle. The main conclusion that can be
derived from the results is that TFM affected the dynamics of the RF and VM differently;
the complexity of the EMG signal decreased in the RF but increased in the VM with TFM.
In that respect, to the authors’ knowledge, this is the first study demonstrating the distinct
effect of TFM on the nonlinear dynamics of the EMG signals in the RF and VM during
MVICs. Also, no previous study has examined the time-domain (EMD) parameters and
nonlinear characteristics of the RF and VM, as conducted in the present study, or identified
the possible mechanism responsible for the dynamic changes in these muscles.

The time delay between EMG and MMG is associated with processes related to the
propagation of action potentials along muscle fibers and excitation–contraction coupling,
while the time delay between MMG and force is associated with the biomechanical proper-
ties of the musculotendinous system [45–48]. Considering the mechanisms attributed to
the components of the electromechanical delay, it can be deduced that TFM did not have an
effect on the duration of the electrochemical processes in the RF but decreased the duration
of the electrochemical processes in the VM. However, TFM affected the biomechanical
properties of the RF and VM similarly; it decreased the stiffness of the muscle–tendon unit
in both muscles.

The FD is a parameter used to detect the characteristics of the mechanisms generating
a signal. Therefore, it is used to extract the characteristic features of physiological signals
including EMG signals [32,33,49–53]. The FD analysis method has been utilized previously
to study the dynamics of various muscles, including the biceps brachii [20,49,50], vastus
lateralis [20,28], vastus medalis [28,31,35], rectus femoris [24,31,35], and flexor and extensor
carpi radialis muscles [52]. It was suggested that the FD is related to MU recruitment [53],
the firing frequency [53], and the level of synchronized activity of MUs [24,54]. Also,
theoretical studies based on simulations of EMG have provided evidence that helps re-
searchers understand how recruitment, the firing rate, and individual motor unit action
potential characteristics affect the fractal dimensions of muscles [54,55]. Xu and Xiao [55]
simulated the surface EMG for various durations of action potentials (APs), firing rates, and
recruitment ratios. Their results showed that the fractal dimension was not very sensitive
to variations in the amplitude of the APs. However, their results demonstrated that the
fractal dimension was strongly affected by the duration of the APs; as the durations of
the APs increased, the fractal dimension decreased. Their simulation results also demon-
strated that the recruitment of motor units was the dominant parameter determining the
fractal dimension of the EMG signal [55]. However, the FD increased steeply with a small
recruitment number but reached a plateau with a large recruitment number. Simulation
studies performed by Mesin et al. [54] showed that the fractal dimension was influenced
by variations in the firing rate and the synchronization of MUAPs.

In light of the above-cited literature, and considering the processes attributed to the
components of the electromechanical delay, as mentioned above [45–48], the decreased
stiffness of the RF may account for the decrease in the FD in this muscle. The Hill model as-
sumes that passive tissue elements of muscles and tendons, as well as the active component
of muscles (i.e., attached cross-bridges), contribute to muscle stiffness. TFM was applied
on the tendon in the present experiments. Therefore, the applied massage might lengthen
the tendon and decrease its stiffness, which would initiate the presynaptic inhibition of
the α-motor neuron pool through the Golgi organ pathway. Behm et al. [9] also noted that
H-reflex depression induced by musculotendinous massage might be related to afferent
inhibition via the Golgi system. Similarly, Huang et al. [10] reported the role of the Golgi
organ in the MTJ-massage-induced increase in ROM. Thus, the suggestions proposed
by Behm et al. [9] and Huang et al. [10] support our consideration. It is also likely that
massage could produce pressure on the muscle, meaning that the attached cross-bridges
would detach under that pressure and decrease the stiffness of the active component of the
muscle. Therefore, the neural inputs to the motor neuron pool would decrease because of
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the decreased number of attachment sites, which would also lead to a decrease in EMG
complexity. It is also probable that all MUs are recruited and synchronized during MVICs,
and TFM might further increase the MU synchronization level.

In contrast, the increase in ∆t(MMG–Force) leading to a decrease in the stiffness
properties of the VM after TFM is contradictory to the increased complexity of the EMG
signal in the VM. However, the massage decreased ∆t(EMG–MMG) in the VM. Several
factors may influence ∆t(EMG–MMG), including AP propagation over muscle fibers and
the rate of cross-bridge attachment, i.e., the excitation–contraction coupling process. If
the decrease in the duration of the biochemical processes is related to an increase in
the velocity of MUAP propagation along muscle fibers, then an increased conduction
velocity could explain the increased EMG complexity in the VM. It is well known that
EMG signals recorded from muscles with high conduction velocities also have a higher
frequency content [54,56,57]. Conversely, slowing the conduction velocity compresses the
power spectrum towards the lower frequencies (though the shift is not entirely due to the
conduction velocity) [58–60]. Compression of the power spectrum occurs such that the
logarithmic ratio of the power at high frequencies (H) to the power at low frequencies
(L) decreases [61]. Furthermore, an increased conduction velocity would shorten the
MUAP duration [62], which would increase the higher frequency content of its spectrum.
Therefore, it could be expected that an increase in the conduction velocity would increase
the complexity of the EMG signal. Also, there might be a trade-off between the reduced
excitability of alpha motor neurons due to the biomechanical changes and the decreased
duration of the electromechanical processes (∆t(EMG–MMG)).

Previous studies conducted on the effects of massage on the electromechanical delay
have yielded controversial results. The electromechanical delay did not change in the
soleus muscle with MTJ massage applied on the plantar flexors [9] or in the rectus femoris
muscle with deep transverse friction massage [17]. The difference between the results of
the cited studies and our results might be due to the differences between the experimental
conditions. Behm et al. [9] performed their experiments using a 90◦ knee angle, while the
experiments were conducted using a 15◦ angle in the present study. Also, the duration of
the massage in [9] was shorter than the duration used in the present study. On the other
hand, in [17], the massage was applied on the hamstring muscle, but the electromechanical
delay was measured in the antagonist muscle. In contrast, Cè et al. [18] reported that a
massage applied on the biceps brachii myotendinous junction increased the electrochemical
and biomechanical processes in the elbow flexors. Begovic et al. [8] reported that TFM
increased the time delays between EMG and ultrasound measurement (US) and between
EMG and force in the RF. However, TFM decreased the time delay between US and force.
In the present study, a significant change was not observed in ∆t(EMG–MMG) in the RF
after TFM. Also, in the present study, ∆t(MMG–Force) increased after the massage, which
contradicts the results obtained by Begovic et al. [8]. Our results support Begovic et al. [8]
in that ∆t(EMG–Force) increased after TFM in the RF. The difference between the results
obtained by Begovic et al. [8] and our results might be due to the recording technique; they
used ultrasound measurement to detect the electromechanical delay components, while
accelerometers were used in the present study.

The electromechanical delay and FD analysis methods have been applied previously
to identify the effect of stretching on the RF and VM muscles [31,34]. Stretching decreased
the complexity (FD) of the EMG signal in the RF and increased it in the VM [31]. Moreover,
stretching increased ∆t(EMG–MMG) in the RF, while it decreased ∆t(EMG–MMG) in the
VM [34]. As can be seen, TFM and stretching affected the time delay parameters of the
RF and VM differently. On the other hand, both TFM and stretching decreased the FD of
the EMG signals in the RF but increased it in the VM. Ozturk et al. [31] proposed that the
decreased complexity of EMG in the RF with stretching could be attributed to the increased
duration of the electrochemical processes (∆t(EMG–MMG)), while the increased complexity
in the VM could be related to the decreased duration of the electrochemical processes. Thus,
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when the results from stretching and TFM are compared, it can be argued that TFM and
stretching alter the dynamics of EMG signals through different mechanisms.

The FD analysis method allows researchers to identify the distinct behaviors of the RF
and VM after stretching and TFM. The RF and VM muscles of the quadriceps take a role in
the extension and stability of the legs. Thus, the distinct behaviors of the RF and VM after
an intervention could be a useful hint in detecting the cause of abnormalities in quadriceps
functions, as well as for evaluating the development of a physiotherapy program.

In the present study, the FD of the EMG signals was calculated using the correlation
dimension method. The correlation dimension is a measure concerning the correlation
between points over the phase space of a system [63]. The recorded EMG signal is a real
one-dimensional time series. Therefore, initially, the EMG time series was converted to
state vectors in the embedding dimension m [36,39]. The state vectors of the system should
be constructed such that the trajectory of the orbit constituting the phase space does not
overlap. Since the dimension of the system generating the EMG signal is not known a
priori, one of the methods to determine the required m value is to compute the correlation
dimension for increasing m values and plot the correlation dimension against m [36,37].
The correlation dimension reaches a constant level as m increases. Therefore, the constant
value of the curve is accepted as the actual correlation dimension (D2) of the attractor of the
original system [40,42,64]. Once the correlation dimension saturates, increasing m above
that level will not change the structure of the reconstructed attractor. For a sufficiently large
m, there will be a one-to-one correspondence between the reconstructed and embedded
spaces [39]. This approach was implemented to determine the correlation dimension in the
present study.

Furthermore, the correlation dimension is defined as the slope of the log(c(r)) vs. log(r)
curve for small distances [36]. Takens’ theorem [39] assumes that the signal originates from
the dynamics of the system and is noise-free. However, since the recorded EMG signal is
noisy, the correlation integral curve (log(C(r)) vs. log(r)) calculated from the reconstructed
state vectors is contaminated by the noise depending on the signal-to-noise ratio [40,42,65,66].
Noise will affect the correlation integral curve at small r values. Therefore, for a noisy
physiological signal, it is crucial to determine the actual correlation dimension of the system.
The correlation integral curves in the present study had three distinct regions. For r values
smaller than −1.5, the slope of the correlation integral curve increased as m increased
(Figure 2e). In fact, the slope approached m for high m values, which indicates that the
state vectors filled the whole available state space, and the attractor had a high dimension.
This region is called the “noise regime” [65,66]. According to the present study, since the
dimension increased with the same magnitude as m, the noise contributing to the EMG
signal might have been Gaussian noise [65].

For the middle-distance region (−1.5 < r < −1), also called the scaling region, the
slope of the correlation integral approached a constant value as m increased (Figure 2f). We
accepted the constant value as the correlation dimension of the EMG signal [40,42,65,66].
However, m ≥ D2 is a necessary condition for the computed correlation dimension to
represent the dimension of the original system attractor [40]. Also, the system should have
nonlinear dynamics [40,43]. In the present study, these two conditions were satisfied, and
the surrogate analysis method was performed to confirm whether the system had nonlinear
dynamics within the region in which the correlation dimension was calculated.

Our study has some limitations. Firstly, the number of subjects included in the present
study was 12; this number should be increased in order to obtain more significant results.
Secondly, although the same physiotherapist applied TFM to all participants of the massage
group, the pressure applied to each person might have varied. The experiments may have
yielded more precise results if the applied TFM had the same pressure level for all subjects.

5. Conclusions

Determining the mechanisms behind the massage-induced changes in muscles is
essential to obtaining a benefit from massage and developing treatment protocols. The
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present study is important in that it examined the acute effects of TFM on the time param-
eters and the complexity of the EMG signals of the RF and VM and proposed possible
mechanisms behind the dynamic changes. The results showed that TFM induced diverse
effects on the electromechanical delay components in the RF and VM. TFM did not have
an effect on the electrochemical processes in the RF, while it decreased the duration of the
electrochemical processes in the VM. However, TFM affected the biomechanical properties
of the RF and VM similarly; it decreased the muscle–tendon stiffness in both muscles. In
addition, TFM decreased the complexity of EMG in the RF and increased it in the VM. The
decrease in the complexity of the EMG signal in the RF could be attributed to the decreased
stiffness of the RF. On the other hand, the increase in the EMG complexity in the VM might
be related to the decreased duration of the electrochemical processes in this muscle after
TFM. A combined assessment of the electromechanical delay components along with the
FD allowed us to identify the possible mechanisms contributing to the massage-induced
alterations in the dynamics of the RF and VM. The muscle-specific changes in the FD with
TFM imply that the FD can be a useful parameter to detect an abnormality in a functional
muscle group. This study also emphasized the precautions that should be taken to dis-
criminate the nonlinear dynamics of a complex muscle system from a noisy time series. In
that respect, this study exemplifies the application of nonlinear analysis methods to noisy
physiological signals.
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Abbreviations

ANOVA Analysis of variance
AP Action potential
EMD Electromechanical delay
EMG Electromyography
FD Fractal dimension
m Embedding dimension
MMG Mechanomyography
MTJ Musculotendinous junction
MUAPs Motor unit action potentials
MUs Motor units
MVIC Maximum voluntary isometric contraction
RF Rectus femoris muscle
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RMS Root mean square
ROM Joint range of motion
TFM Transverse friction massage
VM Vastus medialis muscle
∆t(EMG–MMG) Time delay between EMG and MMG
∆t(MMG–Force) Time delay between MMG and force
∆t(EMG–Force) Time delay between EMG and force
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