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A B S T R A C T   

The contractions of facial muscles are what shape the expressions produced by the human face. The Facial Action 
Coding System (FACS) stands as the predominant standard in describing all visual alterations in the face, defining 
them through Action Units (AU) that articulate the movements occurring in the facial muscles. In this paper, an 
end-to-end pipeline, CCNN2, is proposed as a deep pre-processing step to detect AUs by processing the features 
extracted from hidden CNN layers, without exploiting any landmark information in a recursive manner. Trials 
conducted on three spontaneous datasets (MMI, DISFA, BP4D) along with one in-the-wild dataset (EmotioNet) 
demonstrate that this method surpasses the results of state-of-the-art approaches in three of the datasets, and 
even more, its two-module structure increases the overall F1 score in detection in every experiment. The method 
being proposed is also adaptable to a diverse range of classification applications.   

1. Introduction 

Facial expressions are created through the contraction of muscles in 
the human face. Originally proposed by [16] and then revised in [17], 
The Facial Action Coding System (FACS) is the predominant standard for 
defining facial actions. This classification system encompasses the de-
tailing of every visible muscle action on the face through Action Units 
(AU), which helps in defining facial expressions. Such definitions are 
employed in various research fields, including the expression detection 
and recognition [57], gesture recognition([1], fake face detection [3], 
pain level measurement [35], de- pression analysis [43], fatigue moni-
toring [49], security and forensics [66], and deception detection [2]. 
Notably, the detection of AUs is not restricted to hu- mans; it extends to 
other realms, including animal species as seen in studies like those on 
chimpanzees [13], and also encompasses areas like robotics [26]. While 
the human eye and brain are capable of detecting both significant and 
subtle variations such as occlusion, pose, lighting, expressions, aging, 
facial hair, alterations in hairstyle, makeup, and more, the field of 
computer vision is not yet fully resilient to these changes. It continues to 
struggle with the complete detection and understanding of these 
elements. 

Prior studies focusing on AU-based expression recognition have 
generally concentrated on either the whole face or the distinct upper and 
lower sections [58]. In contrast, newer studies have revealed that 
focusing on specific facial patches can enhance the precision of AU 

recognition [83,79]. Some of these investigations treat the facial patch 
as a consistent, uniform segment of the face, while others view it as a 
fixed-size region surrounding particular facial landmarks. The motiva-
tion behind using patches is to disregard the less distinctive ones, thus 
amplifying the impact of the more descriptive areas. Generally, AU- 
oriented approaches utilize low- level feature extraction methods to 
depict a single image or an entire image sequence. With the advance-
ments in computing power and the availability of public data, con-
volutional neural networks (CNN) became popular for AU detection 
[33]. 

Recently, techniques like recurrent neural networks (RNN), capsule 
net- works, and transformers have found applications in the task of 
detecting AUs. In a study by [22],a method is devised to first identify the 
facial view with CNNs, and then channel the extracted CNN features into 
90 distinct Bidirectional Long-Short Term Memory (BLSTM-RNN) 
models to capture the temporal aspects. Similarly, [10] uses CNNs to 
understand the spatial characteristics, followed by employing stacked 
LSTMs for modeling the temporal dimensions, ultimately fusing these 
results to predict frame-based AU. However, a challenge with RNNs 
arises in longer sequences, where the initial elements in the sequence are 
often forgotten, while the elements near the end are given increased 
emphasis. 

The Transformer model diverges in its approach by employing an 
attention mechanism that extracts data from the entire sequence, not 
just the nearest states, rather than using recurrence [65]. The design is 
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in- tended for language translation, in which the encoder takes in a se-
ries of words; however, it has also been modified to be applicable to both 
image sequences [53] and audio [29], positioning it as a versatile so-
lution for various tasks. With its successful application in image se- 
quences, researchers turned their focus to individual images, frag-
menting them into patches to form a sequence of smaller images. This 
gave rise to the Vision Transformer (ViT) [15], a novel model chiefly 
touted for classification of either single images or sequences. Its appli-
cation to the task of AU detection was not unexpected, as evidenced in 
[27], where a model was put forth that blended the attention branch 
with supervi- sion, employing a multi-task strategy to extract both the 
features of AUs and their interrelations. 

Although deep approaches for image analysis have become very 
popular, they require extensive human interpretation to enable effective 
explanation. Due to the increasing popularity of image analysis using 
CNNs, their”black box” nature has been criticized. In response, re-
searchers have developed tools and techniques that aim to explain and 
visualize the decisions of CNNs. Several recent reviews and editorials 
have focused on the importance of interpretive models [44]. The most 
straightforward approach to understanding a CNN network is to 
examine its hidden layers and visualize their learned features to find out 
where the network pays attention to. 

In the study presented in this paper, an end-to-end pipeline using two 
cas- caded CNN’s (CCNN2) for AU detection by exploiting hidden fea-
tures of a CNN is proposed. The framework consists of two modules: the 
first module extracts the deep features of the AU and the second one 
removes the unnecessary facial information and retrains to increase the 
detection score. 

This study makes a novel contribution by enabling the discrimination 
of fo- cused regions for any Action Unit (AU) without requiring class 
activation maps. The research introduced has been tested across four 
distinct datasets, out- performing numerous leading-edge models within 
lab-controlled environments. There are three advantages of the pro-
posed study: (i) it is a deep pre-processing step which can be applied to a 
variety of classification problems; (ii) it works significantly better for 
AUs that are detected less successfully by state-of-the- art; (iii) it is 
proven that the proposed two-module network improves the AU detec-
tion scores at the end of its second module when compared to its first 
module. 

The rest of this study is organized as follows: Section 2 introduces 
related research about facial action unit detection under three general 
methods. Section 3 describes the proposed method. Section 4 describes 
the used databases and experimental setup followed by the experiments, 
their comparison with state- of-the-art, and some ablation study. Dis-
cussion is presented in Section 5, and finally Section 6 contains the 
conclusion, which provides a summary of the method proposed in the 
study, highlights its key contributions, and then outlines potential en-
hancements and directions for future research. 

2. Related work 

From low-level handcrafted features to high-level deep networks, 
many dif- ferent methods have been used in Computer Vision tasks from 
past to present. With the enhancement of new technologies and faster 
computing power, older techniques have started to become popular. 
When it comes to the human face studies, there are mainly three ap-
proaches for completing the task; (i) finding the region of interest, (ii) 
marking the facial regions that are triggered by the action (such as local 
patches or attention maps), (iii) examining the depen-dencies with other 
tasks through basic relationship modeling or graphs. These approaches 
might appear alone or as a combination with the others. 

This study only focuses on frame based AU detection, not motion/ 
video based detection. The reader can refer to the surveys [52,36,81] 
and follow the challenges [61–62,64,73] for more details on former and 

up-to- date AU detection studies. Some AU detection and classification 
techniques have been analyzed below with respect to their structures. 

2.1. AU detection from the whole face 

Traditional AU detection methods employ geometric features such as 
the relative positions of facial landmarks using Gabor filters [5], 
appearance features such as LBP/LPQ-based histograms [28]or HOGs 
[4], dynamic approaches such as Motion History Images [63,30], AU 
transitions [14] or their temporal relationships [59]. Unlike conven-
tional methods, CNNs have also been used for detecting AUs from the 
whole face [21]. 

2.2. Region based AU detection 

Right after the first attempts on AU detection from the whole face, re- 
searchers instinctively realized that removing the unnecessary parts/ 
patches of the face increases the detection rates significantly. The most 
important goal of using patches is to remove ineffective or badly effec-
tive/noisy patches in classification and to focus on descriptive/active 
patches that have the most impact on the classifier. Initial research on 
patch-based AU (Action Unit) detection commence by separately 
analyzing the upper and lower halves of the facial region [58]. Looking 
at the studies conducted in recent years, working on specific facial 
patches instead of focusing on a large part of the face increases the 
success performance by extracting handcrafted features from those 
patches [82,79]. Some of these studies obtain facial patches by dividing 
the entire face into equal grid segments, while others obtain patches 
from uniformly cropped pieces around the landmarks of the face. Going 
further, [7] not only find the active patches but also investigates their 
best representative sizes by claiming that a uniformly cropped patch size 
cannot be representative for both upper and lower-face AUs since the 
upper-face AUs take less space than lower-face AUs. 

With the wider use of deep networks, studies have also investigated 
the automatically-learned features for the discriminative patches. DRML 
[80] is proposed to discover the discriminative regions by leveraging the 
shared kernels of the CNN, [32] use Recurrent Neural Networks (RNN) 
for both region learning and temporal fusing, and D-PAttNet [40] learns 
static and temporal patch representations at the same time and weighs 
them for AU detection by applying 3D registration on specific parts of 
the face. A novel framework, JAA-Net, is proposed by [47] which 
combines detection of AUs and alignment of the face in the same study 
using refined attention maps. 

Unlike low-level or handcrafted feature extraction methods, deep 
neural net- works stayed as a”black box” for a long time until researchers 
tried to discover the success that lies beneath to explain how they 
classify objects. It is getting more and more popular to find the dominant 
regions in AU studies to visually explain the focused areas. Almost all of 
the above-mentioned studies use a vi- sualization map technique to 
demonstrate and prove that the used patches are actually the ones that 
are focused by the network. 

2.3. Relation based AU detection 

Since AUs arise from the movement of minor and major muscles in 
the face, they often trigger the movement of other parts of the face. It is 
also stated that for some AUs, one may inhibit the presence of the other 
[72]. These semantic relationships between multiple local regions have 
been investi- gated by further studies. In the study by [67], it is asserted 
that instead of focusing on a single region, modeling relationships can 
enhance robustness, accounting for changes in pose, illumination, and 
appearance. Fur- thermore, their proposed network is trained in a 
person-specific manner without having the need to retrain the whole 
model for each new subject. Being also a patch-based study, JPML [79] 
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examines the positively corre- lated and negatively competitive AUs to 
build up their relationships. A more recent study [39] examines the local 
relationships on a person- specific network using a shape regularization 
module. Their end-to-end pipeline contains three different modules for 
shared feature learning, local relationship modeling, and person-specific 
shape regularization. Considering the rediscov- ery of the CNNs, it is no 
surprise that it has taken more than fifteen years for Graph Neural 
Networks (GNN) to rise again to be used in supervised, un- supervised, 
or semi-supervised learning studies [20]. The study by [31] explores the 
semantic connections between AUs by exam- ining their co-occurrence 
and absence within various facial expressions. This investigation aims 
to overcome the challenges posed by different forms of facial occlusion; 
AU-GCN [34] extracts the AU regions, feeds them to an auto-encoder, 
extracts the representations, and models the relationships us- ing 
graphs; MARGL [74] introduces an adaptive ROI (Region of Interest) 
learning module that concurrently alters the position and dimensions of 
AU regions and gleans features within a multi-level AU relation graph. 

Compared to other studies in facial action unit detection, the pro-
posed CCNN2 method has several notable advantages. It is a deep pre- 
processing step that utilizes hidden CNN layers for improved feature 
extraction without the need for any landmark information, which has 
not been explored extensively in previous studies. For AUs that are not 
as effectively identified by existing state-of-the-art techniques, CCNN2 
exhibits notable improvement, illustrating its capacity to enhance the 
overall precision of AU detection. Another key ad- vantage is, the pro-
posed two-module structure improves the AU detection rates at the end 
of its second module when compared to its first module, which sug- gests 
that further improvements can be achieved by increasing the complexity 
of the model. Finally, the proposed method can be applied to a wide 
variety of classification problems beyond facial action unit detection, 
making it a versatile and valuable tool for researchers in related fields. 

3. Methodology 

For each AU, there are N samples where each sample i ∈ N is rep-
resented by (X(i), Y (i)) pairs where:  

• X(i) is the ith sample normalized to [0.0, 1.0]  
• Y (i) = {0, +1} is the label for each sample X(i) stating that the desired 

AU exists in the ith sample or not.  
• X(i)

feature is the ith sample’s CNN feature. To be coherent with X(i), this 
feature image is resized to 224 × 224 × 3.  

• X(i)
diff is the processed image that is returned by the PROCESS function, 

which is also of size 224x224x3 normalized to [0.0, 1.0] 

For each AU, after feeding (X(i), Y (i)) pairs to the initial network 
(Fig. 3), Algorithm 1 begins execution for processing the original image 
X(i) from the feature image X(i)

feature resulting in the processed image X(i)
diff 

(Algorithm 2).The processed image pairs (X(i)
diff , Y (i)) are then fed to the 

same network to examine the results of the classification task. 

4. Experiments 

4.1. Settings 

4.1.1. Database setup 
The proposed framework has been tested on three spontaneous, lab- 

controlled datasets: MMI [41,60], DISFA [37], BP4D [78] and one in- 
the-wild dataset: EmotioNet [19]. Experts manually labeled each of 
these datasets, providing frame-by-frame annotations on 2D frames.  
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• MMI is a lab-controlled dataset which contains videos that have 
multiple head poses of 27 subjects and their 328 sessions. It is fully 
AU-annotated and contains intensities on frame level. As per the 
experiments conducted in [34,47], frames that exhibit intensities 
exceeding 2 are classified as positive. Following [34,80,33], experi-
ments are carried out using a subject- exclusive three-fold cross 
validation method on the following AUs: 1, 2, 4, 5, 6, 9, 12, 17, 25, 
and 26.  

• DISFA consists of 27 individuals who are recorded reacting naturally 
as they watch YouTube videos. In each frame, AUs are coded, and 
informa- tion regarding both the intensities of these AUs and the 
facial landmarks is included. Following the experiments of [34,47], 
frames with intensities greater than 2 are considered as positive.  

DISFA is a dataset that has severe imbalance, hence AUs with 
occurrence rates more than 10 % have been employed in the experi-
ments which re- sulted in the following AUs: 1, 2, 4, 6, 9, 12, 25, 26 as 
suggested by [34,80,33]. Subject-exclusive three- fold cross validation is 
employed. As stated in the experimental details of [80] and [34], 800 
positive and 1600 nega- tive random frames have been taken for the 
settings to be consistent with BP4D. 

• BP4D contains 41 subjects each having 8 sessions of their sponta-
neous facial actions. The metadata contains AU occurrences as well 
as their intensities. With respect to their occurrences, AUs 1, 2, 4, 6, 
7, 10, 12, 15, 17, 23, and 24 have been evaluated using the same 
experimental settings as DISFA.  

• EmotioNet is, to our knowledge, the most recent, most challenging, 
and largest dataset that contains faces having many types of occlu-
sions, il- lumination differences, and multiple head poses with almost 
one million frames from very low to medium resolution. The dataset 
includes 23 AUs along with sixteen distinct facial expressions, 
encompassing the six funda- mental emotions and various combi-
nations thereof. Distinctively, it does not contain any subject infor-
mation, hence following [38], regular three-fold cross validation has 
been employed and AUs 1, 2, 4, 6, 

9, 12, 17, 25, 26 have been experimented. As stated above, 800 
positive and 1600 negative random frames have been taken for the 
experiments. 

Detailed AU distributions of each AUs on the first three datasets can 

be found in [71,48]. 

4.1.2. Implementation details 
CCNN2 contains 2 modules and a step in-between: (i) training with 

original images, (ii) extracting CNN features and processing their 
featured regions by processing the original image with the feature, and 
lastly (iii) retraining with the same architecture using the processed 
data. The extracted features are from the initial layers of the network 
since the face shape is important and should be preserved. The overall 
architecture can be found in Fig. 1, used CNN architecture is in Fig. 3, 
and the details of the processing algorithm is in Algorithm 2 and in 
Fig. 2. 

Initially, each face in each frame is cropped using the Viola Jones 
algorithm [67] which is proven to a reliable face detector for frontal 
faces and its computational cost is much less when compared to other 

face detectors (such as dlib). Besides its computational advantage, it is 
also simple to implement with the publicly-available libraries. The faces 
are then resized to 224x224. In all of the four datasets, all three channels 
were used and all pixel values are normalized to be between [0,1]. To 
increase the diversity but at the same time preserve the shape of the 
facial image, only a horizontal flip is applied for augmentation as also 
employed by [47,80]. Although it is getting more and more popular each 
year, Neural Architecture Search (NAS) methods have not been applied 
to get a fair comparison with the state-of-the-art. Instead of using NAS, 
the CNN architecture given in Fig. 3 has been employed in both modules. 
In both of the modules, the batch size is 32, kernel size is 3 on the CNN 
layers and pool size is 2 on the pooling layers. The number of epochs are 
set to 150, LeakyReLU is used as the activation function on middle layers, 
and adam is used for the optimizer. No early stopping is employed. 

Although it is not stated in the end-to-end pipeline, as being a regular 
approach, three-fold subject-exclusive cross validation is used for all 
sponta- neous datasets, just three-fold cross validation is used on Emo-
tioNet. All of the recorded scores are averages of the folds. 

4.2. Comparison with state-of-the-art methods 

The proposed CCNN2 method and its ablation, CCNN1, are 
compared to the state-of-the art methods by using the same settings in all 
datasets as stated in Section 4.1.2, some of which propose regular CNNs, 
region-based, relation- based, or hybrid methods. This study only fo-
cuses on single frame images rather than image sequences, hence studies 
which employ temporal analysis are not compared to this work. The 
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same applies for AU intensity. 
Following the state-of-the-art studies, frame-based F1-score used as 

the eval- uation metric where it is the average of subject exclusive three- 
folds (%). For each method, the average is also computed and % is 
omitted for simplicity in all quantitative results. Table 1 shows F1 scores 
of the study in four dif- ferent datasets. Bold numbers indicate the 
highest scores, and AUs that are not included in the dataset are left 
blank. CCNN2 outperforms many popular methods such as JAA-Net, 
DRML, ALR in relatively difficult datasets, where it outperforms all 
methods in MMI. 

To better understand the decision-making procedure within our 
custom CNN architecture, Gradient-weighted Class Activation Mapping 
(Grad-CAM) (Sel- varaju et al., 2016) has also been utilized. Grad-CAM 
is an attention visual- ization technique that provides a high-resolution 
and class-discriminative visu- alization by utilizing the gradients of the 
target class label flowing into the final convolutional layer of the CNN. 
Table 1 also contains results gained from the same network trained by 
the Grad-CAM outputs. 

Grad-CAM [45] (which is a generalization of Class Ac- tivation 
Mapping (CAM)) over the same CNN model has also been applied to 
compare the results of the proposed CCNN2 method. 

Even though CCNN2 does not outperform every other study 
completely, it can easily be seen that it improves its initial module. 
While this improvement is small in simpler datasets, it makes a notice-
able difference in more challenging ones. It is not surprising to see that, 
for AUs that are highly detected by all methods, CCNN2 improvement 
shows a similar performance, sometimes less successful than state-of- 
the-art. However, for AUs that are less successfully detected, CCNN2 
works significantly better because of the fact that it decreases the 
brightness of the unused areas of the face without completely removing 
them from the image. 

It can also be observed that as the problem gets more challenging, 

CCNN2 performance decreases because of the fact that it doesn’t 
perform well in its initial module. Some examples of different AUs from 
different datasets can be found in Fig. 4. 

4.3. Ablation study 

To investigate the AU detection scores with different techniques, 
some Trans- fer Learning (TL) models have also been examined as the 
base model. The most important advantage in machine learning is to 
start the training process with pre-trained weights. There are many ar-
chitectures that are proven to be ro- bust for many different classifica-
tion tasks. To compare our results with well known and robust TL 
algorithms, we trained a few of these models with im- agenet weights. 
Since MMI is less challenging and it already yields to good results that 
are usually above 90 %, it is left out for this part of the study. To be 
consistent with the experimental settings of the proposed method, three- 
fold subject-exclusive cross validation is employed on DISFA and BP4D 
and reg- ular three-fold cross validation is employed on EmotioNet, all 
having a batch size of 32 and 150 epochs. No data augmentation or early 
stopping is applied. The experimented TL methods are: InceptionV3 
[54], VGG16 and VGG19 [50], MobileNet [24], DenseNet201 [25], 
Xception [9], ResNet101V2 [23] respectively. 

As the dataset gets more challenging, the overall performance of the 
model decreases as expected. What is amazing is to see that TL methods 
outperform many state-of-the-art as can be seen from Table 2. Although 
proposed CCNN2 does not exceed the experimented TL methods, it ob-
tains results very close to them in average. It is also observed that other 
than VGG19, every method is best on detecting at least one AU. 

Despite the fact that CCNN2 does not outperform all SOTA AU 
detection studies or TL models, it is proven that it improves all AU 
detection rates when compared to the output of its first module of the 
pipeline, which was the overall purpose of this study. The proposed 
method is a deep pre-processing step which can be applied to a wide 
variety of classification problems to improve their classification results. 
Hence it can be deducted to achieve a better success on larger and more 
complex networks. 

5. Discussion 

In this paper, an end-to-end pipeline, CCNN2, is proposed to increase 
the de- tection accuracies of facial action units by focusing on the trig-
gered regions and subtracting the unfocused areas from hidden CNN 
features, without exploiting any landmark information. The findings of 
CCNN2 are:  

• CNNs are strong and robust feature extractors in their hidden layers. 
There are studies trying to exploit the strength of these features but 
none have studied processing those as a pre-processing step. 
Although this study is not the first one to use CNN features, it is the 
first to process hidden layers, and give its output back to the network 
in a recursive manner. The early layers of CNN have been employed 
since the face shape has to be preserved for the model to work 

Fig. 1. The overall pipeline of the proposed algorithm. The CNN architecture used in the first module (CCNN1) can be found in Fig. 3 and the details of the processing 
can be found in Fig. 2. Shown samples are from BP4D dataset, which are processed using AU1 training model. Processed images are given a blue color-map for 
demonstration purposes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Details of the Process function in Algorithm 2. Top left represents the 
original image and bottom left represents the feature image (74 × 74) extracted 
from the CNN layer. Feature image is first resized to (224 × 224). Each pixel in 
each channel of the resized feature image is subtracted from the corresponding 
pixel of the original image. Three channels are then combined back together to 
build up the differentiated image. The sample image shown in this figure is 
from EmotioNet dataset. 
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Fig. 3. The CNN architecture used in both modules of the proposed algo- rithm. After the Flattening layer, it has two dense layers, each followed by LeakyRelu and 
Dropout before the classification layer. 

Table 1 
Comparison of CCNN2 and Grad-CAMwith recent SOTA studies’ F1 scores and their averages belonging to different AUs in 4 datasets.    

AU 

Dataset Method 1 2 4 6 7 9 10 12 15 17 23 24 25 26 Avg.  

MTL [71] 96.7 95.5 96.7 – – 88.9 – 94.8 – 91.0 – – 87.0 88.5 92.4  
Rank Loss [70] 68.5 72.7 64.4 38.1 – 48.8 – 73.6 – 48.4 – – 72.4 46.7 60.3  
RAN [42] 67.5 59.7 61.0 34.3 – 40.9 – 68.8 – 51.1 – – 70.3 – 58.3 

MMI DGAN [69] 70.7 71.5 67.8 35.4 – 47.3 – 72.7 – 49.8 – – 76.3 55.1 61.4  
Grad-CAM 96.9 96.8 97.7 96.2 – 98.6 – 96.4 – 85.9 – – 88.6 91.1 94.2  
CCNN1 98.0 97.4 97.6 98.0 – 98.4 – 97.9 – 81.0 – – 95.8 92.9 95.5  
CCNN2 98.3 99.4 98.3 98.9 – 99.5 – 98.1 – 94.0 – – 98.4 97.4 98.2  
iCPM [77] 29.5 24.8 56.8 41.7 – 31.5 – 71.9 – – – – 81.6 51.3 48.6  
DRML [80] 17.3 17.7 37.4 29.0 – 10.7 – 37.7 – – – – 38.5 20.1 26.0  
wGPDE [18] 41.2 52.9 61.7 60.9 – 32.8 – 58.8 – – – – 77.6 65.2 56.4  
GARN-1 [68] 46.6 90.9 38.8 41.3 – 39.4 – 93.8 – – – – 81.4 45.1 59.7  
AU-GCN [34] 32.3 19.5 55.7 57.9 – 61.4 – 62.7 – – – – 90.9 60.0 55.1  
DSIN [12] 44.4 43.6 64.8 33.1 – 43.1 – 72.2 – – – – 88.0 41.3 53.8  
res-L18M1 [8] 83.2 80.1 78.4 82.3 – 74.7 – 83.8 – – – – 88.2 76.6 80.9  
FAUT [27] 46.1 48.6 72.8 56.7 – 50.0 – 72.1 – – – – 90.8 55.4 61.5 

DISFA SEV-Net [75] 55.3 53.1 61.5 53.6 – 38.2 – 71.6 – – – – 95.7 41.5 58.8  
MONET [55] 55.8 60.4 68.1 49.8 – 48.0 – 73.7 – – – – 92.3 63.1 63.9  
HTSR-Net [51] 54.3 50.8 70.1 66.6 – 59.6 – 68.0 – – – – 97.9 69.8 62.9  
FAN-Trans [76] 56.4 50.2 68.6 49.2 – 57.6 – 75.6 – – – – 93.6 58.8 63.8  
Grad-CAM 90.7 95.5 87.3 92.3 – 83.2 – 93.0 – – – – 92.3 78.7 89.2  
CCNN1 83.9 87.0 80.0 90.2 – 75.1 – 83.4 – – – – 90.0 78.5 83.5  
CCNN2 90.3 93.3 82.7 90.3 – 87.0 – 90.6 – – – – 96.1 88.8 89.9  
JPML [79] 32.6 25.6 37.4 42.3 50.5 – 72.2 74.1 38.1 40.0 30.4 42.3 – – 44.1  
DRML [80] 36.4 41.8 43.0 55.0 67.0 – 66.3 65.8 33.2 48.0 31.7 30.0 – – 47.1  
JAA-Net (Shao et al., 2018) 53.8 47.6 58.2 78.5 75.8 – 82.7 88.2 43.3 61.8 45.6 49.9 – – 62.3  
DSIN [11] 51.7 40.4 56.0 76.1 73.5 – 79.9 85.4 37.3 62.9 38.8 41.6 – – 58.5  
ARL (Shao et al., 2019b) 45.8 39.8 55.1 75.7 77.2 – 82.3 86.6 47.6 62.1 47.4 55.4 – – 61.4  
FAUT [27] 51.7 49.3 61.0 77.8 79.5 – 82.9 86.3 51.9 63.0 43.7 56.3 – – 64.2 

BP4D SEV-Net [75] 58.2 50.4 58.3 81.9 73.9 – 87.8 87.5 52.6 62.2 44.6 47.6 – – 63.9  
MONET [55] 54.5 45.0 61.5 75.9 78.0 – 84.5 87.6 54.8 60.5 53.0 53.2 – – 64.5  
HTSR-Net [51] 55.5 49.5 61.9 76.6 80.2 – 84.2 87.4 54.8 64.1 47.1 52.1 – – 64.7  
FAN-Trans [76] 55.4 46.0 59.8 78.7 77.7 – 82.7 88.6 51.4 65.7 50.9 56.0 – – 64.8  
Grad-CAM 58.9 54.2 65.6 69.2 64.4 – 71.6 69.7 59.1 56.7 55.2 69.0 – – 63.0  
CCNN1 63.5 68.4 71.4 74.8 66.8 – 76.2 76.0 60.2 63.2 60.8 79.7 – – 69.2  
CCNN2 71.3 77.6 76.2 75.6 74.5 – 81.4 82.1 66.2 68.4 62.9 80.2 – – 74.2  
DRML [80] 26.3 – 35.5 78.7 – – – 88.1 – – – – 88.9 49.1 63.5  
Mean Teachers [56] 55.5 46.3 71.1 81.6 – 61.7 – 91.0 – 46.7 – – 94.7 60.2 67.6  
GL-CNN [6] 59.0 50.0 60.0 84.0 – 50.0 – 92.0 – 43.0 – – 93.0 66.0 66.3 

EmotioNet ADLD [46] 
MLCR [38] 

19.8 
61.4 

25.2 
49.3 

31.0 
75.9 

58.2 
83.5 

– 
- 

- 
68.3 

– 
- 

78.3 
92.0 

– 
- 

8.6 
50.8 

– 
- 

– 
- 

- 
95.2 

- 
65.1 

36.9 
71.3  

Grad-CAM 56.7 45.2 59.2 61.8 – 64.5 – 50.9 – 57.9 – – 50.9 61.4 56.5  
CCNN1 63.7 62.7 61.4 70.1 – 65.8 – 62.0 – 61.6 – – 67.8 62.6 64.2  
CCNN2 70.5 66.4 63.4 72.6 – 70.2 – 78.9 – 63.2 – – 68.1 64.8 68.7 

The fluctuation of AUs across studies is mostly due to the ignored data imbalance. Datasets are ordered with respect to their occlusion complexity from almost-none to 
highly-occluded, and each study within dataset is ordered with respect to their year in an increasing order. 
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properly. The study cannot be extended for layers that the face shape 
is not preserved anymore.  

• Although CCNN2 does not outperform all the state-of-the-art AU 
detec- tion studies, it is proven that it improves all AU detection rates 
when compared to the output of its first module of the pipeline, 
which was the overall purpose of this study. Hence it is deductible to 
achieve a better success on larger and more complex networks. 

• For AUs that are highly detected by all methods, CCNN2 improve-
ment shows a similar performance, sometimes less successful than 
state-of-the- art. However, for AUs that have poor detection rates, 
CCNN2 works significantly better.  

• The proposed method is a deep pre-processing step which can be 
applied to a wide variety of classification problems. It performs well 
for frontal and aligned images as well as in-the-wild samples even 
though they are not totally aligned. 

To get a fair comparison with the state-of-the-art studies, CCNN2 
employs a model which trains individual CNNs for each AU by using a 
network with two modules that increases computational cost. Even 
though the purpose of the study is to show that CCNN2 increases AU 
detection rates, there is one drawback and a few further areas for 
improvement in the proposed method that can be addressed in future 
studies::  

• Although it is not meant for real-time usage, the proposed method re- 
quires a significantly large computational power. It may be improved 

by evaluating some AUs at once instead of training individual net-
works for each.  

• The used CNN architecture is too simple. To totally outperform the 
state- of-the art studies, the architecture can be deepened by using a 
Neural Architecture Search (NAS) based method by automatically 
building the architecture of the network and optimization of its 
hyperparameters. The simple architecture works well with less 
complex datasets, however as the problem gets more challenging, its 
performance decreases because of the fact that it doesn’t perform 
well in its initial module.  

• It might be useful to examine the improvements of the proposed 
model when it starts training with pre-trained weights by using some 
Transfer Learning techniques as they already outperform almost all 
state-of-the- art, however they are already time consuming in their 
initial training. Since the proposed CCNN2 method already has a 
computationally high cost, we did not want to extend the training 
time by using architectures with many layers and complex re-
lationships. The main purpose is not to achieve the best results, it is 
to prove that there is an improvement on the given classification 
task.  

• The proposed method may be used recursively by cascading many 
CNNs as a blurring pre-processing step. However the computational 
cost is too high to experiment the theory.  

• Relationship modelling between different AUs or facial expressions 
might be accomplished by examining the intensities of the remaining 
pixels of the resulting images. 

Fig. 4. Samples of different AUs on different datasets. First row contains samples of the original images, second row contains their activation outputs, third row 
shows their processed outputs which are then fed to the second module. The last row contains the class activation heatmaps for the initial CNN to show the con-
sistency with regions sharpened by CCNN2. (a) A sample from BP4D which contains AU1 (inner brow raiser) and trained within AU1 samples. (b) A sample from 
BP4D which contains AU2 (outer brow raiser) and trained within AU2 samples. (c) A sample from BP4D which contains AU24 (lip presser) and trained within AU24 
samples. Each processed image shows the sharpened regions of the triggered AUs. For each AU, the brightness of the triggered region is different. Most of the time, 
AU12 and AU24 occur with other AUs at the same time, hence other parts of the face are also sharpened. 
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6. Conclusion 

The proposed two cascaded CNNs, CCNN2, method shows notable 
advan- tages in facial action unit detection compared to other studies. By 
utilizing hidden CNN layers for improved feature extraction without the 
need for any landmark information, CCNN2 demonstrates its potential 
for increasing the overall accuracy of AU detection. Furthermore, the 
proposed two-module struc- ture improves the AU detection rates, and 
the proposed method can be applied to a wide variety of classification 
problems beyond facial action unit detection, making it a versatile and 
valuable tool for researchers in related fields. 

Although CCNN2 requires a significant amount of computational 
power and individual CNNs for each AU, its improvements on AUs that 
are less success- fully detected make it a promising candidate for further 
development. Future studies may consider evaluating multiple AUs at 
once or using Transfer Learning/Vision Transformer techniques to 
improve computational efficiency and potentially achieve even better 
results. Additionally, exploring deeper CNN architectures through 
Neural Architecture Search (NAS) and cascading multiple CNNs may 
also be avenues for future improvement. Overall, CCNN2 provides a 
promising foundation for improving facial action unit detection and 
potentially other visual classification tasks. 
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