
Citation: Cavdar, M.; Ozcira Ozkilic,

S. A Novel Linear-Based Closed-Loop

Control and Analysis of Solid-State

Transformer. Electronics 2024, 13, 3253.

https://doi.org/10.3390/

electronics13163253

Academic Editors: Qiao Zhang and

Run Min

Received: 23 July 2024

Revised: 11 August 2024

Accepted: 14 August 2024

Published: 16 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Novel Linear-Based Closed-Loop Control and Analysis of
Solid-State Transformer
Metin Cavdar 1,* and Selin Ozcira Ozkilic 2

1 Department of Electrical and Electronics Engineering, Piri Reis University, Istanbul 34940, Türkiye
2 Department of Electrical Engineering, Yildiz Technical University, Istanbul 34220, Türkiye;

sozcira@yildiz.edu.tr
* Correspondence: mcavdar@pirireis.edu.tr

Abstract: In this paper, a new linear-based closed-loop control method for a Solid-State Transformer
(SST) has been proposed. In this new control method, individual current and voltage loops for each
of the power conversion stages (AC-DC, DC-DC, DC-AC) are implemented. The feedback between
the input and output control signals for each loop is achieved through the voltage on the DC link
capacitors and the current transferred between the converters. This enables the SST to be controlled
easily in a linear-based closed-loop manner without the need for complex computations. In order
to evaluate the performance analysis of the proposed control system, a simulation of an SST with
approximately 10 kVA apparent power was performed. Based on the obtained simulation results,
the response time of the proposed control method for dynamic load variations was proved to be
in the range of 40 milliseconds, and it has been observed that this method allows electrical power
to be transferred from the load to the grid. The power factor value of SST under inductive load is
measured to be approximately 99%, and the overall system efficiency is 96% and above, indicating
that this proposed new control method has very high performance.

Keywords: solid-state transformer; high-frequency transformer; grid-connected power flow; power
factor correction

1. Introduction

In recent years, progress in power electronics technologies has led to a significant
advancement in high-power applications, for which power converter circuits are widely
preferred. The most prominent high-power applications are Electrical Power Systems
(EPS) and Renewable Energy Systems (RES), where converter circuits are used exten-
sively [1]. EPS fundamentally consists of three main components, namely the generation,
transmission, and distribution of electrical energy. High-power converters are used in the
transmission and distribution areas, such as Unified Power Flow Controller (UPFC) [2],
Static Var Compensator (SVC) [3], Static Synchronous Compensator (STATCOM) [4], and
High Voltage Direct Current (HVDC) [5]. The electrical power generated in EPS improves
in quality with the use of high-power converters, making these systems more reliable and
controllable at any moment.

In order to lower the losses and increase the efficiency of transmission lines, AC
voltage is mainly stepped up at the input stage of the transmission line and stepped down
at distribution and consumption points as required. By stepping up the AC line voltage,
the transmission line current will be proportionally decreased so that the ohmic losses,
corresponding to conduction losses of the transmission line, which is proportional to the
square of the RMS current, could be lowered. Exactly for this reason, in EPS, conventional
power transformers (CPTs) are used to step up and step down AC grid voltage, but their
operating frequencies are limited to 50/60 Hz.

Although CPTs are a vital component of EPS, they tend to be relatively inefficient in
modern applications, particularly in smart grid systems where real-time dynamic mon-
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itoring and control of power are essential [6]. Another disadvantage of CPTs is that
any undesirable situation, such as voltage sag, fault current, harmonics, etc., on the pri-
mary/grid side is transferred to the secondary/load side. Finally, CPTs lack the power
factor correction (PFC) feature [7].

Solid-State Transformers (SSTs), also known as electronic transformers, intelligent
transformers, or universal transformers, have been proposed to overcome the disadvan-
tages of CPTs. It performs AC-AC voltage conversion like CPTs but includes various power
converters and high-frequency transformers (HFTs). Because SST performs power conver-
sion at high frequencies using HFT, its size and weight are significantly reduced compared
to an equivalent-power CPT. The first concept design of SST is given in Figure 1 [8,9].
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Figure 1. Concept design of SST.

In Figure 1, power transfer from the primary side to the secondary side occurs at
high frequencies due to the direct application of a high-frequency and modulated AC
voltage to the primary windings of an HFT resulting from the high-frequency operation of
the switches. The concept-designed circuit, being the simplest version of the SST with a
minimal number of semiconductor switches, operated at a lower voltage level initially due
to constraints in semiconductor switch technologies during that time [10–12].

Depending on the power conversion stages, there are various SST topologies available.
These are categorized as Types A, B, C, and D. Type A topology provides single-stage
power conversion, while Types B and C involve systems with two-stage power conversion.
Type D topology, on the other hand, offers three-stage power conversion, distinguishing it
from the other topologies. Among these topology types, the most advantageous is Type D,
which provides superior features in SST, such as power factor correction, high and low DC
bus capability, bidirectional power flow, and grid integration. Therefore, in this study, the
Type D topology, capable of three-stage power conversion, is preferred for the SST [7].

Today, all D-type prototypes produced operate in accordance with the working princi-
ple detailed in Figure 2. In this sense, the general operating criteria of a typical SST can be
summarized as follows. Initially, low-frequency single/three-phase AC voltage is rectified
with a rectifier stage followed by a DC-DC converter stage, which converts DC input
voltage to high-frequency square wave AC voltage and applies to the primary winding
of an HFT. High-frequency square wave AC voltage obtained at the secondary winding
of the HFT is applied to a rectifier circuit at the secondary side of the DC-DC converter
stage. Finally, rectified DC voltage is converted back to a low-frequency single/three-phase
AC voltage by an inverter stage at the output of the SST. Due to the utilization of HFT for
power conversion and isolation at high frequencies, the SST exhibits significantly reduced
volume and weight compared to CPTs [13].

Various control methods have been proposed for SSTs, with Direct Feed Forward and
Energy Feed Forward control methods being among them. Although both methods offer
fast dynamic response times, they require a high computational load and may not achieve
the desired performance under variable load conditions [14]. Another control method
used in SSTs is the Model Predicted Direct Control, which enables direct power control
and thereby enhances operational stability. Moreover, this method significantly reduces
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harmonic distortion levels. However, its complex mathematical model poses challenges
during implementation [15,16].
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It should be noted that the control methods proposed for SST have a complex math-
ematical model and heavy computational load depending on the topological structure
of SST. This adversely affects system stability and can lead to undesirable performance
outcomes. As a solution to the disadvantages of the control methods mentioned above, a
new linear-based closed-loop control method has been proposed for SST systems capable of
three-stage power conversion. This method designs individual current and voltage loops
for each topology within the SST, regulating currents transferred between topologies and
measuring voltages across DC link capacitors. As a result, a straightforward feedback
mechanism is established, eliminating the need for high-computation control solutions.

Within the framework of this research, the topological structure of a 10 kVA SST
has been examined, leading to the development of a mathematical model, and a new
linear-based closed-loop control method has been proposed for the SST. The outline of the
paper is as follows: in Section 2, the general circuit topology, mathematical model, and
control structure of SST have been examined. In Section 3, the details of the proposed
linear-based closed-loop control method are explained. Finally, in Section 4, the simulation
of the proposed control method has been performed, and the results have been evaluated.

2. Topological Structure of SST

A typical SST structure consists of three converter power stages with a cascade connec-
tion via a DC link capacitor. These power stages are a three-phase Active Front-End (AFE)
AC-DC Converter, Dual Active Bridge (DAB) DC-DC converter and three-phase DC-AC
inverter, respectively. The general topological structure of SST with each circuit is given in
Figure 3.
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Since power semiconductor switches such as IGBTs or MOSFETs are utilized in the
SST structure, closed-loop control with good dynamic response along with bidirectional
power flow could be adapted. The aforementioned power stages utilized in SST have been
comprehensively analyzed in upcoming sections.
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2.1. Three-Phase Active Front-End AC-DC Converter

The three-phase AC-DC converter circuit, shown in Figure 3, is operated as an active
front-end to stabilize the DC link bus voltage by generating control pulses with the Space
Vector Pulse Width Modulation (SVPWM) technique in a closed-loop control manner [17,18].
By increasing the switching frequency within the limit values, it is possible to reduce the
Total Harmonic Distortion (THD) of the input current in an AFE converter controlled
by SVPWM. Additionally, by using SVPWM, the pulse width times of the switches are
modulated very quickly in real time, thus providing PFC under ohmic-inductive load
conditions. The control structure of the AFE consists of voltage and current control loops,
which are illustrated in Figure 4.
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Initially, phase voltages (va, vb, vc) are measured in the voltage loop followed by the
calculation of α and β components (Vα, Vβ) of the voltages by utilizing Clarke Transforma-
tion. Rotation angle (θ) in vector space, which is essential for the current loop, is obtained
by the decomposition of the Vα and Vβ values with an analog/linear phase-locked loop
(PLL) loop [19,20]. Phase currents (ia, ib, ic) are also measured in the current loop, and
then d and q components (Id, Iq) of the phase currents are calculated using Clarke–Park
Transformations [21].

The voltage control loop consists of two nested PI (proportional-integral) controllers
where the first PI controller has the output voltage (Vout) and reference voltage (Vre f ) as the
input values to calculate the reference value for the d-component of the current (idre f ). The
second PI controller of the voltage control loop accepts Id value and the idre f value to output
the d-component of the voltage (Vd). In order to have a unity power factor, q-component of
the grid current has to become zero; therefore, iqre f value, which is defined as the reference
value of the q-component, has to be set to zero in the PI controller of the current loop.
Hence, q-component of the voltage (Vq) is gathered at the output of the PI controller.

Once Vd and Vq values are gathered initially, Vα, Vβ then va, vb and vc voltages can be
calculated by utilizing Inverse Park and Inverse Clarke Transformations, respectively, so
that va, vb and vc voltages can be used as inputs to the SVPWM block in order to obtain the
switching signals for the AFE converter. The transformation equations used in the control
system are given below [21].

Clarke Transformation:
Iα =

2
3
·Ia −

1
3
·(Ib − Ic) (1)

Iβ =
2√
3
·(Ib − Ic) (2)
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Inverse–Clarke Transformation:

va = Vα (3)

vb =
(−Vα) +

(√
3
)
·Vβ

2
(4)

vc =
(−Vα)−

(√
3
)
·Vβ

2
(5)

Park Transformation:
Id = Iα·cos(θ) + Iβ·sin(θ) (6)

Iq = Iβ·cos(θ)− Iα·sin(θ) (7)

Inverse Park Transformation:

Vα = Vd·cos(θ)− Vq·sin(θ) (8)

Vβ = Vq·cos(θ) + Vd·sin(θ) (9)

The expressions of the d and q components of the input voltage and current in the
time domain are given in (10) and (11), respectively (L1: line inductance, R1: line resistance,
w: angular frequency).

L1·
did
dt

= w·L1·iq + vd − R1·id −
∣∣∣→v d

∣∣∣ (10)

L1·
diq
dt

= −w·L1·id + vq − R1·iq −
∣∣∣→v q

∣∣∣ (11)

In (10) and (11), all of the components are utilized in scalar form; hence, absolute
values of the voltage vectors (

→
v d,

→
v q) have been provided as input. The main reason why

the voltage vectors are produced is to have the active and reactive components of the input
currents separated so that they can be controlled individually and the input power factor
value can be kept as high as possible. The θ angle, which is used in Park and Inverse Park
Transformations, has been obtained as an outcome of the Clarke Transformation of the
three-phase input voltages to determine the angular velocity of the reproduced voltage
vectors on the reference frame.

The simulation circuit of the AFE converter and the corresponding parameters are
given in Figure 5 and Table 1, respectively.

Table 1. Simulation parameters (AFE).

Parameters Values

Input Voltage (Vin) 380 V AC
Output Voltage (Vout) 700 V
Line Frequency (f) 50 Hz
Switching Frequency (fsw) 20 kHz
Line Inductance (Lin) 200 µH
Output Capacitor (Cout) 1000 µF
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2.2. Dual Active Bridge DC-DC Converter

The DAB converter consists of two full-bridge topologies, with an HFT positioned in
the center (Figure 3). In this symmetrically structured DAB converter, the full bridge on
the primary side of the HFT operates similarly to an inverter, while the full bridge on the
secondary side operates as an AC-DC converter. Switch pairs (Q1–Q4, Q2–Q3) on cross
arms in bridges are turned on and turned off simultaneously with a duty ratio (D) of 50%.

DAB converter control is implemented through the Phase Shifting Modulation (PSM)
method, requiring a specific phase-shifting (ϕ) between Q1 and Q5 (as well as Q2 and Q6)
switches during the conduction and cut-off periods. During this phase-shifting period,
events such as power transfer, soft switching, and circuit control are performed [22].

The power transfer of the DAB converter is achieved via the leakage inductance (Llg)
of the HFT which is also the base parameter of the mathematical model of the circuit.
Leakage inductance voltage, vL(t) is the difference between the primary v1(t) and sec-
ondary v2(t) winding voltages of the HFT which are determined according to the switching
conditions. The ideal equivalent circuit of the DAB converter depending on Llg is given in
Figure 6 [23,24].
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The current waveform of the leakage inductance is needed to implement the mathe-
matical analysis of the DAB converter. The characteristics of voltage and current waveforms
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obtained according to PSM are shown in Figure 7, where two distinct operating modes
have been illustrated for one switching period. The results of the detailed mathematical
analysis of the operating modes are summarized in Table 2.
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Table 2. Summary of results for DAB converter operating modes.

Operating Modes: Mode-1 Mode-2

Time Interval t0 < t < t1 t1 < t < T/2
Leakage Inductance

Voltage (VL) Vs + n·Vout Vs − n·Vout

Leakage Inductance Current
(IL(t))

iL(t0) +
(Vs+n·Vout)

Llg
·t iL(t1) +

(Vs−n·Vout)
Llg

·(t − t1)

As seen in Figure 7, the waveform of the current flowing on the leakage inductance for
one switching period has a symmetrical shape; hence, the active power (PDAB) transferred
during this time period could be calculated utilizing Table 2.

PDAB(t) =
n·Vs·ϕ·(1 − 2·ϕ)

Llg· f
(12)

The power transferred from input to output (or vice versa) is a function of the turns
ratio of HFT, supply and output voltages, phase shift angle, leakage inductance value, and
switching frequency. It is possible to arrange the power flow direction either from source
to load or from load to source by adjusting the normalized phase shift value of ϕ, such that
(0 < ϕ < 0.5) or (ϕ > 0.5 or ϕ < 0) is selected respectively. In PSM, ϕ is the parameter that
is actively controlled in order to adjust the output voltage value, as illustrated in Figure 8
with the closed-loop voltage control system.



Electronics 2024, 13, 3253 8 of 20

Electronics 2024, 13, x FOR PEER REVIEW 8 of 21 
 

 

As seen in Figure 7, the waveform of the current flowing on the leakage inductance 
for one switching period has a symmetrical shape; hence, the active power (𝑃) trans-
ferred during this time period could be calculated utilizing Table 2. 𝑃(𝑡) = 𝑛. 𝑉௦. 𝜙. (1 − 2. 𝜙)𝐿. 𝑓  (12) 

The power transferred from input to output (or vice versa) is a function of the turns 
ratio of HFT, supply and output voltages, phase shift angle, leakage inductance value, and 
switching frequency. It is possible to arrange the power flow direction either from source 
to load or from load to source by adjusting the normalized phase shift value of 𝜙, such 
that (0 < 𝜙 < 0.5) or (𝜙 > 0.5 or 𝜙 < 0) is selected respectively. In PSM, 𝜙 is the param-
eter that is actively controlled in order to adjust the output voltage value, as illustrated in 
Figure 8 with the closed-loop voltage control system. 

 
Figure 8. Control structure of DAB converter. 

The simulation circuit of the DAB converter and the corresponding parameters are 
given in Figure 9 and Table 3, respectively. 

 
Figure 9. Simulation circuit of DAB converter. 

  

Figure 8. Control structure of DAB converter.

The simulation circuit of the DAB converter and the corresponding parameters are
given in Figure 9 and Table 3, respectively.
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Table 3. Simulation parameters (DAB).

Parameters Values

Input Voltage (Vin) 700 V
Output Voltage (Vout) 400 V
Switching Frequency (f) 20 kHz
Input Capacitor 1000 µF
Output Capacitor 1000 µF
Leakage Inductance (Llg) 100 µH
Turn Ratio (n) 1

2.3. Three-Phase DC-AC Inverter

The DC-AC stage of the SST has been built with a two-level, three-phase inverter
topology as shown in Figure 3, with which the SVPWM control scheme has been imple-
mented. The SVPWM control scheme is based on the rotation of a reference vector in αβ
reference frame with a predefined angular velocity. Implementation of PWM generation at
the output of the inverter depends on the sinusoidal three-phase voltages and the average
voltage to track these sinusoidal voltages by generating minimum harmonics.

In a two-level, three-phase inverter, there are 23 = 8 different applicable switching
states, which can be illustrated using mechanical switches (MS). Switching states (SA, SB, SC)
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of the MS is determined according to the position of the MS such that either “1” or “0”
position can be implemented. If “1” position is selected, then the output phase voltage
is connected to (VDC). Provided that “0” position is selected, the output phase voltage
becomes zero (GND).

SA,B,C =

{
1, VDC
0, GND

(13)

The control method for generating space vector voltages in a three-phase inverter in-
volves selecting appropriate switching states to create desired voltage vectors. By applying
the volt-second balance principle, these vectors produce sinusoidal currents in the three
phases. The inverter transitions between switching states to synthesize the required output
voltage. For active states (n = 1 to 6), the voltage vectors are proportional to 2/3·VDC and
are spaced 60 degrees apart in the complex plane, forming a hexagonal pattern. For zero
states (n = 0, 7), the output voltage is zero. This method ensures efficient and precise control
of the inverter output.

Space voltage vectors in state space are given with (14) and (15), which are used to
generate three-phase sinusoidal currents at the output of the inverter with the volt-second
balance principle [25].

→
v n =

2
3
·VDC·ej(n−1)·π/3 n = 1, 2, 3, 4, 5, 6 (14)

→
v n = 0 n = 0, 7 (15)

The simulation circuit of the two-level DC-AC inverter with the SVPWM control
scheme is given in Figure 10, and the corresponding simulation parameters are provided in
Table 4.
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Table 4. Simulation parameters (inverter).

Parameters Values

Input Voltage (Vin) 400 V
Output Voltage (Vout) 190 V AC
Switching Frequency ( f ) 20 kHz
Input Capacitor (Cin) 1000 µF
Output Filter Capacitor (C f ) 0.79 µF
Output Filter Inductor (L f ) 0.16 mH

3. Detailed Analysis of the Control Structure of the SST
3.1. Mathematical Analysis of the Control System for AFE Converter

In order to implement state space control of the AFE converter, which depends directly
on the d and q components (

→
v d and

→
v q) of the input three-phase voltage vectors, d and

q components of the current drawn from the source should be acquired and controlled
independently, as seen in (10) and (11).

First of all, reference amplitude values of the voltage vectors are determined based
on Equation (16) and (17) so that id(s) and iq(s) values could be achieved. Hence, voltage
vectors depending on PI coefficients could be obtained, as seen in (18) and (19).∣∣∣→v d

∣∣∣∗ = L1·
did
dt

+ R1·id ⇒ id(s) =
1

s·L1 + R1
·
∣∣∣→v d

∣∣∣∗ (16)

∣∣∣→v q

∣∣∣∗ = L1·
diq
dt

+ R1·iq ⇒ iq(s) =
1

s·L1 + R1
·
∣∣∣→v q

∣∣∣∗ (17)

In this case, voltage vectors can be rewritten based on the PI coefficients.∣∣∣→v d

∣∣∣ = vd + w·L1·iq −
(

Kp +
Ki
s

)
·(i∗d − id) (18)

∣∣∣→v q

∣∣∣ = vq + w·L1·id −
(

Kp +
Ki
s

)
·
(

i∗q − iq
)

(19)

By substituting (18) and (19) in (10) and (11), respectively, id and iq components can be
decoupled so that closed-loop current and voltage control can be implemented [26,27]

3.1.1. Development of the Voltage Control Loop for the AFE Converter

The voltage control loop is used for setting the output voltage level at a desired level
and for determining the reference value of the d component of the current (idre f ). The
transfer function of the output voltage acquired with the help of the voltage loop is given
in (20), where C1 is the output capacitor of the converter, Ts is the sampling period, KAFE
and TAFE parameters are proportional and time-constant components of the PI controller.

VC1(s)
V∗

C1(s)
=

1

1 +
[
C1·TAFE·s2· (1+3·Ts ·s)

0.75·KAFE ·(TAFE ·s+1)

] (20)

3.1.2. Development of the Current Control Loop for the AFE Converter

The current control loop can be designed simultaneously for id and iq components of
the input current though only the design details of id will be provided. Prior to specifying
the closed-loop transfer function of the current loop, it is essential to define some of the
parameters, which are the gain of the converter (G) and the ratio of the proportional
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coefficient to the integration coefficient defined as τ coefficient. Generalized transfer
function of the id current is given in (21).

id(s)
i∗d(s)

=
1(

1.5·Ts ·R1·τ
KAFE ·G

)
·s2 +

(
R1·τ

KAFE ·G

)
·s + 1

(21)

3.2. Mathematical Analysis of the Control System for DAB Converter

There are two distinct DAB converter closed-loop control systems designed one of
which is the voltage control loop for keeping the output voltage within the desired limits.
The voltage control signal acquired as a result of this control loop is utilized as a reference
value for the closed-loop current control [28–30].

3.2.1. Development of the Voltage Control Loop for the DAB Converter

The transfer function of the voltage loop covers the proportional coefficient KDAB,
integration coefficient KI1, the output voltage value VC2, the output capacitance value C2,
and the output impedance value Zout.

VC2(s)
V∗

C2(s)
=

(
− KI1

2·C2·Llg · f

)
s2 +

(
KDAB

2·C2·Llg · f +
1

C2·Zout

)
·s − KI1

2·C2·Llg · f

(22)

3.2.2. Development of the Current Control Loop for the DAB Converter

Input current of DAB converter (Itr1) is kept at a certain average level by the current
loop in order to limit the current stress on the semiconductor devices constructing the DAB
stage. The reference current value of the input current (I∗tr1) is determined by utilizing the
transfer function of the voltage loop.

Itr1(s)
I∗tr1(s)

=
1

1 +
(

VC2·(1−2·D)
2·n· f ·Llg

)
·s

(23)

3.3. Mathematical Analysis of the Control System for Inverter

The input voltage of the inverter circuit is essentially provided from the output of the
DAB converter; therefore, this should be taken into consideration when designing current
and voltage loops [31,32].

3.3.1. Development of the Voltage Control Loop for the Inverter

The transfer function of the control loop to determine the output voltage of the
SST contains the proportional coefficient Kinv, integration coefficient KI2, output filter
inductance L f and capacitance C f as provided in (24).

Vout(s)
V∗

out(s)
=

Kinv·s + KI2

L f ·C f ·s3 + C f ·Kinv·s2 + (Kinv·KI2 + 1)·s + Kinv·KI2
(24)

3.3.2. Development of the Current Control Loop for the Inverter

The output filter of a three-phase inverter consists of inductors (L f ) connected in series
on each phase and capacitors (C f ) connected in a star configuration designed to attenuate
high-frequency harmonics and stabilize the AC output. The precise values of L f and C f
are critical for properly tuning the control loop and optimizing the dynamic response
and harmonic attenuation of the system. The output current (Iout) of the SST is directly
regulated by the current loop of the inverter circuit, while the C f plays a crucial role in
minimizing the total THD of Iout. Under the condition of constant input voltage (VC2), input
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current (Itr2) of the inverter is controlled; however, the value of Itr2 is also the outcome of
the PWM signal states produced by the space vector control algorithm, as shown in (25).

Itr2(s)
I∗tr2(s)

∝ f (SA,B,C) (25)

The transfer function of the Iout provided in (26), covers the time constant of the
controller Tinv, values of output filter components R f and L f .

Iout(s)
I∗out(s)

=
Kinv·(1 + Tinv·s)·C f

L f ·C f ·s2 + R f ·C f ·s + 1
(26)

4. Simulation of a 10 kVA AC-AC Conversion System Built with 3-Stage SST

In this section, simulation results of the proposed linear-based control system for
a 10 kVA SST using the electrical parameters given in Tables 1–3 have been presented.
Although the control system of SST is complex, individual current and voltage loops are
designed for each topology (AC-DC, DC-DC, DC-AC) that constitutes SST in the simulation;
hence, the control system becomes simpler. While the interaction within the voltage loops
is determined by the DC link capacitor voltages (VC1, VC2), the feedback within the current
loops is processed through the amount of current transferred (Itr1, Itr2) between each stage.
The general structure of the proposed linear-based control system is given in Figure 11.
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Figure 11. The general structure of the proposed linear-based control system for SST.

The SST simulation circuit covering each power stage with the control systems men-
tioned above is illustrated in Figure 12, and the assessment of the circuit performance based
on the simulation results is provided below. It should be noted that the simulation circuits
given for DAB (Figure 9) and Inverter (Figure 10) are actually controlled independently and
consist of only the voltage loop. However, there are dependent voltage and current loops
for each topology that constitute the SST from the proposed linear-based control system.
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In the AC-DC converter stage, the utilization of the SVPWM technique enables the
power factor to achieve approximately 0.99 without the need for any additional component
under inductive load. Additionally, the transient state of the input current on the three-
phase grid side lasts for an average of 20 ms (Figure 13), after which the output voltage of
the AC-DC converter stabilizes and remains constant at 700 V. Since the voltage increase in
the transient region reaches approximately 735 V at most, the performance of the closed-
loop control system is considered successful (Figure 14).
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Figure 15 illustrates the waveforms of the primary winding voltage V1, secondary
winding voltage V2, and the current I(L1) flowing through the leakage inductance in the
DAB DC-DC converter. Additionally, the waveform of the output voltage from the DAB
converter is illustrated in Figure 16, reaching its peak value of 437 V within 17 ms and
subsequently stabilizing to the desired voltage level of 400 V in 40 ms. Even though a
voltage overshoot occurs at the output stage, it is observed that the dynamic response of
the DAB closed-loop control system is quite fast.
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As illustrated in Figure 15, the phase difference between the primary and secondary
winding voltages in the HFT indicates the successful implementation of PSM. This phase
difference is optimally determined in the time domain through the proposed control
method, with the phase-shifting value between the primary and secondary voltages being
approximately 4 µs.

This phase shift is a critical parameter for ensuring efficient system operation and
demonstrates the accuracy and effectiveness of the proposed control method. The determi-
nation of the optimal phase shift value is crucial for enhancing both system stability and
performance. Proper adjustment of the phase difference allows for maximum efficiency in
power transfer, significantly contributing to overall system efficiency.

Moreover, due to the linear-based nature of the proposed control method, the phase
shift value can be precisely adjusted and continuously monitored. This capability enables
the system to respond rapidly to changes in system dynamics and load variations. Thus,
the results clearly illustrate the superior performance and advantages of the proposed
control method in optimizing the phase-shifting mechanism within the HFT.

The PSM technique used in the DAB converter allows soft switching of the semi-
conductor devices so that each of the switches on the output bridge can switch under
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zero voltage conditions. The current and voltage waveforms of the Q5 switch, shown in
Figure 17, illustrate that soft switching is achieved.
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Based on the simulation results of the control system, output current and voltage can
reach the set value in 40 ms. Although the THD value increases in the transient region,
there is no significant change in the peak points of AC current/voltage levels. On the other
hand, it is observed that the THD value for the output current of the SST remains within the
maximum range of 4.20%, indicating that the proposed control method operates effectively
with good performance (Figure 18).
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One of the advantageous features of SST is its capability to allow bidirectional power
flow. In order to provide reverse power flow, the phase shift value of the DAB converter and
the reference idre f used in the control of the DC-AC inverter must be adjusted appropriately.
The most effective way to demonstrate bidirectional power flow in SST is by connecting
the output inverter to a three-phase voltage source instead of a static three-phase load,
allowing the input AFE stage of SST to serve as the output stage for reverse power flow
through the adjustment of appropriate ϕ and idre f values (Figure 19).
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Finally, the dynamic response of the Solid-State Transformer (SST) is expected to be ex-
ceptionally fast under various output loads and corresponding output currents. This rapid
response is particularly critical in applications where load conditions can change abruptly.
When the inverter stage operates as a current source, the system’s ability to swiftly adjust
the output current value in response to varying load conditions is significantly enhanced.

The key mechanism facilitating this rapid adjustment is the direct control of the current
id, as depicted in Figure 20. By manipulating the id value, the SST can precisely increase
or decrease the output current to match the changing demands of the load. This direct
control approach allows for a highly responsive system, ensuring that the SST can maintain
optimal performance and stability even under dynamic and fluctuating load conditions.
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Furthermore, the implementation of the current source operation in the inverter stage
provides several technical advantages. It allows for better regulation of output currents,
minimizing transient effects that can occur during sudden load changes. This not only
improves the overall efficiency of the SST but also contributes to the longevity and reliability
of the system by reducing stress on the components.

The IGBTs in the SST are switched at an average frequency of 20 kHz. Since this
switching frequency is not exceedingly high, significant noise issues are not anticipated
in the SST. Furthermore, with the selection of appropriate SiC-based IGBT [33] switches
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and a well-designed HFT [34], it is expected that the SST’s operating temperature will be
maintained at desired levels through either passive or active cooling methods [35].

In the experimental testing of this control method, a total of six loops—three for current
and three for voltage—need to be operated. Additionally, in the control system of any
converter, a signal obtained from the output of one loop serves as the input information for
another loop. As a result, some delays may occur during the experimental implementation
of the proposed control method. However, these delays occur over very short time intervals,
and modern DSP (Digital Signal Processing) and (Field-Programmable Gate Array) modules
are capable of executing such linear-based closed-loop control systems very quickly [36].

Through extensive simulation studies, the proposed control system demonstrated a
significant enhancement in the overall efficiency of SSTs, achieving approximately 96%.
In the efficiency calculation, the losses of the IGBT switches in each converter of the SST
were determined using the Level-2 Model [37,38]. These calculations were performed using
the IGBT parameters provided in Table 5. Additionally, loss calculations for the magnetic
components were conducted, but only for the DAB converter. This is because the magnetic
component losses in the AFE and inverter are negligible compared to the switch losses.
These results validate the effectiveness of the proposed system, highlighting its potential to
improve SST performance in practical applications.

Table 5. IGBT parameters used in the switching loss calculation according to the Level-2 model.

CONVERTER VCE VGE(th) gfs tf Cies Coes RCEon RG

AFE
900 V 2.1 V 8.7 S 4 ns 410 pF 45 pF 120 mΩ 12 ΩDAB

(Primary)

DAB
(Seconder) 650 V 2.2 V 4.9 S 8 ns 640 pF 45 pF 120 mΩ 6 Ω

Inverter

VCE: Maximum Collector-Emitter Voltage, VGE(th): Gate Threshold Voltage, gfs: Transconductance, tf: Fall
Time, Cies: Input Capacitance, Coes: Output Capacitance, RCEon: Collector-Emitter on Resistance, RG: Internal
Gate Resistance.

5. Conclusions

In this study, a 10 kVA SST system with a new linear-based closed-loop control system
has been designed by implementing individual closed-loop voltage and current control
stages for each power converter topology. In order to cope with the communication between
each power stage along with the identification of the reference values, the current flowing
between each power stage and the voltage across the interconnecting DC link capacitors
have been measured.

In order to evaluate the performance of the proposed control method, a general
simulation study has been implemented based on which power factor correction, soft
switching, and bidirectional power flow features have been achieved. Additionally, for
various output load conditions, the control system was found to have good dynamic
response along with good THD performance as low as 5%.

The proposed control method has several significant advantages compared to tradi-
tional methods. Firstly, its linear-based structure offers a simpler and more comprehensible
control strategy. Additionally, the closed-loop control system continuously monitors the
system’s performance through feedback mechanisms and makes immediate corrections,
which enhances overall system efficiency.

As a result, the proposed control method offers significant advantages by enabling
the SST to operate at high performance levels. Nonetheless, its certain limitations and
potential drawbacks should be considered, and appropriate measures should be taken.
If implemented and optimized correctly, this new control system can lead to substantial
improvements in SST performance.
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