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Abstract

Sequential convex combinations of multiple adaptive lattice filters using different exponential weighting factors in
cognitive radio (CR) channel identification framework have been considered in this presentation. First, the sequential
processing multichannel lattice stages (SPMLSs) are modified so as to be used in filter combination task. Then, two
different combination schemes, i.e., regular combination of multiple lattice filters (R-CMLF) and decoupled
combination of multiple lattice filters (D-CMLF), that utilize modified SPMLSs as filter structure have been proposed. A
modified Gram-Schmidt orthogonalization of multiple channels of data, which is constituted in multiple filter
combination task, is accomplished. A highly modular, regular, and reconfigurable filter structure, which is suitable for
cognitive radios, is achieved with the combination processing implemented in an order-recursive fashion. The mean
square deviation (MSD) performances of the schemes under stationary and nonstationary conditions have been
presented and compared with the performances of multiple combination of least mean square (M-CLMS), decoupled
combination of least mean square (D-CLMS) schemes, and component filters. It has also been shown that the fault
tolerances of the proposed schemes are better than those of the component filters due to the redundancy
introduced with combination processing, and that the proposed schemes bring together the desired adaptive filter
features such as fast convergence and low steady-state MSD levels, which do not normally coexist.

Keywords: Cognitive radio, CR, 5G, Combining filters, Channel identification, Lattice filters, Sequential processing

1 Introduction
Cognitive radio (CR) and 5G are two recent developments
in the design of next-generation wireless communica-
tion systems. CR is built on a software radio, functions
as an intelligent system that is aware of its environment
and uses the methodology of understanding-by-building
to learn from the environment, and adapts to statistical
variations in the input stimuli in order to establish reli-
able communication by efficient utilization of the radio
spectrum [1–4].
A typical CR cycle includes spectrum sensing, analy-

sis, reasoning, and adaptation to new operating parameter
steps [5]. CR can detect the availability of a portion of
frequency band through spectrum sensing and analysis
steps [6]. During the reasoning step, it determines the
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optimum operating parameters, so that no harmful inter-
ference to other users of the spectrum is generated due to
its transmission. In the adaptation step, the radio switches
to transmission and reception mode using its reconfig-
urability and reprogrammability property [7, 8], and tunes
its operating parameters according to its best response
strategy.
The concept of software radio as the backbone of CR on

the other hand relies on the development of DSP technol-
ogy that is flexible, reconfigurable, and reprogrammable
by software to adapt to an environment where there are
multiple services, standards, and frequency bands [8–11].
Correspondingly, the infrastructure in a software radio
system is generally required to use reconfigurable VLSI
hardware components such as DSP chip sets [12], FPGAs
[13], embedded processors [14], and even general purpose
processors [15].
An emerging requirement for CRs is location and envi-

ronment awareness that involvesmodeling the capabilities
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of human beings and bats for realization of advanced
and autonomous location and environment awareness
features [16, 17]. Adaptive positioning, determining the
coordinates of a cognitive radio in space, is a step towards
realization of accurate location awareness in cognitive
radios [18]. The author has recently proposed a receiver
(equalizer) architecture for use in cognitive MIMO-
OFDM radios that performs joint channel estimation and
data detection, addresses the receiver complexity prob-
lems, and contributes to the flexibility, reconfigurability,
and reprogrammability of receiver [19]. It was also shown
in [20–22] that this receiver architecture can be config-
ured for spectrum sensing as well as adaptive positioning
function of cognitive radio virtually at no cost.
In parallel with the developments in CR, 5G has been

introduced connoting features such as increased data
rates, spectral efficiency, and low latency through extreme
densification, massive MIMO, device-centric architec-
tures, millimeter wave, smarter devices, native support for
machine-to-machine (M2M) communication, and inter-
ference management [23, 24]. As the future mobile broad-
band will be largely driven by ultra-high-definition video
and as the things around us will be always connected, it
is envisioned that the new era of communication will be
dominated by the need for more capacity as well as spec-
trum, which will result in the integration of cognitive radio
concepts in 5G networks [25, 26].
Another important concept that can find application

in CRs is related to combining of adaptive filters [27].
When a priori knowledge about the filtering scenario is
limited or imprecise, as in a typical cognitive radio oper-
ational cycle [1], implementing the most adequate filter
structure and adjusting its parameters becomes a difficult
task, and inaccurate choices may result in poor perfor-
mance. An intelligent way to overcome this difficulty is
to rely on combining of adaptive filters, in an attempt to
improve their properties in terms of convergence, tracking
ability, steady-statemisadjustment, robustness, or compu-
tational cost. Combining adaptive filters can also improve
reliability by introducing redundant processing elements,
i.e., by stepping up the natural fault tolerance inherent in
adaptive filters. Note that the notion of improving relia-
bility by introducing redundancy is in line with the recent
developments in the field of reliable control, particularly,
with the application of a system augmentation approach
that reformulates the original system into a descrip-
tor piecewise affine system and then takes advantage of
the redundancy of this descriptor system formulation
[28, 29], and that the concept of adaptivity itself can be
considered as a form of intelligence built into a filtering
mechanism.
It is possible to combine adaptive filters implementing

different tasks or using different filter operating parame-
ters, structures, and learning algorithms [30]. The recent

examples of adaptive filter combination tasks include the
combination of adaptive filters from different families
such as one gradient and one Hessian based in [31], the
adaptive combination of proportionate filters for sparse
echo cancelation in [32], the adaptive combination of
subband adaptive filters for acoustic echo cancelation in
[33], the convex combination of H2 and H∞ filters for
space-time adaptive equalization in [34], the online track-
ing of the changes in the nonlinearity within a signal by
using a collaborative adaptive signal processing approach
based on a combination (hybrid) filter in [35], the adap-
tive combination of Volterra kernels and its application to
nonlinear echo cancelation in [36], the convex combina-
tion of nonlinear adaptive filters for active noise control
in [37], the combination of adaptive filters for relative
navigation in [38], finite impulse response (FIR)-infinite
impulse response (IIR) adaptive hybrid combination in
[39], the affine combination of two adaptive sparse filters
for estimating large-scale multiple-input multiple-output
(MIMO) channels in [40], the combinations of multiple
kernel adaptive filters in [41], the low-complexity approx-
imation to the Kalman filter using convex combinations
of adaptive filters from different families in [42], and the
proposition of a family of combined-step-size proportion-
ate filters in [43].
Two possible strategies for combining filters are con-

vex and affine combinations, where the mixing coefficient
is restricted to be nonnegative and sum up to one and
the condition on the mixing parameter is relaxed, allow-
ing it to be negative respectively [44–46]. In fact, the
affine combination scheme can be interpreted as a gen-
eralization of the convex combination since the mixing
coefficient is not restricted to the interval [0,1]. Even
though the affine combination scheme allows for smaller
error levels in theory, it suffers from larger gradient
noise in some situations [47]. The adaptation rule for
the mixing coefficient in affine combinations is simpler
than those in convex ones, and the correct adjustment of
the step size for the updating of the mixing coefficient
depends on some characteristics of the filtering scenario.
Accordingly, the desired universal behavior for the affine
combination, in which case the combined estimate is at
least as good as the best of the component filters in
steady state, cannot always be ensured, whereas convex
combinations have a built-in mechanism to attain such
universality [47].
Previously, plant identification via adaptive convex com-

bination of least mean square (LMS) transversal filters
with different step sizes and new algorithms for improved
adaptive convex combination of least mean square (LMS)
transversal filters were introduced in [48, 49] respectively.
In this presentation, the objective is to address the imple-
mentation issues related to combining adaptive filters by
developing modular, order-recursive, and reconfigurable
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combination schemes. In order to capture the statistical
variations in the CR environment, the combination of
multiple lattice filters with different exponential weight-
ing factors has been considered so as to bring together the
convergence properties of fast filters that have small expo-
nential weighting factors and steady-stateMSD properties
of slow filters that have large exponential weighting fac-
tors. Accordingly, the author envisions multiple adaptive
lattice filters as channels of sequential processing multi-
channel lattice stages (SPMLSs) [19–22, 50] and proposes
to sequentially combine these multiple lattice filters in a
CR channel identification task. In view of the aforemen-
tioned issues concerning convex vs. affine combinations,
the focus is on convex combinations of multiple adaptive
lattice filters.
As the first contribution, the regular combination of

multiple transversal filters in [49] is adapted to multiple
lattice filters, and then, as the second contribution, the
decoupled combination of two transversal filters in [49] is
extended to multiple filters and tailored to multiple lattice
filters by developing order-recursive algorithms for com-
bination processing and also by making use of orthogo-
nalized data and multichannel lattice filter parameters. To
the best of the author’s knowledge, neither schemes exist
in the literature. Note that a complete modified Gram-
Schmidt orthogonalization of multichannel input data,
which avoids matrix inversions and enables scalar only
operations, is attained, and this feature is considered criti-
cal, as matrix inversion is a major bottleneck in the design
of embedded receiver architectures [51]. Additionally, the
computational complexity as well as the performances of
the proposed lattice filter combination schemes in station-
ary and nonstationary channel identification scenarios are
investigated and compared to those of the multiple com-
bination of least mean square (M-CLMS) and decoupled
combination of least mean square (D-CLMS) schemes
in [49].
The organization of this paper is as follows. Section 2

is about the problem formulation in which channel model
and multiple channel identification are introduced. In
Section 3, the original SPMLS is initially introduced, and
then, the proposed modifications in the SPMLS are dis-
cussed. Subsequently, the regular combination of multiple
lattice filters (R-CMLF) and decoupled combination of
multiple lattice filters (D-CMLF) schemes are presented
in Sections 4 and 5 respectively. The experimental results
are accounted for in Section 6, and finally, Section 7 is
concerned with conclusions. (•)∗ represents the complex
conjugate of (•). (•)T and (•)H stand for the transpose and
the Hermitan transpose of (•) respectively. The variables i
and n are the time indexes related to data and coefficients
respectively, m is the index for the number of combining
filters, and finally, � stands for the stage number of lattice
filters.

2 Problem formulation
2.1 Channel model
The cognitive radio channel is modeled by using the
tapped delay line model [52, 53], and the channel output
signal, y(i), in this model is given by :

y(i) = wH(n)x(i) + u(i), i = 1, 2, . . . , n, (1)

where x(i) = [x(i), x(i − 1), . . . , x(i − N + 1)]T refers to
the input signal vector. u(i) is the channel noise signal at
time instant i and is a realization of white, independently
and identically distributed (i.i.d.) Gaussian random pro-
cess with zero mean and constant variance σ 2

u and is also
independent of x(i).
Herein, w(n) = [w0(n),w1(n), . . . ,wN−1(n)]T is the

channel coefficient vector defined over the entire obser-
vation interval 1 ≤ i ≤ n, and N is the channel length.
The channel coefficient vector in the model is assumed to
change in accordance with the first-order Markov process
in [54]:

w(n + 1) = a.w(n) + q(n), (2)

where q(n) represents an i.d.d. Gaussian-distributed ran-
dom zero-mean vector with diagonal covariance matrix
Q(n) = E

[
q(n)qH(n)

]
. Herein, E[ •] is defined as

the statistical expectation operator. The initial values of
the coefficient vector, wH(−1), are also assumed Gaus-
sian distributed with zero mean and variance σ 2

w and
independent of q(n), u(i), and x(i). a is a constant
close to 1.
For the channel defined by Eqs. (1) and (2), the degree

of nonstationarity is stated in [54, 55] as:

ξ(n) = E
[|qH(n)x(n)|2]
E[ |u(n)|2] . (3)

For slow statistical variations, ξ(n) is small, and typically
less than unity, whereas it is greater than unity for fast sta-
tistical variations, indicating that it is not advantageous to
build an adaptive filter to solve the tracking problem.

2.2 Multiple channel identification
Figure 1 depicts the multiple channel identification prob-
lem under consideration, in which information about the
channel and scenario is assumed available through CR’s
network, or through CR’s analysis, reasoning, and adapta-
tion cycles. The objective in this problem is to estimate the
coefficients of channel in (1) using multiple exponentially
weighted least squares (LS) adaptive filters, each of which
is implemented with a different exponential weight factor.
Accordingly, the optimal exponentially weighted LS solu-
tion for the coefficients of the mth filter can be found by
minimizing the following cost function:

Jm(n) =
n∑

i=1
λn−i
m

∣∣emn (i)
∣∣2 + δλnm‖Pm(n)‖22, (4)



Ozden EURASIP Journal on Advances in Signal Processing  (2018) 2018:45 Page 4 of 25

Fig. 1 A diagram of the multiple channel identification problem

at time instant n, where m = 1, 2, . . . ,M and is the index
for the component filters, and the use of prewindowing
is assumed. λm is the exponential weighting factor for the
mth filter. δ is a positive real number called the regu-
larization parameter [56]. Herein, the coefficient vector
of the mth adaptive filter, Pm(n), at time instant n, is
delineated as:

Pm(n) =[Pm,0(n),Pm,1(n), . . . ,Pm,Nm−1(n)]T , (5)

and its 2− norm is defined as ‖Pm(n)‖2 =(∑Nm−1
k=0 Pm,k(n)2

)1/2
. The mth estimation error at time

instant i, computed using the input signal at time instant i
and the filter coefficients at time instant n, is given by :

emn (i) = y(i) − PH
m(n)xm(i), i = 1, 2, . . . , n, (6)

where the input signal vector to the mth adaptive filter,
xm(i), at time instant i, is defined as :

xm(i) = [xm(i), xm(i − 1), . . . , xm(i − Nm + 1)]T . (7)

Note that xm(i) = x(i), ∀m, Nm is the length of the mth
filter.
Subsequently, the mth optimal coefficient vector is

found by differentiating Jm(n) with respect to Pm(n), set-
ting the derivative to zero, and solving for Pm(n) :

Popt
m (n) = R−1

xmxm(n)Rxmy(n), (8)

whereRxmxm(n) is theNm×Nm correlationmatrix of xm(i)
and is given by :

Rxmxm(n) =
n∑

i=1
λn−i
m xm(i)xHm(i) + δλnmI, (9)

in which the appearance of the second summational term
is due to the regularizing term δ λnm ‖Pm(n)‖22 in the
cost function Jm(n), and I is Nm × Nm identity matrix.
The Nm × 1 cross-correlation matrix of xm(i) and y(i) is
expressed as:

Rxmy(n) =
n∑

i=1
λn−i
m xm(i)y∗(i). (10)

Note that the channel length information can be avail-
able through the implementation of a channel length
estimation algorithm such as [57] in CR. Accordingly, the
lengths of all adaptive filters are assumed equal to the
length of the channel to be identified, that is, Nm = N . All
prediction and estimation errors hereafter are shown for
the end of the observation interval i = n.

3 Sequential multichannel lattice processing
In order to provide a modular, order-recursive, and
sequential solution to multiple filter combination prob-
lem, we propose to use SPMLSs, so that channels of
SPMLSs constitute multiple filters with different expo-
nential weighting factors. In the following, we first present
the original SPMLS and its algorithm utilizing the direct
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updating of a priori reflection coefficient form of process-
ing equations in [58, 59] respectively. We then introduce
the modifications to be implemented in the SPMLS in
order to be able use its channels as filters in a combination
task.

3.1 The original SPMLS
The original SPMLS has a block structure as shown in
Fig. 2, and the input signal vectors to the SPMLS are
defined as follows : the input forward prediction error
vector,

f�−1(n) =
[
f 0�−1(n), f 1�−1(n), . . . , . . . , f M−1

�−1 (n), f M�−1(n)
]T

,

(11)

the backward prediction error vector,

b�−1(n) =
[
b0�−1(n), b1�−1(n), . . . , . . . , bM−1

�−1 (n), bM�−1(n)
]T

,

(12)

and the estimation error vector,

e�−1(n) =
[
e0�−1(n), e1�−1(n), . . . , . . . , eM−1

�−1 (n), eM�−1(n)
]T

.

(13)

The elements of input forward and backward predic-
tion error vectors in Eqs. (11) and (12) are orthogonalized
by using self-orthogonalization processors (SOPs), which
are triangular-shaped processors in Fig. 2. The outputs of
SOPs are given in the orthogonalized forward prediction
error vector,

f̂�−1(n) =
[
f̂ 0�−1(n), f̂ 1�−1(n), . . . , . . . , f̂ M−1

�−1 (n), f̂ M�−1(n)
]T

(14)

and the orthogonalized backward prediction error vector,

b̂�−1(n) =
[
b̂0�−1(n), b̂1�−1(n), . . . , . . . , b̂M−1

�−1 (n), b̂M�−1(n)
]T

.

(15)

Fig. 2 A diagram of the original SPMLS
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Fig. 3 A diagram of the modified SPMLS

The elements of f̂�−1(n) are fed into a forward pre-
diction reference-orthogonalization processor (ROP) in
order to predict the elements of b�−1(n − 1) and to pro-
duce the stage output back prediction error vector b�(n).
The elements of b̂�−1(n) are similarly fed into a ROP
to perform M-channel joint process estimation and to
produce the stage output estimation error vector e�(n).
Subsequently, the elements of b̂�−1(n) are delayed and
are also fed into another ROP to obtain the stage output
forward prediction error vector f�(n).
There are two types of processing cells, single and

double circular processors in a SPMLS, and the com-
plete SPMLS algorithm, which includes the processing
equations in these cells, is provided in Table 1.

3.2 Modification of the SPMLS
In combining multiple filters, we take into account that
input signals to all combining filters are the same as
indicated in the sentence right after (7) and modify

the SPMLS by removing all single circular cells in self-
orthogonalizing processors and redundant single circular
cells in referential-orthogonalizing processors. Accord-
ingly, the modified SPMLS does not have the orthogonal-
ized forward and backward prediction errors that consti-
tute the vectors in Eqs. (14) and (15). It neither includes
the cross-estimation error terms in the ROP related to
the joint-process estimation. The modified SPMLS and its
algorithm are presented in Fig. 3 and Table 2 respectively.

4 Combinations of multiple lattice filters
In this section, we present the development of two com-
bination schemes, namely, the R-CMLF and D-CMLF
schemes, in order to sequentially combine multiple adap-
tive lattice filters. Even if these schemes may look similar,
there is an important difference between them. In the
R-CMLF scheme, combination parameters and mixing
coefficients are computed globally at the last stage of com-
bining filters and then are fed back to prior stages, whereas
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Table 1 The original SPMLS algorithm

Stage inputs and initialization

b̄1m(n) = bm�−1(n), f̄
1
m(n) = fm�−1(n), ē

1
m(n) = em�−1(n) (T.1.1)

γ f
�−1,1(n) = γ�−1(n − 1), γ b

�−1,1(n) = γ�−1(n) (T.1.2)

rb
�−1,k(−1) = rf

�−1,k(−1) = δ, (k = 1, . . . ,M) (T.1.3)

κ̄b
kj(−1) = κ̄ f

kj(−1) = 	e
kυ(−1) = 	f

kυ(−1) = 	b
kυ(−1) = 0.0 (T.1.4)

(k = 1, . . . ,M), (j = k + 1, . . . ,M), (υ = 1, . . . ,M)

For k=1,. . . ,M

Computations at SOPs

b̂k�−1(n) = b̄kk(n), f̂
k
�−1(n) = f̄ kk (n) (T.1.5)

rb
�−1,k(n) = λ rb

�−1,k(n − 1) + γ b
�−1,k(n) | b̂k�−1(n) |2 (T.1.6)

γ b
�−1,k+1(n) = γ b

�−1,k(n)− | γ b
�−1,k(n) |2| b̂k�−1(n) |2 /rb

�−1,k(n) (T.1.7)

rf
�−1,k(n) = λ rf

�−1,k(n − 1) + γ f
�−1,k(n) | f̂ k�−1(n) |2 (T.1.8)

γ f
�−1,k+1(n) = γ f

�−1,k(n)− | γ f
�−1,k(n) |2| f̂ k�−1(n) |2 /rf

�−1,k(n) (T.1.9)

For j=k+1,. . . ,M

b̄k+1
j (n) = b̄kj (n) − κ̄b∗

kj (n − 1) b̂k�−1(n) (T.1.10)

κ̄b
kj(n) = κ̄b

kj(n − 1) + γ b
�−1,k(n) b̄

k+1∗
j (n)b̂k�−1(n)/r

b
�−1,k(n) (T.1.11)

f̄ k+1
j (n) = f̄ kj (n) − κ̄ f ∗

kj (n − 1) f k�−1(n) (T.1.12)

κ̄ f
kj(n) = κ̄ f

kj(n − 1) + γ f
�−1,k(n) f̄

k+1∗
j (n)f̂ k�−1(n)/r

f
�−1,k(n) (T.1.13)

End

For υ = 1, . . . ,M

Joint process estimation (ROP)

ek+1
υ (n) = ekυ(n) − 	e∗

kυ(n − 1) b̂k�−1(n) (T.1.14)

	e
kυ(n) = 	e

kυ(n − 1) + γ b
�−1,k(n) e

k+1∗
ν (n)bk�−1(n)/r

b
�−1,k(n) (T.1.15)

Forward error prediction (ROP)

f k+1
υ (n) = f kυ(n) − 	f ∗

kυ(n − 1) b̂k�−1(n − 1) (T.1.16)

	f
kυ(n) = 	f

kυ(n − 1) + γ b
�−1,k(n − 1) f k+1∗

ν (n)bk�−1(n − 1)/rb
�−1,k(n − 1) (T.1.17)

Backward error prediction (ROP)

bk+1
υ (n) = bkυ(n − 1) − 	b∗

kυ(n − 1) f̂ k�−1(n) (T.1.18)

	b
kυ(n) = 	b

kυ(n − 1) + γ f
�−1,k(n) b

k+1∗
ν (n)f k�−1(n)/r

f
�−1,k(n) (T.1.19)

End

End

Stage outputs

bm� (n) = bM+1
m (n), fm� (n) = f M+1

m (n), (T.1.20)

em� (n) = eM+1
m (n), γ�(n) = γ b

�−1,M+1(n) (T.1.21)

they are computed locally in the D-CMLF scheme and
therefore stage dependent. Hence, the total number of
combination parameters and mixing coefficients in the R-
CMLF andD-CMLF schemes isM andM×N respectively.

4.1 Regular combination of multiple lattice filters
A diagram of the R-CMLF scheme for M = 2 case,
that is, the regular combination of two lattice filters (R-
CTLF), is presented in Fig. 4. Two types of combination

processors are introduced into the filter structure in this
scheme: a type-1 combination processor per stage and a
type-2 processor to the final stage. In the following, we
present the development of combination algorithms that
will be implemented by type-1 and type-2 processors in
the R-CMLF scheme.
The estimate of equivalent desired signal in this scheme

is computed in terms of the backward prediction errors at
the output of the �th type-1 combination processor as:
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Table 2 The modified SPMLS algorithm

Stage inputs and initialization

γ f
�−1,1(n) = γ�−1(n − 1), γ b

�−1,1(n) = γ�−1(n) (T.2.1)

rb
�−1,k(−1) = rf

�−1,k(−1) = δ, (k = 1, . . . ,M) (T.2.2)

	e
�,k(−1) = 	f

�,k(−1) = 	b
�,k(−1) = 0.0, (k = 1, . . . ,M) (T.2.3)

For k=1,. . . , M

Computations at SOPs

rb
�−1,k(n) = λk rb�−1,k(n − 1) + γ b

�−1,k(n) | bk�−1(n) |2 (T.2.4)

γ b
�−1,k+1(n) = γ b

�−1,k(n)− | γ b
�−1,k(n) |2| bk�−1(n) |2 /rb

�−1,k(n) (T.2.5)

rf
�−1,k(n) = λk rf�−1,k(n − 1) + γ f

�−1,k(n) | f k�−1(n) |2 (T.2.6)

γ f
�−1,k+1(n) = γ f

�−1,k(n)− | γ f
�−1,k(n) |2| f k�−1(n) |2 /rf

�−1,k(n) (T.2.7)

Joint process estimation (ROP)

ek�(n) = ek�−1(n) − 	e∗
�,k(n − 1) bk�−1(n) (T.2.8)

	e
�,k(n) = 	e

�,k(n − 1) + γ b
�−1,k(n) e

k∗
� (n)bk�−1(n)/r

b
�−1,k(n) (T.2.9)

Forward error prediction (ROP)

f k� (n) = f k�−1(n) − 	f ∗
�,k(n − 1) bk�−1(n − 1) (T.2.10)

	f
�,k(n) = 	f

�,k(n − 1) + γ b
�−1,k(n − 1) f k

∗
� (n)bk�−1(n − 1)/rb

�−1,k(i − 1) (T.2.11)

Backward error prediction (ROP)

bk�(n) = bk�−1(n − 1) − 	b∗
�,k(n − 1) f k�−1(n) (T.2.12)

	b
�,k(n) = 	b

�,k(n − 1) + γ f
�−1,k(n) b

k∗
� (n)f k�−1(n)/r

f
�−1,k(n) (T.2.13)

End

Stage outputs

γ�(n) = γ b
�−1,M+1(n) (T.2.14)

d̂eq�,n(n) =
�∑

j=1

M∑

k=1
vk(n) 	∗

j,k(n − 1) bkj−1(n), (16)

where vk(n) and 	k,j(n) represent the kth mixing coeffi-
cient and the kth estimation error reflection coefficient of
the jth lattice stage at time instant n respectively. bkj−1(n)

is the kth backward prediction error at the entrance of
the jth stage at time instant n. The estimate of equiva-
lent desired signal can be expressed order-recursively as
follows :

d̂eq�,n(n) = d̂eq�−1,n(n) + vm(n) 	∗
�,m(n − 1) bm�−1(n), (17)

where � = 1, . . . ,N ,m = 1, . . . ,M, and d̂q0,n(n) = 0. Then,
Eq. (17) is substituted in:

eeq�,n(n) = d(n) − d̂eq�,n(n), (18)

to obtain the following expression:

eeq�,n(n)=d(n)−d̂eq�−1,n(n)−vm(n)	∗
�,m(n−1)bm�−1(n). (19)

Herein, d(n) represents the desired signal at time instant
n, which is the channel output signal y(n) in the chan-
nel identification problem. Subsequently, the equivalent
estimation error at the (� − 1)th stage is defined as:

eeq�−1,n(n) = d(n) − d̂eq�−1,n(n), (20)

in order to achieve the order-recursive expression for the
equivalent estimation error as:

eeq�,n(n) = eeq�−1,n(n) − vm(n) 	∗
�,m(n − 1) bm�−1(n). (21)

It can be similarly shown that the equivalent estima-
tion error, eeq�,n(n), at the output of the �th stage can also
be expressed in terms of estimation errors related to the
channels of SPMLSs as:

eeq�,n(n) =
M∑

k=1
vk(n)ek�,n(n), (22)

where ek�,n(n) is the kth estimation error of the �th stage.
The corresponding equivalent reflection coefficient at the
�th stage can be computed using mixing and reflection
coefficients at time instant n as:

	
eq
� (n) =

M∑

k=1
vk(n) 	�,k(n). (23)

Hence, Eqs. (17), (21), or (22) and (23) are implemented
in type-1 combination processors shown in Fig. 4.
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Fig. 4 A diagram of the R-CTLF scheme

Themth mixing coefficient at time instant n+1 is com-
puted at the output of the last lattice stage in a type-2
combination processor as follows:

vm(n + 1) = exp(am(n + 1))
β(n + 1)

, (24)

where m = 1, 2, . . . ,M, and am(n + 1) is the mth com-
bination parameter at time instant n + 1. Herein, the
normalization parameter at time instant n + 1, β(n + 1),
is computed according to:

β(n + 1) =
M∑

k=1
exp

(
ak(n + 1)

)
. (25)

Note that 0 < vm(n) < 1, ∀m, and
∑M

k=1 vk(n) = 1.
The time-update equation for the mth combination

parameter, am(n), can be accordingly expressed as:

am(n + 1) = am(n) − μa
2

∂eeqN ,n(n)2

∂am(n)
, (26)

in which μa is the step size. The derivation in (26) is
carried out so as to obtain the following expression:

am(n + 1) = am(n) − μa e
eq
N ,n(n)

∂eeqN ,n(n)

∂am(n)
. (27)

Equation (22) for � = N is subsequently utilized in eval-
uating ∂eeqN ,n(n)

∂am(n)
, and Eq. (27) is expressed as in the following

statement:

am(n + 1) = am(n) − μa e
eq
N ,n(n)

M∑

k=1

∂vk(n)

∂am(n)
ekN ,n(n),

(28)

wherem = 1, . . . ,M. The partial derivatives of vk(n) with
respect to am(n) are stated as follows:

∂vm(n)

∂am(n)
= vm(n) − vm(n)2, k = m

∂vk(n)

∂am(n)
= −vk(n) vm(n), k �= m.

(29)

The expressions in Eq. (29) corresponding to the partial
derivatives for k = m and k �= m cases are substituted
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in Eq. (28) to attain the following statement for the time-
update equation of themth combination parameter:

am(n + 1) = am(n) − μa e
eq
N ,n(n)

⎡

⎣(
vm(n) − vm(n)2

)
emN ,n(n)

−vm(n)
∑

k �=m
vk(n) ekN ,n(n)

⎤

⎦ .

(30)

Thereafter, Eq. (22) for � = N is once more used to
find an equivalent expression for the summation term,∑

k �=m
vk(n) ekN ,n(n), in Eq. (30) as follows:

eeqN ,n(n) − emN ,n(n) =
∑

k �=m
vk(n)ekN ,n(n), (31)

which is then substituted back in Eq. (30), and the final
expression for the time-update of the mth combination
parameter in terms of the indexm is attained as:

am(n+1) = am(n)−μa e
eq
N ,n(n)

(
emN ,n(n) − eeqN ,n(n)

)
vm(n),
(32)

where m = 1, . . . ,M. The term
(
emN ,n(n) − eeqN ,n(n)

)
in

Eq. (32) can give rise to a slowing down effect in the learn-
ing of combination parameters that usually occurs dur-
ing long stationary intervals during which the estimation
errors, emN ,n(n) and eeqN ,n(n), are close. In order to alleviate
this problem, a momentum term can be appended to the
statement in Eq. (32) as in the following :

am(n+1) = am(n)−μae
eq
N ,n(n)

(
emN ,n(n)−eeqN ,n(n)

)
vm(n)

+ρ(am(n)−am(n−1)), (33)

where 0 < ρ < 1 [49]. Accordingly, the new additive term
in Eq. (33) compensates the pernicious effect related to the
second term.
The mixing coefficients, vm(n), are then fed back to

type-1 combination processors so as to be used in the
computation of equivalent desired signals, estimation
errors, and equivalent reflection coefficients in Eqs. (17),
(21), or (22) and (23) respectively. We call the complete
algorithm as the R-CMLF algorithm, which includes the
modified SPMLS algorithm in Table 2 as well as the
combination algorithm presented in this subsection, and
summarize it in Table 3.
It is also possible to speed up the convergence of the

slower component filters by transferring a part of the
equivalent reflection coefficients to the reflection coeffi-
cients of the component filters that perform significantly
worse than the combined scheme. To accomplish this
objective, Eq. (T.3.9) in Table 3 regarding the computa-
tion of the mth joint state estimation lattice reflection
coefficient at the �th stage is modified by incorporating
the transfer parameter α and the equivalent reflection

coefficient 	
eq
� (n − 1) at the �th stage in the following

manner:

	e
�,m(n) = α(	e

�,m(n−1)+γ b
�−1,m(n)em

∗
� (n)bm�−1(n)/rb�−1,m(n))

+(1−α)	
eq
� (n−1). (34)

The permissible range for the transfer parameter is 0 <

α < 1, and the transfer of reflection coefficients is only
applied when the filtered quadratic estimation errorsmeet
the conditions discussed in [49] as indicators of worse
performance.

4.2 Decoupled combination of multiple lattice filters
A diagram of the D-CMLF scheme is presented forM = 2
case, which can be named as decoupled combination of
two lattice filters (D-CTLF), in Fig. 5. A type-3 combina-
tion processor in this case is inserted to each lattice stage.
In the sequel, we develop the combination algorithm that
will be implemented in a type-3 processor.
In order to compute the estimate of equivalent desired

signal at the output of the �th lattice stage in an order-
recursive manner, it is first stated as follows:

d̂eq�,n(n) =
�∑

j=1

M∑

k=1
vkj (n) 	∗

j,k(n − 1) bkj−1(n), (35)

where vkj (n) and	k,j(n) are the kth mixing and estimation
error reflection coefficients of the jth lattice stage at time
instant n respectively. bkj−1(n) is the kth backward predic-
tion error at the entrance of the jth stage at time instant i.
The estimate of equivalent desired signal can be expressed
order-recursively as follows :

d̂eq�,n(n) = d̂eq�−1,n(n)+ vm� (n) 	∗
�,m(n− 1) bm�−1(n), (36)

for � = 1, . . . ,N ,m = 1, . . . ,M, and d̂eq0,n(n) = 0. Note the
mixing coefficients are related to the �th stage in this case.
Subsequently, the equivalent estimation error at the

output of the �th stage is defined as :

eeq�,n(n) = d(n) − d̂eq�,n(n), (37)

where d(n) represents the desired signal at time instant n
as in the previous subsection, and Eq. (36) is substituted in
this equivalent estimation error expression to obtain the
following statement:

eeq�,n(n) = d(n)−d̂eq�−1,n(n)−vm� (n) 	∗
�,m(n−1) bm�−1(n).

(38)

The equivalent estimation error for the (� − 1)th stage
is similarly defined as :

eeq�−1,n(n) = d(n) − d̂eq�−1,n(n), (39)

and thereby the order-recursive equivalent estimation
error is expressed as:

eeq�,n(n) = eeq�−1,n(n) − vm� (n) 	∗
�,m(n − 1) bm�−1(n). (40)
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Table 3 The R-CMLF algorithm

Stage inputs

γ f
�−1,1(n) = γ�−1(n − 1), γ b

�−1,1(n) = γ�−1(n) (T.3.1)

rb
�−1,k(−1) = rf

�−1,k(−1) = δ, (k = 1, . . . ,M) (T.3.2)

	e
�,k(−1) = 	f

�,k(−1) = 	b
�,k(−1) = 	

eq
� (0) = 0.0, (k = 1, . . . ,M) (T.3.3)

For k=1, . . . ,M

Computations at SOPs

rb
�−1,k(n) = λk rb�−1,k(n − 1) + γ b

�−1,k(n) | bk�−1(n) |2 (T.3.4)

γ b
�−1,k+1(n) = γ b

�−1,k(n)− | γ b
�−1,k(n) |2| bk�−1(n) |2 /rb

�−1,k(n) (T.3.5)

rf
�−1,k(n) = λk rf�−1,k(n − 1) + γ f

�−1,k(n) | f k�−1(n) |2 (T.3.6)

γ f
�−1,k+1(n) = γ f

�−1,k(n)− | γ f
�−1,k(n) |2| f k�−1(n) |2 /rf

�−1,k(n) (T.3.7)

Joint process estimation (ROP)

ek�(n) = ek�−1(n) − 	e∗
�,k(n − 1) bk�−1(n) (T.3.8)

	e
�,k(n) = α(	e

�,k(n − 1) + γ b
�−1,k(n) e

k∗
� (n)bk�−1(n)/r

b
�−1,k(n)) + (1 − α)	

eq
� (n − 1) (T.3.9)

Combination processing (type-1 processor)

eeq� (n) = eeq� (n) + vk(n) ek�(n) (T.3.10)

	
eq
� (n) = 	

eq
� (n) + vk(n) 	e

�,k(n) (T.3.11)

Forward error prediction (ROP)

f k� (n) = f k�−1(n) − 	f ∗
�,k(n − 1) bk�−1(n − 1) (T.3.12)

	f
�,k(n) = 	f

�,k(n − 1) + γ b
�−1,k(n − 1) f k

∗
� (n)bk�−1(n − 1)/rb

�−1,k(n − 1) (T.3.13)

Backward error prediction (ROP)

bk�(n) = bk�−1(i − 1) − 	b∗
�,k(n − 1) f k�−1(n) (T.3.14)

	b
�,k(n) = 	b

�,k(n − 1) + γ f
�−1,k(n) b

k∗
� (n)f k�−1(n)/r

f
�−1,k(n) (T.3.15)

End

Combination processing (type-2 processor)

For k=1,. . . ,M

ak(n + 1) = ak(n) − μa e
eq
N (n)

(
ekN(n) − eeqN (n)

)
vk(n) + ρ

(
ak(n) − ak(n − 1)

)
(T.3.16)

β(n + 1) = β(n + 1) + ea
k(n+1) (T.3.17)

vk(n + 1) = ea
k(n+1)

β(n + 1)
(T.3.18)

End

Stage outputs

γ�(n) = γ b
�−1,M+1(n) (T.3.19)

It can be shown that the equivalent estimation error,
eeq�,n(n), at the output of the �th stage can also be expressed
in terms of estimation errors related to the channels of
SPMLSs as:

eeq�,n(n) =
M∑

k=1
vk�(n)ek�,n(n), (41)

where ek�,n(n) is the kth estimation error of the �th stage.
Similarly, the equivalent reflection coefficient at the �th
stage is stated in accordance with :

	
eq
� (n) =

M∑

k=1
vk�(n)	�,k(n). (42)

Hence, the definition of mixing coefficient for the mth
channel of the �th stage is stated as :

vm� (n + 1) = exp(am� (n + 1))
β�(n + 1)

. (43)

Herein, am� (n+ 1) and β�(n+ 1) are themth combination
parameter and the normalization factor at time instant
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Fig. 5 A diagram of the D-CTLF scheme

n + 1 for the �th stage respectively. The normalization
factor is defined as:

β�(n + 1) =
M∑

k=1
exp

(
ak�(n + 1)

)
. (44)

Note that 0 < vm� (n) < 1,∀m and �, and
∑M

k=1 vk�(n) = 1.
It follows that the time-update equation for the mth

combination parameter at the �th stage, am� (n), can be
stated by making use of the gradient descent method as:

am� (n + 1) = am� (n) − μa
2

∂eeq�,n(n)2

∂am� (n)
, (45)

in which μa is the step size. The derivation in (45) is
carried out so as to obtain the following expression:

am� (n + 1) = am� (n) − μa e
eq
�,n(n)

∂eeq�,n(n)

∂am� (n)
. (46)

Equation (41) is subsequently utilized in evaluating
∂eeq�,n(n)

∂am� (n)
, and Eq. (46) is expressed as in the following state-

ment:

am� (n + 1) = am� (n) − μa e
eq
�,n(n)

M∑

k=1

∂vk�(n)

∂am� (n)
ek�,n(n),

(47)

wherem = 1, . . . ,M and � = 1, . . . ,N . The partial deriva-
tives of vk�(n) with respect to am� (n) are found as follows:

∂vm� (n)

∂am� (n)
= vm� (n) − vm� (n)2, k = m

∂vk�(n)

∂am� (n)
= −vk�(n) vm� (n), k �= m.

(48)

The expressions in Eq. (48) corresponding to the partial
derivatives for k = m and k �= m cases are substituted
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in Eq. (47) to obtain the following statement for the time-
update equation of themth combination parameter at the
�th stage:

am� (n + 1)= am� (n)−μa e
eq
�,n(n)

⎡

⎣(
vm� (n)−vm� (n)2

)
em�,n(n)

− vm� (n)
∑

k �=m
vk�(n) ek�,n(n)

⎤

⎦.

(49)

Afterwards, Eq. (41) is used to find an equivalent expres-
sion for the summation term,

∑

k �=m
vk�(n) ek�,n(n), in Eq. (49)

as follows:

eeq�,n(n) − em�,n(n) =
∑

k �=m
vk�(n)ek�,n(n), (50)

which is again used in Eq. (49) and the redundant term,
and the final expression for the time-update of the mth
combination parameter at the �th stage in terms of the
indicesm and � is given as:

am� (n+1) = am� (n)−μa e
eq
�,n(n) (em�,n(n)−eeq�,n(n))vm� (n),

(51)

where � = 1, . . . ,N and m = 1, . . . ,M. Accordingly, the
D-CMLF algorithm is presented in Table 4.

Table 4 The D-CMLF algorithm

Stage inputs

γ f
�−1,1(n) = γ�−1(n − 1), γ b

�−1,1(n) = γ�−1(n) (T.4.1)

rb
�−1,k(−1) = rf

�−1,k(−1) = δ, (k = 1, . . . ,M) (T.4.2)

	e
�,k(−1) = 	f

�,k(−1) = 	b
�,k(−1) = 	

eq
� (0) = 0.0, (k = 1, . . . ,M) (T.4.3)

For k =1, . . . ,M

Computations at SOPs

rb
�−1,k(n) = λk rb�−1,k(n − 1) + γ b

�−1,k(n) | bk�−1(n) |2 (T.4.4)

γ b
�−1,k+1(n) = γ b

�−1,k(n)− | γ b
�−1,k(n) |2| bk�−1(n) |2 /rb

�−1,k(n) (T.4.5)

rf
�−1,k(n) = λk rf�−1,k(n − 1) + γ f

�−1,k(n) | f k�−1(n) |2 (T.4.6)

γ f
�−1,k+1(n) = γ f

�−1,k(n)− | γ f
�−1,k(n) |2| f k�−1(n) |2 /rf

�−1,k(n) (T.4.7)

Joint process estimation (ROP)

ek�(n) = ek�−1(n) − 	e∗
�,k(n − 1) bk�−1(n) (T.4.8)

	e
�,k(n) = α(	e

�,k(n − 1) + γ b
�−1,k(n)e

k∗
� (n)bk�−1(n)/r

b
�−1,k(n)) + (1 − α)	

eq
� (n − 1) (T.4.9)

Combination processing (type-3 processor)

eeq� (n) = eeq� (n) + vk�(n) e
k
�(n) (T.4.10)

	
eq
� (n) = 	

eq
� (n) + vk�(n) 	e

�,k(n) (T.4.11)

ak�(n + 1) = ak�(n) − μa e
eq
� (n) (ek�(n) − eeq� (n)) vk�(n) + ρ (ak(n) − ak(n − 1)) (T.4.12)

β�(n + 1) = β�(n + 1) + ea
k(n+1)

� (T.4.13)

vk�(n + 1) = ea
k
�(n+1)

β�(n + 1)
(T.4.14)

Forward error prediction (ROP)

f k� (n) = f k�−1(n) − 	f ∗
�,k(n − 1) bk�−1(n − 1) (T.4.15)

	f
�,k(n) = 	f

�,k(n − 1) + γ b
�−1,k(n − 1) f k

∗
� (n)bk�−1(n − 1)/rb

�−1,k(n − 1) (T.4.16)

Backward error prediction (ROP)

bk�(n) = bk�−1(n − 1) − 	b∗
�,k(n − 1) f k�−1(n) (T.4.17)

	b
�,k(n) = 	b

�,k(n − 1) + γ f
�−1,k(n) b

k∗
� (n)f k�−1(n)/r

f
�−1,k(n) (T.4.18)

End

Stage outputs

γ�(n) = γ b
�−1,M+1(n) (T.4.19)
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In order to avoid the slowing down of learning effect
in long stationary intervals, the modification of the time-
update equation can be carried out by adding a momen-
tum term to the statement in Eq. (51) as in:

am� (n + 1) = am� (n) − μa e
eq
�,n(n) (em�,n(n) − eeq�,n(n))

×vm� (n) + ρ(am� (n) − am� (n − 1)),
(52)

where 0 < ρ < 1 as before. To speed up the convergence
of the slower component filters, Eq. (T.4.9) in Table 4,
which is related to the computation of the mth joint state
estimation lattice reflection coefficient at the �th stage, is
modified as in Eq. (34).

5 Computational complexity
The computational complexity of the proposed schemes
can be accordingly calculated by taking into consideration
the effect of modifications on the complexity of a SPMLS
and the added complexity due to combination processing
in Eqs. (22) or (23), (24) and (25), and (32) in the R-CMLF
scheme and Eqs. (41) or (42), (43) and (44), and (51) in
the D-CMLF scheme. Note that computational complex-
ity is expressed in terms of number of required operations,
where one operation is considered as one multiplication
(division) and one addition.
Due to the removal of all single circular cells in self-

orthogonalizing processors and redundant single circular
cells in referential-orthogonalizing processors of a SPMLS
in combining multiple lattice filters, the complexity of
a SPMLS reduces from (12M2 + 7M) to (12M2 + M).
Therefore, the total complexity for the R-CMLF scheme
is (12NM2 + 2MN + 3M + 1), whereas it is (12NM2 +
5MN +N) for the D-CMLF scheme. If the convergence of
the slower component filters is required to be sped up by
transferring a part of the equivalent reflection coefficients
to the reflection coefficients of the component filters, the
complexities of the proposed schemes increase due to

the transfer term in Eq. (34), and momentum terms in
Eqs. (33) and (52), which together amount to an additional
complexity of (2MN+5M−N+3). Accordingly, the total
complexities for the R-CMLF and D-CMLF schemes with
transfer and momentum (t/m) terms become (12NM2 +
4MN + 8M − N + 4) and (12NM2 + 7MN + 5M + 3)
respectively.
The computational complexities vs. filter length(N)

curves of the R-CMLF andD-CMLF schemes forM = 2, 4,
and 8 cases, that is, R-CTLF, R-CTLF with t/m terms,
D-CTLF, D-CTLF with t/m terms, regular combination
of four lattice filters (R-CFLF), R-CFLF with t/m terms,
decoupled combination of four lattice filters (D-CFLF),
D-CTLF with t/m terms, regular combination of eight lat-
tice filters (R-CELF), R-CELF with t/m terms, decoupled
combination of eight lattice filters (D-CELF), and D-CELF
with t/m terms have been plotted in Figs. 6, 7, and 8
respectively.
We have also compared the complexities of the pro-

posed methods with those of M-CLMS whenM = 2, 4, 8,
and D-CLMS schemes in [49]. Note that the complexities
of M-CLMS and D-CLMS schemes are 3MN + 5M + 1
and 10N + 3 respectively and that these complexities also
increase by an amount of 2MN + 5M − N + 3 when
the transfer and momentum terms are implemented. In
these figures, it can be seen that the complexities of the
M-CLMS and D-CLMS schemes are advantageous com-
paring to the R-CMLF and D-CMLF schemes mainly
due to the well known simplicity of LMS filters, and
this advantage becomes larger with increasing number
of combining filters (M). However, it can be also noted
that the complexities of transfer and momentum terms
are comparable to those of the core M-CLMS and D-
CLMS schemes, and therefore, the addition of transfer
and momentum terms influences the complexities of M-
CLMS and D-CLMS schemes more noticeably.

Fig. 6 Computational complexity comparison forM = 2
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Fig. 7 Computational complexity comparison forM = 4

In Fig. 9, the complexities of the proposed schemes
with different values of combining filters are compared.
It can be noticed that there is slight difference between
the complexities of the R-CMLF and D-CMLF schemes,
and this difference disappears with increasing M. For
N = 30, the R-CTLF and D-CTLF schemes are approx-
imately 3.9810 and 3.1622 times less complex than the
R-CFLF and D-CFLF schemes respectively, whereas the
R-CFLF and D-CFLF schemes are around 4.4668 less
complex than the R-CELF and D-CELF schemes. Note
that, when making the aforementioned comparison, the
slight complexity differences between the R-CFLF and
D-CFLF, and the R-CELF and D-CELF schemes respec-
tively have been ignored. The computational complexity
expressions of the proposed methods as well as those of
the M-CLMS and D-CLMS schemes are summarized in
Table 5.

6 Simulation study
As mentioned in Section 1, CR is an intelligent system
that can adapt to statistical variations in the input stim-
uli in order to establish reliable communications. In this
section, we consider two different simulation scenarios of
channel identification in order to demonstrate that the
proposed combination schemes can cope with statisti-
cal variations in the input stimuli better than component
filters and that they can improve reliability in communi-
cations. Accordingly, the performances of the proposed
schemes as well as component filters are presented in
terms MSD(n) vs. number of iterations (n) plots, where
MSD(n) is defined as:

MSD(n) =‖ w(n) − 	(n) ‖22, (53)

at time instant n. Herein, w(n) and 	(n) represent
the coefficients of the channel to be identified and

Fig. 8 Computational complexity comparison forM = 8
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Fig. 9 Computational complexity comparison of the proposed schemes for different values of M

the corresponding lattice identification filter respectively.
We also carried out the same experiments with the
M-CLMS and D-CLMS schemes in [49] so as to pro-
vide comparison with the performances of the proposed
methods.
Taking into account the model in Eq. (1), the channel to

be identified in our experiments had 12 coefficients, and
two cases for the input x(n) was considered: white and
colored Gaussian noise input cases. The filter with the fol-
lowing input-output relationship was used to generate the
input signal x(n) to the channel:

x(n) = η x(n − 1) + (
√
1 − η2) υ(n), (54)

in which υ(n) is a white Gaussian zero-mean noise pro-
cess with unit variance. In the white Gaussian noise
input case, η = 0.0, whereas in the colored Gaussian
input case, η = 0.9. The channel noise, u(n), is also
a white zero-mean Gaussian noise with a variance of
σ 2
u = 0.01 and is added to the channel output signal in all

experiments.
The channel coefficients were changed in accordance

with Eq. (2). Under stationary operating conditions,

Table 5 Computational complexity comparison

R-CMLF 12NM2 + 2MN + 3M + 1

R-CMLF with t/m terms 12NM2 + 4MN + 8M − N + 4

D-CMLF 12NM2 + 5MN + N

D-CMLF with t/m terms 12NM2 + 7MN + 5M + 3

M-CLMS 3MN + 5M + 1

M-CLMS with t/m terms 5MN + 10M − N + 4

D-CLMS 10N + 3

D-CLMS with t/m terms 2MN + 5M + 9N + 6

q(n) = 0, ∀n, and under nonstationary operating con-
ditions, q(n) represents an identically and independently
Gaussian distributed random zero-mean vector with diag-
onal covariance matrixQ(n) as was introduced in Section 2.
Under both stationary and nonstationary operating con-
ditions, the initial values of the channel coefficients
were zero-mean Gaussian distributed with a variance of
σ 2
w = 0.1, so that they were between − 1 and 1. These

initial values were kept constant under stationary oper-
ating conditions, whereas they were allowed to change
in accordance with Eq. (2) under nonstationary operating
conditions.
In order to imbibe the channel output signal with alter-

nating slow and fast statistical variations in accordance
with Eq. (3) under nonstationary operating conditions, the
trace of Q(n) was selected so as to take turns between
two different values. Particularly, it was 12 × 10−6 dur-
ing the following number of iterations: 0 ≤ n ≤ 1500,
3500 ≤ n ≤ 5500, and 7500 ≤ n ≤ 9000, whereas
it was 12 × 10−2 for 1501 ≤ n ≤ 3499, 5501 ≤ n ≤
7499 with the values of the degree of nonstationarity
alternating between ξ(n) ≈ 0.0345 and ξ(n) ≈ 3.465
respectively.
We considered the combination of four filters in the

simulation of the M-CLMS scheme. The following step
sizes for the M-CLMS and D-CLMS schemes were used
respectively: μ1 = 0.005,μ2 = 0.01,μ3 = 0.02,μ4 =
0.03, and μ1 = 0.005 and μ2 = 0.03. All experimental
results are ensemble averages of 100 independent runs.
The regularization parameter δ for the lattice filters was
set to 1.0.
During the simulations, we did not allow the mixing

coefficients, i.e., vm in the R-CMLF andM-CLMS schemes
or vm� in the D-CMLF and D-CLMS schemes, to increase
above a threshold value of ε in order to avoid the other
mixing coefficients getting too close to 0, which can stop
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Fig. 10MSD comparison for different numbers of combining filters under faulty operating conditions when input signal is white noise

the corresponding learning. Accordingly, it can be shown
that vm < ε in the R-CMLF and M-CLMS schemes or
vm� < ε in the D-CMLF and D-CLMS schemes are sat-
isfied if | am |≤ 0.5 log2((ε(M − 1)/(1 − ε))) = ε

′ or
| am� |≤ 0.5 log2((ε(M−1)/(1−ε))) = ε

′ [49].We used the
following ε values: ε = 1 − 0.09(M − 1) under stationary
operating conditions with white and colored noise input
as well as nonstationary operating conditions with colored
noise input, and ε = 1 − 0.001(M − 1) under nonstation-
ary operating conditions with white noise input. We also
implemented μa = 100 in order to adapt the combination
parameters in Eqs. (32), (33), (51), and (52).

6.1 Stationary operating conditions
The effect of faulty elements on the MSD performance
of component and combination filters under stationary
operating conditions was investigated so as to demon-
strate the intelligence gained in the form of fault tolerance

improvement with combination processing. Accordingly,
the number of coefficients of filter 2 was reduced from 12
to 6 while keeping the number coefficients of the other
filters at 12 in the proposed schemes. We considered
combinations of 2, 4, and 8 filters using the D-CMLF and
R-CMLF schemes, viz., R-CTLF and D-CTLF, R-CFLF
and D-CFLF, and R-CELF and D-CELF schemes. The
exponential weighting factors were the following:
λ1 = 0.995 and λ2 = 0.97 for the R-CTLF and D-CTLF
schemes; λ1 = 0.995, λ2 = 0.99, λ3 = 0.98, and λ4 = 0.97
for the R-CFLF and D-CFLF schemes; and λ1 = 0.9995,
λ2 = 0.999, λ3 = 0.995, λ4 = 0.99, λ5 = 0.985, λ6 = 0.98
λ7 = 0.975, and λ8 = 0.97 for the R-CELF and D-CELF
schemes. The number of iterations were set as 4000.

6.1.1 White input case
Figure 10 provides the MSD performance comparison of
the R-CMLF and D-CMLF schemes with the performance

Fig. 11MSD comparison of the proposed schemes with those of the M-CLMS and D-CLMS schemes under faulty operating conditions when input
signal is white noise
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of filter 2 (faulty filter) for different numbers of combin-
ing filters. It can be seen in this figure that the perfor-
mance advantage of the proposed combination schemes
improves with the increasing number of combining filters.
Figure 11 compares the MSD performances of four com-
ponent filters of the R-CFLF and D-CFLF schemes, the
combination filters thereof as well as the performances
related to the M-CLMS and D-CLMS schemes. Note that
the number of coefficients of filter 2 of the M-CLMS and
D-CLMS schemes were also reduced to 6 to model the
faulty operation. It can be observed that the performance
of faulty filter is almost 2.5 dB worse than that of the
R-CFLF scheme, whereas it is about 2.0 dBworse than that
of the D-CFLF scheme. In addition, the M-CLMS and D-
CLMS schemes perform approximately 0.5 dB worse than
the D-CFLF scheme.
The plots of mixing coefficients vs. number of iterations

(n) under stationary operating conditions were fluctuating
with small variance around a constant value, and there-
fore, there was not much point in presenting the plots for
all n, so that we provide their time-averaged values, i.e.,
v̄m for the R-CFLF and M-CLMS schemes and v̄m� for the
D-CFLF and D-CLMS schemes in Table 6. Note that the
R-CFLF and M-LMS (M = 4) schemes have four mixing
coefficients, whereas the D-CFLF and D-LMS schemes
use 48(M × N = 4 × 12) and 24(M × N = 2 × 12) coef-
ficients respectively. It can be noticed in Table 6 that filter
2 of the R-CFLF and M-CLMS schemes, which is faulty,
contributes more than the other normal functioning three
filters and that the contribution of the second filter is more
in R-CFLF scheme than inM-CLMS scheme. On the other
hand, it can also be seen in Table 6 that the contributions
of all of the four filters are close till the eighth stage, after
which the proportion of contribution for the second fil-
ter lessens comparing to the other three filters. Finally, in
the case of D-CLMS scheme, it can be deduced that the
proportion of contribution of two filters does not change
much from stage to stage.

6.1.2 Colored input case
Figure 12 illustrates the effect of coloring the input
on the MSD performance of proposed schemes under
faulty operating conditions. Note that the parameter η of
Eq. (54) controls the coloring of the input, so that η = 0.0
and η = 0.9 correspond to the white and colored input
cases. It can be seen in Fig. 12 that, when the input is col-
ored, the performances of R-CFLF and D-CFLF schemes
degrade approximately 2.1 and 2.0 dB respectively com-
paring to the white input case.

6.2 Nonstationary operating conditions
The objective in this experiment is to display the advan-
tage of combination processing in reacting to nonsta-
tionary operating conditions. The combinations of four

Table 6 Comparison of time-averaged mixing coefficients under
stationary conditions

R-CFLF

v̄1 = 0.219662 v̄2 = 0.329039 v̄3 = 0.224948 v̄4 = 0.226642

D-CFLF

v̄11 = 0.250000 v̄21 = 0.250000 v̄31 = 0.250000 v̄41 = 0.250000

v̄12 = 0.260383 v̄22 = 0.245273 v̄32 = 0.243011 v̄42 = 0.248331

v̄13 = 0.260950 v̄23 = 0.238969 v̄33 = 0.240371 v̄43 = 0.256708

v̄14 = 0.259955 v̄24 = 0.238969 v̄34 = 0.240596 v̄44 = 0.259483

v̄15 = 0.259482 v̄25 = 0.235899 v̄35 = 0.240934 v̄45 = 0.260747

v̄16 = 0.258075 v̄26 = 0.235125 v̄36 = 0.241462 v̄46 = 0.262336

v̄17 = 0.256902 v̄27 = 0.234466 v̄37 = 0.242221 v̄47 = 0.263409

v̄18 = 0.307697 v̄28 = 0.137990 v̄38 = 0.267800 v̄48 = 0.283511

v̄19 = 0.300305 v̄29 = 0.146743 v̄39 = 0.267666 v̄49 = 0.282285

v̄110 = 0.294155 v̄210 = 0.155295 v̄310 = 0.267576 v̄410 = 0.279972

v̄111 = 0.287647 v̄211 = 0.167800 v̄311 = 0.266095 v̄411 = 0.275457

v̄112 = 0.283007 v̄212 = 0.180514 v̄312 = 0.263361 v̄412 = 0.270116

M-CLMS

v̄1 = 0.194679 v̄2 = 0.430737 v̄3 = 0.185233 v̄4 = 0.186599

D-CLMS

v̄11 = 0.439073 v̄21 = 0.560926

v̄12 = 0.439087 v̄22 = 0.560991

v̄13 = 0.438953 v̄23 = 0.561046

v̄14 = 0.438959 v̄24 = 0.560403

v̄15 = 0.438893 v̄25 = 0.561116

v̄16 = 0.439248 v̄26 = 0.560751

v̄17 = 0.437971 v̄27 = 0.562028

v̄18 = 0.436686 v̄26 = 0.563313

v̄19 = 0.437216 v̄29 = 0.562783

v̄110 = 0.436428 v̄210 = 0.563471

v̄111 = 0.437432 v̄211 = 0.562567

v̄112 = 0.436643 v̄212 = 0.563356

lattice filters, i.e., the R-CFLF and D-CFLF schemes, were
considered in this case using the exponential weight-
ing factors: λ1 = 0.995, λ2 = 0.99, λ3 = 0.98, and
λ4 = 0.97.

6.2.1 White input case
Figure 13 compares the MSD performances of combina-
tion filters related to the R-CFLF and D-CFLF schemes
with those of the component filters under nonstationary
operating conditions. The MSD performances were plot-
ted for the number of iterations between 3250 and 6250
in order to better display the convergence and tracking
behaviors of the filters. It can be seen in Fig. 13 that the
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Fig. 12 Effect of coloring the input on the MSD performance of the proposed schemes under faulty operating conditions

Fig. 13MSD comparison under nonstationary conditions when input signal is white noise

Fig. 14Mixing coefficients vs. number of iterations (n) when input signal is white
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component filters and the combination filters converge
to different levels of MSD between − 27.5 and − 34 dB
with different speeds in the slow statistical variation inter-
vals (ξ(n) ≈ 0.0345), whereas all of the filters merge to
almost the same level of MSD (0 dB) abruptly in the fast
statistical variation intervals (ξ(n) ≈ 3.4657). It can also
be observed in Fig. 13 that the component filters with
smaller exponential weights converge to higher steady-
state MSD levels, albeit faster, whereas the filters with
larger exponential weights approach to lower steady-state
MSD levels, although slowly. Accordingly, the combina-
tion filter brings together the desired features of com-
ponent filters, that is, the fast convergence of filters that
have smaller exponential weights with the low steady-state
MSD performance of filters that have larger exponential
weights.
Figure 14 displays the mixing coefficients of the R-CFLF

scheme, v1, v2, v3, v4, as a function of number of iterations
in blue color, and themixing coefficients related to the last
stage of the D-CFLF scheme, v112(n), v212(n), v312(n), v412(n),
in green color. It can be seen in the figure that filter 1 in
both schemes is the main contributor to the combination
filter in the steady state, whereas the other three filters
become conducive in the transient states, particularly, fil-
ters 3 and 4 in the first transition and filters 2 and 3 in the
second transition.
Figure 15 depicts the MSD performance compari-

son of the R-CFLF and D-CFLF schemes with those
of the M-CLMS and D-CLMS schemes under nonsta-
tionary conditions. The convergence properties of the
schemes are close; nevertheless, there are differences in
the steady-state MSD levels related to the slow statis-
tical variation intervals. Accordingly, the MSD perfor-
mance of the R-CFLF scheme is around 2 dB better than
the D-CFLF scheme, which outperforms the M-CLMS

and D-CLMS schemes by approximately 2 and 3 dB
respectively.
In the experiment related to Figs. 16 and 17, we trans-

ferred the coefficients of equivalent filters to the four
component filters in both of the proposed schemes in
accordance with Eq. (34), and these figures illustrate the
corresponding MSD performances of equivalent combi-
nation filters. The transfer term (α) in this experiment
was varied from α = 1.0, which corresponds to no
transfer case, to α = 0.2 in steps of 0.2. It can be
seen in the figures that the lower values of transfer term
cause the slower convergence of MSD curves to the
steady state. In addition, the MSD curves, when α �= 1,
converge more smoothly comparing to the case when
α = 1.0.
The experiments related to the momentum term in

Eqs. (33) and (52) for the R-CFLF and D-CFLF schemes
respectively were carried out for different values of the
momentum term (ρ), and the results are displayed in
Figs. 18 and 19. ρ = 0 case corresponds to using
no momentum term, whereas ρ = 1.0 is related to
adding the complete term. It can be seen in Fig. 18
that the minimum MSD steady state level for the R-
CFLF scheme is achieved when ρ = 1.0; on the other
hand, the minimum MSD steady state level for the
D-CFLF scheme is attained when ρ = 0.8. The con-
vergence of neither R-CFLF nor D-CFLF schemes was
affected with the use of different values of momentum
term.
The final step in this experiment consisted of using both

transfer and momentum terms. The possible combina-
tions are shown for the R-CFLF and D-CFLF schemes
in Figs. 20 and 21 respectively. The best MSD perfor-
mance for the R-CFLF scheme, as shown in Fig. 20, was
obtained with no transfer of coefficients (α = 1.0) and full

Fig. 15MSD comparison of the proposed schemes with those of the M-CLMS and D-CLMS schemes when input signal is white noise
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Fig. 16 Effect of coefficient transfer term on the MSD performance of the R-CFLF scheme when input signal is white noise

Fig. 17 Effect of coefficient transfer term on the MSD performance of the D-CFLF scheme when input signal is white noise

Fig. 18 Effect of momentum term on the MSD performance of the R-CFLF scheme when input signal is white noise



Ozden EURASIP Journal on Advances in Signal Processing  (2018) 2018:45 Page 22 of 25

Fig. 19 Effect of momentum term on the MSD performance of the D-CFLF scheme when input signal is white noise

Fig. 20 Effect of using both transfer and momentum terms on the MSD performance of the R-CFLF scheme when input signal is white noise

Fig. 21 Effect of using both transfer and momentum terms on the MSD performance of the D-CFLF scheme when input signal is white noise
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Fig. 22 Effect of coloring the input signal on the MSD performance of the proposed schemes

momentum term (ρ = 1.0), whereas the best result for
the D-CFLF scheme, shown in Fig. 21, was made possible
using α = 1.0 and ρ = 0.5.

6.2.2 Colored input case
The objective of the last experiment is to investigate the
effect of coloring input signal under nonstationary oper-
ating conditions on the MSD performance of proposed
schemes. In this perspective, Fig. 22 demonstrates the
MSD performance comparison of white and colored input
cases for the proposed schemes when no transfer and
momentum term (α = 1.0, ρ = 0.0 ) are implemented.
Clearly, when the input is colored, the performance
difference between the R-CFLF and D-CLFLF schemes
diminishes, and also, their performances worsen as much
as 9 and 8 dB respectively in the steady state comparing to
the white input case.

7 Conclusions
Two schemes, R-CMLF and D-CMLF, for the sequential
convex combination of lattice filters have been presented
in which the channels of modified SPMLSs represent
multiple filters. The main advantages of the proposed
combination schemes are that they are order-recursive
and conform to high modularity, regularity, and recon-
figurability of lattice filters. The MSD performances and
complexities of the proposed schemes are close; how-
ever, the D-CMLF scheme is more modular and better
complies with the structure of SPMLSs due to the use
of a single-in-stage combination processor as opposed
to the use of dual combination processors in the R-
CMLF scheme. It has also been illustrated that the pro-
posed schemes are better devised than a single filter
in reacting to faulty components and statistical varia-
tions in the input signal. In addition, it has been deter-
mined that the transfer of coefficients and the use of

momentum term do not have much effect on the per-
formance of the proposed schemes. Even though the
M-CLMS and D-CLMS schemes are less complex than
the proposed schemes, they perform worse than the pro-
posed schemes, and in addition, they do not have the
desired features such as modularity, order-recursiveness,
and reconfigurability.
The application of the proposed methods to sparse

channel equalization and identification problems in a cog-
nitive radio framework is considered as an area to be
explored. Another possibility for the future work can be to
investigate the performance of the proposed methods in
combining multiple adaptive lattice filters with different
operating parameters and learning algorithms in worst-
case scenarios where no assumptions are made about
disturbances in the channel.
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