dc.contributor.author | Herdem, Serap | |
dc.contributor.author | Büyükyazıcı, İbrahim | |
dc.date.accessioned | 2021-06-05T20:01:44Z | |
dc.date.available | 2021-06-05T20:01:44Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 1687-1847 | |
dc.identifier.uri | https://doi.org/10.1186/s13662-018-1766-9 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12960/1160 | |
dc.description | 0000-0001-5198-8029 | en_US |
dc.description | WOS:000443319300002 | en_US |
dc.description.abstract | In this paper, we define the q-analogue of the generalized linear positive operators introduced by Ibragimov and Gadjiev in 1970. We study some approximation properties of these new operators, and we show that this sequence of operators is a generalization of well-known q-Bernstein, q-Chlodowsky, and q-Szasz-Mirakyan operators as a particular case. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Pushpa Publishing House | en_US |
dc.relation.ispartof | Advances in Difference Equations | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Q-Calculus | en_US |
dc.subject | Q-Ibragimov-Gadjiev Operators | en_US |
dc.subject | Rate Of Convergence | en_US |
dc.subject | Modulus Of Continuity | en_US |
dc.subject | Peetre K-Functional | en_US |
dc.title | Ibragimov-Gadjiev operators based on q-integers | en_US |
dc.type | article | en_US |
dc.department | Mühendislik Fakültesi, Makine Mühendisliği Bölümü | en_US |
dc.department-temp | [Herdem, Serap] Piri Reis Univ, Dept Mech Engn, Fac Engn, Istanbul, Turkey; [Buyukyazici, Ibrahim] Ankara Univ, Dept Math, Fac Sci, Ankara, Turkey | en_US |
dc.contributor.institutionauthor | Herdem, Serap | |
dc.identifier.doi | 10.1186/s13662-018-1766-9 | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |