Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorHerdem, Serap
dc.contributor.authorBüyükyazıcı, İbrahim
dc.date.accessioned2021-06-05T20:01:44Z
dc.date.available2021-06-05T20:01:44Z
dc.date.issued2018
dc.identifier.issn1687-1847
dc.identifier.urihttps://doi.org/10.1186/s13662-018-1766-9
dc.identifier.urihttps://hdl.handle.net/20.500.12960/1160
dc.description0000-0001-5198-8029en_US
dc.descriptionWOS:000443319300002en_US
dc.description.abstractIn this paper, we define the q-analogue of the generalized linear positive operators introduced by Ibragimov and Gadjiev in 1970. We study some approximation properties of these new operators, and we show that this sequence of operators is a generalization of well-known q-Bernstein, q-Chlodowsky, and q-Szasz-Mirakyan operators as a particular case.en_US
dc.language.isoengen_US
dc.publisherPushpa Publishing Houseen_US
dc.relation.ispartofAdvances in Difference Equationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectQ-Calculusen_US
dc.subjectQ-Ibragimov-Gadjiev Operatorsen_US
dc.subjectRate Of Convergenceen_US
dc.subjectModulus Of Continuityen_US
dc.subjectPeetre K-Functionalen_US
dc.titleIbragimov-Gadjiev operators based on q-integersen_US
dc.typearticleen_US
dc.departmentMühendislik Fakültesi, Makine Mühendisliği Bölümüen_US
dc.department-temp[Herdem, Serap] Piri Reis Univ, Dept Mech Engn, Fac Engn, Istanbul, Turkey; [Buyukyazici, Ibrahim] Ankara Univ, Dept Math, Fac Sci, Ankara, Turkeyen_US
dc.contributor.institutionauthorHerdem, Serap
dc.identifier.doi10.1186/s13662-018-1766-9
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster