Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTumasyan, A.
dc.contributor.authorAdam, W.
dc.contributor.authorAndrejkovic, J.W.
dc.contributor.authorBergauer, T.
dc.contributor.authorÖzdemir, Kadri
dc.contributor.authorCMS Collaboration
dc.date.accessioned2022-09-02T09:38:04Z
dc.date.available2022-09-02T09:38:04Z
dc.date.issued2022en_US
dc.identifier.citationTumasyan, A. (2022). Identification of hadronic tau lepton decays using a deep neural network (No. CMS-TAU-20-001; CERN-EP-2021-257; FERMILAB-CONF-22-049-CMS; arXiv: 2201.08458). Fermi National Accelerator Lab.(FNAL), Batavia, IL (United States); Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), p. 1-53.en_US
dc.identifier.issn1748-0221
dc.identifier.urihttps://hdl.handle.net/20.500.12960/1436
dc.description.abstractnew algorithm is presented to discriminate reconstructed hadronic decays of tau leptons (τ h) that originate from genuine tau leptons in the CMS detector against τ h candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a τ h candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine τ h to pass the discriminator against jets increases by 10-30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient τ h reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved τ h reconstruction method are validated with LHC proton-proton collision data at s = 13 TeV.en_US
dc.language.isoengen_US
dc.publisherIOP Publishingen_US
dc.relation.ispartofJournal of Instrumentation (JINST)en_US
dc.relation.isversionof10.1088/1748-0221/17/07/P07023en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectCalibration and fitting methodsen_US
dc.subjectCluster findingen_US
dc.subjectLarge detector systems for particle and astroparticle physicsen_US
dc.subjectParticle identification methodsen_US
dc.subjectPattern recognitionen_US
dc.titleIdentification of hadronic tau lepton decays using a deep neural networken_US
dc.typearticleen_US
dc.authorid0000-0002-0103-1488en_US
dc.departmentMühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.contributor.institutionauthorÖzdemir, Kadri
dc.identifier.volume17en_US
dc.identifier.issue7en_US
dc.identifier.startpage1en_US
dc.identifier.endpage53en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster