dc.contributor.author | Tumasyan, A. | |
dc.contributor.author | Adam, W. | |
dc.contributor.author | Andrejkovic, J.W. | |
dc.contributor.author | Bergauer, T. | |
dc.contributor.author | Özdemir, Kadri | |
dc.contributor.author | CMS Collaboration | |
dc.date.accessioned | 2022-09-02T09:38:04Z | |
dc.date.available | 2022-09-02T09:38:04Z | |
dc.date.issued | 2022 | en_US |
dc.identifier.citation | Tumasyan, A. (2022). Identification of hadronic tau lepton decays using a deep neural network (No. CMS-TAU-20-001; CERN-EP-2021-257; FERMILAB-CONF-22-049-CMS; arXiv: 2201.08458). Fermi National Accelerator Lab.(FNAL), Batavia, IL (United States); Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), p. 1-53. | en_US |
dc.identifier.issn | 1748-0221 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12960/1436 | |
dc.description.abstract | new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons (τ h) that originate from genuine tau leptons in the CMS detector against τ h candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a τ h candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine τ h to pass the discriminator against jets increases by 10-30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient τ h reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved τ h reconstruction method are validated with LHC proton-proton collision data at s = 13 TeV. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | IOP Publishing | en_US |
dc.relation.ispartof | Journal of Instrumentation (JINST) | en_US |
dc.relation.isversionof | 10.1088/1748-0221/17/07/P07023 | en_US |
dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.subject | Calibration and fitting methods | en_US |
dc.subject | Cluster finding | en_US |
dc.subject | Large detector systems for particle and astroparticle physics | en_US |
dc.subject | Particle identification methods | en_US |
dc.subject | Pattern recognition | en_US |
dc.title | Identification of hadronic tau lepton decays using a deep neural network | en_US |
dc.type | article | en_US |
dc.authorid | 0000-0002-0103-1488 | en_US |
dc.department | Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.contributor.institutionauthor | Özdemir, Kadri | |
dc.identifier.volume | 17 | en_US |
dc.identifier.issue | 7 | en_US |
dc.identifier.startpage | 1 | en_US |
dc.identifier.endpage | 53 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |