dc.contributor.author | Çınarcı, Burcu | |
dc.contributor.author | Keller, Thomas Michael | |
dc.date.accessioned | 2023-04-13T07:49:21Z | |
dc.date.available | 2023-04-13T07:49:21Z | |
dc.date.issued | 2023 | en_US |
dc.identifier.citation | Çınarcı, B., & Keller, T. M. (2023). Linear group actions with at most three orbits of the largest size. Monatshefte für Mathematik, p. 1-10. | en_US |
dc.identifier.issn | 0026-9255 / 1436-5081 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12960/1485 | |
dc.description.abstract | Let G be a finite group and let V be a finite completely reducible faithful G-module, possibly of mixed characteristic. The second author and Yong Yang proved in previous work that | G: G′| ≤ M, where M is the largest orbit size of G on V. They also showed that if G is a nonabelian group and | G: G′| = M, then G is nilpotent having at least two orbits of maximal size M on V. In this paper, we deal with the latter case, where G is nonabelian and | G: G′| = M, and we classify all linear group actions in which G has at most three orbits of size M on V. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Monatshefte für Mathematik | en_US |
dc.relation.isversionof | 10.1007/s00605-023-01850-1 | en_US |
dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.subject | Commutator subgroup | en_US |
dc.subject | Finite group | en_US |
dc.subject | Linear group action | en_US |
dc.subject | Orbit size | en_US |
dc.title | Linear group actions with at most three orbits of the largest size | en_US |
dc.type | article | en_US |
dc.department | Denizcilik Meslek Yüksekokulu, Mekatronik Programı | en_US |
dc.contributor.institutionauthor | Çınarcı, Burcu | |
dc.identifier.startpage | 1 | en_US |
dc.identifier.endpage | 10 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |