Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorUday, Chand De
dc.contributor.authorYıldız, Ahmet
dc.contributor.authorÇetinkaya, Azime
dc.date.accessioned2021-06-05T19:56:07Z
dc.date.available2021-06-05T19:56:07Z
dc.date.issued2015
dc.identifier.issn1012-9405
dc.identifier.issn2190-7668
dc.identifier.urihttps://doi.org/10.1007/s13370-014-0282-7
dc.identifier.urihttps://hdl.handle.net/20.500.12960/155
dc.description0000-0002-9799-1781en_US
dc.descriptionWOS:000452882100005en_US
dc.description.abstractLet M be a 3-dimensional almost contact metric manifold satisfying (*) condition. We denote such a manifold by M*. At first we study symmetric and skew-synunetric parallel tensor of type (0, 2) in M*. Next we prove that a non-cosymplectic manifold M* is Ricci semisymmetric if and only if it is Einstein. Also we study locally phi-symmetry and eta-parallel Ricci tensor of M*. Finally, we prove that if a non-cosymplectic M* is Einstein, then the manifold is Sasakian.en_US
dc.language.isoengen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofAfrika Matematikaen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlmost Contact Metric Manifolden_US
dc.subjectRicci Semisymmetricen_US
dc.subjectLocally Phi-Symmetryen_US
dc.subjectEta-Parallel Ricci Tensoren_US
dc.titleCertain results on a type of contact metric manifolden_US
dc.typearticleen_US
dc.departmentDenizcilik Meslek Yüksekokulu, Deniz Brokerliği Programıen_US
dc.department-temp[De, Uday chand] Univ calcutta, Dept Pure Math, Kolkata 700019, W Bengal, India; [Yildiz, Ahmet] Inonu Univ, Fac Educ, TR-44280 Malatya, Turkey; [cetinkaya, Azime] Piri Reis Univ, Istanbul, Turkeyen_US
dc.contributor.institutionauthorÇetinkaya, Azime
dc.identifier.doi10.1007/s13370-014-0282-7
dc.identifier.volume26en_US
dc.identifier.issue7-8en_US
dc.identifier.startpage1229en_US
dc.identifier.endpage1236en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster