Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorCakır, Duygu
dc.contributor.authorArıca, Nafiz
dc.date.accessioned2024-01-26T08:54:30Z
dc.date.available2024-01-26T08:54:30Z
dc.date.issued2024en_US
dc.identifier.citationCakir, D., & Arica, N. (2024). Boosting Facial Action Unit Detection with CGAN-Based Data Augmentation. In Decision Making in Healthcare Systems (pp. 323-335). Cham: Springer International Publishing.en_US
dc.identifier.issn2198-4182
dc.identifier.urihttps://hdl.handle.net/20.500.12960/1566
dc.description.abstractContraction of the facial muscle movements is the key aspect of facial expression recognition tasks. The Facial Action Coding System (FACS) is the most widely used and accepted standard that provides a description of all major and minor visual changes in terms of action units (AUs) representing facial muscle movements. With the advancements of deep networks, the main problem shifted from detection or classification to finding sufficient amounts of data, especially when it comes to minor muscle movements on the face. This study employs Generative Adversarial Networks (GANs) as a data augmentation method for the task of AU detection on two spontaneous datasets (DISFA, BP4D) and one in-the-wild dataset (EmotioNet). Results show that AU detection scores increase using GANs when compared to using only traditional augmentation methods.en_US
dc.language.isoengen_US
dc.publisherSpringer Science and Businessen_US
dc.relation.ispartofStudies in Systems, Decision and Controlen_US
dc.relation.isversionof10.1007/978-3-031-46735-6_13en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAugmentationen_US
dc.subjectDataen_US
dc.subjectFacial action unit detectionen_US
dc.subjectGenerative adversarial networksen_US
dc.titleBoosting facial action unit detection with CGAN-based data augmentationen_US
dc.typearticleen_US
dc.authorid0000-0002-3810-5866 View this author’s ORCID profileen_US
dc.departmentMühendislik Fakültesi, Bilişim Sistemleri Mühendisliğien_US
dc.contributor.institutionauthorArıca, Nafiz
dc.identifier.volume513en_US
dc.identifier.startpage323en_US
dc.identifier.endpage335en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster