Tribological properties of dlc and glc coating for automotive engine components application under lubrication
Künye
Al-Samarai, R. A., & Al-Douri, Y. (2023). Tribological properties of DLC and GLC coating for automotive engine components application under lubrication.Özet
Modern automotive designs are needed to increase mechanical and thermal loads that have longer lifespans and are lighter. The power transmissions and motors often use low-friction hard coatings to prevent wear and reduce friction. The Cr-doped graphite-like carbon method is employed for evaluating coating friction and responses to chromium-doped graphite-like carbon (Cr-GLC) under lubrication. Cr-GLC coatings and chromium-doped diamond-like carbon (Cr-DLC) coatings are arranged using physical vapor deposition (PVD) and plasma-enhanced chemical vapor deposition (PECVD), respectively. The results have demonstrated in comparison to the dry friction coefficient, the friction coefficient under lubrication conditions has been reduced by 40%. Due to its excellent frictional physicochemical properties and compact microstructure, Cr-DLC has an optimum tribological resistance that is significantly higher than that of Cr-GLC. Viscosity, corrosivity, and coating microstructure are used to measure the impact of composite elements. The most ideal characteristics of the Cr-GLC coating are attributed to the non-reaction of additives in oil with friction surfaces.