Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÇakir, Duygu
dc.contributor.authorArıca, Nafiz
dc.date.accessioned2024-02-05T07:49:49Z
dc.date.available2024-02-05T07:49:49Z
dc.date.issued2023en_US
dc.identifier.citationCakir, D., & Arica, N. (2023). Cascading CNNs for facial action unit detection. Engineering Science and Technology, an International Journal, 47, 101553.en_US
dc.identifier.issn2215-0986
dc.identifier.urihttps://hdl.handle.net/20.500.12960/1586
dc.description.abstractThe contractions of facial muscles are what shape the expressions produced by the human face. The Facial Action Coding System (FACS) stands as the predominant standard in describing all visual alterations in the face, defining them through Action Units (AU) that articulate the movements occurring in the facial muscles. In this paper, an end-to-end pipeline, CCNN2, is proposed as a deep pre-processing step to detect AUs by processing the features extracted from hidden CNN layers, without exploiting any landmark information in a recursive manner. Trials conducted on three spontaneous datasets (MMI, DISFA, BP4D) along with one in-the-wild dataset (EmotioNet) demonstrate that this method surpasses the results of state-of-the-art approaches in three of the datasets, and even more, its two-module structure increases the overall F1 score in detection in every experiment. The method being proposed is also adaptable to a diverse range of classification applications.en_US
dc.language.isoengen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofEngineering Science and Technology, an International Journalen_US
dc.relation.isversionof10.1016/j.jestch.2023.101553en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectConvolutional neural networksen_US
dc.subjectFacial action unit detectionen_US
dc.subjectHidden featuresen_US
dc.titleCascading CNNs for facial action unit detectionen_US
dc.typearticleen_US
dc.authorid0000-0002-3810-5866en_US
dc.departmentMühendislik Fakültesi, Bilişim Sistemleri Mühendisliğien_US
dc.contributor.institutionauthorArica, Nafiz
dc.identifier.volume47en_US
dc.identifier.startpage1en_US
dc.identifier.endpage10en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster