Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÇınarcı, Burcu
dc.contributor.authorKeller, Thomas Michael
dc.date.accessioned2024-06-03T06:08:41Z
dc.date.available2024-06-03T06:08:41Z
dc.date.issued2024en_US
dc.identifier.citationÇınarcı, B., & Keller, T. M. (2024). The largest orbit sizes of linear group actions and abelian quotients. Journal of Algebra.en_US
dc.identifier.issn0021-8693
dc.identifier.urihttps://hdl.handle.net/20.500.12960/1643
dc.description.abstractLet G be a finite group and let V be a finite and faithful G-module such that V is completely reducible, possibly of mixed characteristic, or V is a G-module over a field of characteristic p with Op(G)=1. Suppose that M is the largest orbit size in the action of G on V. It is known that the index of the commutator subgroup G′ in G is bounded by M, that is, |G:G′|≤M. In this paper, we classify all linear group actions in which |G:G′|=M. It turns out that our classification is a vast generalization of a classic 1967 result by D. Passman. We also include an application of the main results to Brauer's k(B)-problem.en_US
dc.language.isoengen_US
dc.publisherAcademic Press Inc.en_US
dc.relation.ispartofJournal of Algebraen_US
dc.relation.isversionof10.1016/j.jalgebra.2024.05.012en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectClass 2-groupsen_US
dc.subjectCommutator subgroupsen_US
dc.subjectFinite linear groupsen_US
dc.subjectMaximal orbit sizeen_US
dc.titleThe largest orbit sizes of linear group actions and abelian quotientsen_US
dc.typearticleen_US
dc.departmentFen Edebiyat Fakültesi, Kimya Bölümüen_US
dc.contributor.institutionauthorKeller, Thomas Michael
dc.identifier.volume654en_US
dc.identifier.startpage1en_US
dc.identifier.endpage24en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster