dc.contributor.author | Çınarcı, Burcu | |
dc.contributor.author | Keller, Thomas Michael | |
dc.date.accessioned | 2024-06-03T06:08:41Z | |
dc.date.available | 2024-06-03T06:08:41Z | |
dc.date.issued | 2024 | en_US |
dc.identifier.citation | Çınarcı, B., & Keller, T. M. (2024). The largest orbit sizes of linear group actions and abelian quotients. Journal of Algebra. | en_US |
dc.identifier.issn | 0021-8693 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12960/1643 | |
dc.description.abstract | Let G be a finite group and let V be a finite and faithful G-module such that V is completely reducible, possibly of mixed characteristic, or V is a G-module over a field of characteristic p with Op(G)=1. Suppose that M is the largest orbit size in the action of G on V. It is known that the index of the commutator subgroup G′ in G is bounded by M, that is, |G:G′|≤M. In this paper, we classify all linear group actions in which |G:G′|=M. It turns out that our classification is a vast generalization of a classic 1967 result by D. Passman. We also include an application of the main results to Brauer's k(B)-problem. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Academic Press Inc. | en_US |
dc.relation.ispartof | Journal of Algebra | en_US |
dc.relation.isversionof | 10.1016/j.jalgebra.2024.05.012 | en_US |
dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.subject | Class 2-groups | en_US |
dc.subject | Commutator subgroups | en_US |
dc.subject | Finite linear groups | en_US |
dc.subject | Maximal orbit size | en_US |
dc.title | The largest orbit sizes of linear group actions and abelian quotients | en_US |
dc.type | article | en_US |
dc.department | Fen Edebiyat Fakültesi, Kimya Bölümü | en_US |
dc.contributor.institutionauthor | Keller, Thomas Michael | |
dc.identifier.volume | 654 | en_US |
dc.identifier.startpage | 1 | en_US |
dc.identifier.endpage | 24 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |