dc.contributor.author | Parthasarathy, Thirumalai Nallasivan | |
dc.contributor.author | Narayanamoorthy, Samayan | |
dc.contributor.author | Thilagasree, Chakkarapani Sumathi | |
dc.contributor.author | Marimuthu, Palanivel Rubavathi | |
dc.contributor.author | Salahshour, Soheil | |
dc.contributor.author | Ferrara, Massimiliano | |
dc.contributor.author | Ahmadian, Ali | |
dc.date.accessioned | 2024-06-03T06:14:35Z | |
dc.date.available | 2024-06-03T06:14:35Z | |
dc.date.issued | 2024 | en_US |
dc.identifier.citation | Parthasarathy, T. N., Narayanamoorthy, S., Thilagasree, C. S., Marimuthu, P. R., Salahshour, S., Ferrara, M., & Ahmadian, A. (2024). An enhanced fuzzy IDOCRIW-COCOSO multi-attribute decision making algorithm for decisive electric vehicle battery recycling method. Results in Engineering, 102272. | en_US |
dc.identifier.issn | 2590-1230 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12960/1644 | |
dc.description.abstract | An adaptation to electric mobility quickens waste management tasks for recyclers to end-to-end processing of marketed electric vehicle batteries. Especially lithium-ion batteries play a prominent role in electrifying the world for e-transport technology innovation. This research offers a multi-attribute decision-making (MADM) structure for finding the best performance e-vehicle recycling techniques. The structured algorithm combines an advanced stratified MADM strategy with e-transportation recycling techniques. The optimal algorithm evaluates the results of qualitative attributes and alternatives using a weighted-ranking MADM approach. The importance of attributes is calculated using a blending of dual objective-weighted approaches: entropy and CILOS methods, viz., the aggregated IDOCRIW approach. The ranking of alternatives is determined through the COCOSO method in a hesitation environment. The q-rung orthopair picture fuzzy set (q-ROPFS) is used to cope with uncertainty and vagueness in decision analysis. The feasibility and robustness of the suggested algorithm were validated through different MADM methods and by altering crucial ranking-dependent parameters in the problem. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartof | Results in Engineering | en_US |
dc.relation.isversionof | 10.1016/j.rineng.2024.102272 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | CILOS | en_US |
dc.subject | CoCoSo | en_US |
dc.subject | Electric vehicle | en_US |
dc.subject | Entropy | en_US |
dc.subject | q-rung picture fuzzy | en_US |
dc.title | An enhanced fuzzy IDOCRIW-COCOSO multi-attribute decision making algorithm for decisive electric vehicle battery recycling method | en_US |
dc.type | article | en_US |
dc.authorid | 10.1016/j.rineng.2024.102272 | en_US |
dc.department | Fen Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.contributor.institutionauthor | Salahshour, Soheil | |
dc.identifier.volume | 22 | en_US |
dc.identifier.startpage | 1 | en_US |
dc.identifier.endpage | 12 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |