Advanced Search

Show simple item record

dc.contributor.authorLiu, Zuozhi
dc.contributor.authorAli, Ali B. M.
dc.contributor.authorHussein, Rasha Abed
dc.contributor.authorSingh, Narinderjit Singh Sawaran
dc.contributor.authorAl-Bahrani, Mohammed
dc.contributor.authorAbdullaeva, Barno
dc.contributor.authorSaeidlou, Salman
dc.contributor.authorSalahshour, Soheil
dc.contributor.authorEsmaeili, Sh.
dc.date.accessioned2025-03-14T06:59:43Z
dc.date.available2025-03-14T06:59:43Z
dc.date.issued2025en_US
dc.identifier.citationLiu, Z., Ali, A. B., Hussein, R. A., Singh, N. S. S., Al-Bahrani, M., Abdullaeva, B., ... & Esmaeili, S. (2025). Using evolutionary algorithms and group method of data handling ANN for prediction of the viscosity MWCNT-ZnO/oil SAE 50 nano-lubricant. International Communications in Heat and Mass Transfer, 163, 108749.en_US
dc.identifier.issn0735-1933
dc.identifier.urihttps://hdl.handle.net/20.500.12960/1697
dc.description.abstractThis study looked at ANNs' ability to predict the rheological properties of MWCNT-ZNO / Oil SAE 50 nano lubricant. Five artificial intelligence algorithms-Group Method of Data Handling (GMDH), Extreme Gradient Boosting (XGBoost), Multivariate Adaptive Regression Splines (MARS), Support vector machine (SVM), and Multilayer Perceptron (MLP)-were employed in this work to forecast this nanofluid. The most optimum objective function (mu nf) as an output is the foundation of algorithms used in artificial intelligence. This capacity is developed so that the values predicted by ANN were more consistent with the laboratory numbers by combining GMDH with the metaheuristic approach. This combination enables the metaheuristic algorithm to optimize the evaluation indices and get the predicted data closer to the experimental data by using the GMDH activation parameters as input. For optimization, three metaheuristic algorithms are used, and the combination of GMDH and MOGWO produced the best results. Ultimately, the finest condition that could be achieved is found to have the following input data values: share rate (gamma), temperature (T), and solid volume fraction (phi): 0.0625 %, 50 degrees C, and 5499.6783 s-1 correspondingly.en_US
dc.language.isoengen_US
dc.publisherPERGAMON-ELSEVIER SCIENCE LTDen_US
dc.relation.ispartofINTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFERen_US
dc.relation.isversionof10.1016/j.icheatmasstransfer.2025.108749en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectNano-lubricanten_US
dc.subjectMeta-heuristicen_US
dc.subjectArtificial intelligence algorithmsen_US
dc.subjectMetaheuristic algorithmen_US
dc.titleUsing evolutionary algorithms and group method of data handling ANN for prediction of the viscosity MWCNT-ZnO /oil SAE 50 nano-lubricanten_US
dc.typearticleen_US
dc.authorid0000-0003-1390-3551en_US
dc.departmentFen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.contributor.institutionauthorSalahshour, Soheil
dc.identifier.volume163en_US
dc.identifier.startpage1en_US
dc.identifier.endpage13en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record