Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorRu, Yi
dc.contributor.authorAli, Ali B. M.
dc.contributor.authorBabadoust, Shahram
dc.contributor.authorHussein, Rasha Abed
dc.contributor.authorAl-Bahrani, Mohammed
dc.contributor.authorAbdullaeva, Barno
dc.contributor.authorSalahshour, Soheil
dc.contributor.authorSajadi, S. Mohammad
dc.contributor.authorEsmaeili, Sh
dc.date.accessioned2025-03-17T07:46:23Z
dc.date.available2025-03-17T07:46:23Z
dc.date.issued2025en_US
dc.identifier.citationRu, Y., Ali, A. B., Babadoust, S., Hussein, R. A., Al-Bahrani, M., Abdullaeva, B., ... & Esmaeili, S. (2025). Thermal behavior of silica aerogel-paraffin nanocomposites in a nanochannel under varying magnetic fields: A molecular dynamics study. Case Studies in Thermal Engineering, 66, 105778.en_US
dc.identifier.issn2214-157X
dc.identifier.urihttps://hdl.handle.net/20.500.12960/1708
dc.description.abstractThe demand for efficient energy conservation methods is growing amid rising fuel costs and greenhouse gas emissions. Phase change materials are essential for thermal energy storage, and silica aerogels, when combined with these materials, are particularly effective for insulation. This study presented a novel analysis of how various magnetic field strengths (ranging from 0 to 0.5 T) affected the thermal behavior of a nanostructure composed of silica aerogel, paraffin, and CuO nanoparticles in a cylindrical tube. Using molecular dynamics simulations, we examined the magnetic field's effect on key thermal properties, including density, temperature, heat flux, thermal conductivity, and the charging and discharging times. Results indicate that increasing the magnetic field strength to 0.5 T led to a decrease in maximum density from 0.1385 to 0.1372 atoms/& Aring;3. Additionally, the maximum velocity increased to 0.0142 & Aring;/fs, while the maximum temperature and heat flux rose to 646 K and 72.13 W/m2, respectively. The observed charging and discharging times were 5.91 ns and 8.52 ns, with stronger magnetic fields expediting the charging phase. These findings offer valuable insights into optimizing thermal energy storage systems through magnetic field modulation.en_US
dc.language.isoengen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofCase Studies in Thermal Engineeringen_US
dc.relation.isversionof10.1016/j.csite.2025.105778en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPhase change materialsen_US
dc.subjectSilica aerogelen_US
dc.subjectParaffinen_US
dc.subjectNanoparticlesen_US
dc.subjectMolecular dynamics simulationen_US
dc.subjectMagnetic fielden_US
dc.titleThermal behavior of silica aerogel-paraffin nanocomposites in a nanochannel under varying magnetic fields: A molecular dynamics studyen_US
dc.typearticleen_US
dc.authorid0000-0003-1390-3551en_US
dc.departmentFen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.contributor.institutionauthorSalahshour, Soheil
dc.identifier.volume66en_US
dc.identifier.startpage1en_US
dc.identifier.endpage11en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster