Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorRu, Yi
dc.contributor.authorAli, Ali B. M.
dc.contributor.authorQader, Karwan Hussein
dc.contributor.authorAbdulaali, Hanaa Kadhim
dc.contributor.authorJhala, Ramdevsinh
dc.contributor.authorIsmailov, Saidjon
dc.contributor.authorSalahshour, Soheil
dc.contributor.authorMokhtarian, Ali
dc.date.accessioned2025-03-17T07:58:50Z
dc.date.available2025-03-17T07:58:50Z
dc.date.issued2025en_US
dc.identifier.citationRu, Y., Ali, A. B., Qader, K. H., Abdulaali, H. K., Jhala, R., Ismailov, S., ... & Mokhtarian, A. (2025). Accurate prediction of the rheological behavior of MWCNT-Al2O3/water-ethylene glycol nanofluid with metaheuristic-optimized machine learning models. International Journal of Thermal Sciences, 211, 109691.en_US
dc.identifier.issn1778-4166
dc.identifier.urihttps://hdl.handle.net/20.500.12960/1709
dc.description.abstractThe accurate prediction of the rheological properties of nanofluids is critical for optimizing their application in various industrial systems. This study focuses on the dynamic viscosity prediction of MWCNT-Al2O3/water (80 %) and ethylene glycol (20 %) hybrid nanofluid using machine learning approaches. A multilayer perceptron neural network (MLPNN) was employed for viscosity prediction, and its structural and training parameters, including the number of hidden layers and neurons, learning rate, training technique, and transfer functions, were optimized using three metaheuristic algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Marine Predators Algorithm (MPA). A dataset containing viscosity measurements influenced by nanoparticle volume fraction (VF), temperature (T), and shear rate (SR) was utilized. The optimization algorithms were evaluated over 10 and 20 runs for single-hidden-layer (1HL) and double-hidden-layer (2HL) MLPNNs, respectively. For the 1HL-MLPNN models, all three algorithms achieved nearly identical performance with high predictive accuracy (R = 0.99992, MSE = 0.00176). In contrast, for 2HL-MLPNN models, PSO outperformed MPA and GA with R = 0.99995 and MSE = 0.00105, followed by MPA (R = 0.99995, MSE = 0.00123) and GA (R = 0.99992, MSE = 0.00160). Also, sensitivity analysis revealed the VF as the most significant input parameter affecting viscosity predictions, followed by shear rate and temperature. These findings demonstrate the potential of metaheuristic-optimized MLPNNs for high-accuracy prediction of hybrid nanofluid rheological properties, facilitating improved design and application in thermal management systems.en_US
dc.language.isoengen_US
dc.publisherElsevıer France-Edıtıons Scıentıfıques Medıcales Elsevıeren_US
dc.relation.ispartofInternational Journal of Thermal Sciencesen_US
dc.relation.isversionof10.1016/j.ijthermalsci.2025.109691en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHybrid nanofluiden_US
dc.subjectANNen_US
dc.subjectGenetic algorithmen_US
dc.subjectParticle swarm optimizationen_US
dc.subjectMarine predators' algorithmen_US
dc.subjectMachine learningen_US
dc.titleAccurate prediction of the rheological behavior of MWCNT-Al2O3/ water-ethylene glycol nanofluid with metaheuristic-optimized machine learning modelsen_US
dc.typearticleen_US
dc.departmentFen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.contributor.institutionauthorSalahshour, Soheil
dc.identifier.volume211en_US
dc.identifier.startpage1en_US
dc.identifier.endpage16en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster