Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorLiu, Hao
dc.contributor.authorBasem, Ali
dc.contributor.authorJasim, Dheyaa J.
dc.contributor.authorHashemian, Mohammad
dc.contributor.authorEftekhari, S. Ali
dc.contributor.authorAl-fanhrawi, Halah Jawad
dc.contributor.authorAbdullaeva, Barno
dc.contributor.authorSalahshour, Soheil
dc.date.accessioned2025-03-18T06:44:05Z
dc.date.available2025-03-18T06:44:05Z
dc.date.issued2025en_US
dc.identifier.citationLiu, H., Basem, A., Jasim, D. J., Hashemian, M., Eftekhari, S. A., Al-fanhrawi, H. J., ... & Salahshour, S. (2025). Multi-objective optimization of buckling load and natural frequency in functionally graded porous nanobeams using non-dominated sorting genetic Algorithm-II. Engineering Applications of Artificial Intelligence, 142, 109938.en_US
dc.identifier.issn1873-6769
dc.identifier.urihttps://hdl.handle.net/20.500.12960/1718
dc.description.abstractThis study investigates the fundamental natural frequency and critical buckling load of Functionally Graded Porous nanobeams supported by an elastic medium, addressing the need for optimized designs in advanced nanostructures. Utilizing a Genetic Algorithm and Non-Dominated Sorting Genetic Algorithm-II, the research aims to identify the Pareto front for these two objectives while incorporating surface effects. The nanobeam is modeled using Nonlocal Strain Gradient Theory and Gurtin-Murdoch surface elasticity theory, with governing equations solved via the Generalized Differential Quadrature Method based on Reddy's Third-order Shear Deformation Theory. Key input parameters, including temperature gradient, residual surface stress, porosity, and elastic foundation properties, are varied to train two Artificial Neural Networks for output prediction. Results indicate that for the fundamental frequency, significant factors include the material length scale and the Pasternak shear foundation parameter, while the critical buckling load is mainly influenced by the temperature gradient and the same material parameters. These findings provide critical insights for designers, allowing them to make informed decisions based on optimal values for eight input parameters.en_US
dc.language.isoengen_US
dc.publisherPergamon-Elsevier Science Ltd.en_US
dc.relation.ispartofEngineering Applications of Artifical Intelligenceen_US
dc.relation.isversionof10.1016/j.engappai.2024.109938en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNondominated sortingen_US
dc.subjectGenetic algorithmen_US
dc.subjectSurface effecten_US
dc.subjectPorous nanobeamen_US
dc.subjectNonlocal strain gradient theoryen_US
dc.subjectArtificial neural networksen_US
dc.titleMulti-objective optimization of buckling load and natural frequency in functionally graded porous nanobeams using non-dominated sorting genetic Algorithm-IIen_US
dc.typearticleen_US
dc.authorid0000-0003-1390-3551en_US
dc.departmentFen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.contributor.institutionauthorSalahshour, Soheil
dc.identifier.volume142en_US
dc.identifier.startpage1en_US
dc.identifier.endpage14en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster