Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorSawaran Singh, Narinderjit Singh
dc.contributor.authorHassan, Waqed H.
dc.contributor.authorAmeen Ahmed, Zainab Mоhammed
dc.contributor.authorAl-zahy, Younis Mohamed Atiah
dc.contributor.authorSalahshour, Soheil
dc.contributor.authorPirmoradian, Mostafa
dc.date.accessioned2025-03-24T07:12:18Z
dc.date.available2025-03-24T07:12:18Z
dc.date.issued2025en_US
dc.identifier.citationSingh, N. S. S., Hassan, W. H., Ahmed, Z. M. A., Al-zahy, Y. M. A., Salahshour, S., & Pirmoradian, M. (2025). Non-local piezoelasticity to incorporate the influence of small-scale factors on the resonance behavior of the Mindlin piezoelectric polymeric nanoplates. Case Studies in Chemical and Environmental Engineering, 101125.en_US
dc.identifier.issn2666-0164
dc.identifier.urihttps://hdl.handle.net/20.500.12960/1741
dc.description.abstractThis study presents an investigation into the vibration resonance of Mindlin piezoelectric polymeric nanoplates under electromechanical loading, particularly in the presence of a rotating nanoparticle. The novelty of this research lies in the application of non-local piezoelasticity, which effectively incorporates the influence of small-scale factors on the resonance behavior of the nanoplate. By employing a variational approach to derive the governing equations, this work advances the understanding of how various parameters such as the non-local parameter, dimensions of the nanoplate, excitation voltage, and mass of the nanoparticle affect resonance frequencies. The Galerkin method is utilized to solve the partial differential equations governing the dynamics of the piezoelectric polymeric nanoplate, marking a significant methodological contribution to the field. The incremental harmonic balance approach is then applied to estimate the system's resonance frequencies, with numerical simulations confirming their existence. This research not only elucidates the complex interactions affecting resonance behavior but also highlights the potential for optimizing the design of nanostructures in various applications, including sensors and energy-harvesting devices. The findings suggest that increasing the non-local parameter softens the nanoplate's rigidity, leading to decreased resonance frequencies, while modifications in dimensions and applied voltages can enhance these frequencies. Overall, this study lays the groundwork for future explorations into the dynamic behavior of piezoelectric materials, emphasizing the importance of small-scale effects in nanotechnology applications.en_US
dc.language.isoengen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofCase Studies in Chemical and Environmental Engineeringen_US
dc.relation.isversionof10.1016/j.cscee.2025.101125en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectElastic nanoplateen_US
dc.subjectIncremental harmonic balance methoden_US
dc.subjectMoving nanoparticleen_US
dc.subjectPiezoelectric polymeric materialen_US
dc.subjectVibration resonanceen_US
dc.titleNon-local piezoelasticity to incorporate the influence of small-scale factors on the resonance behavior of the Mindlin piezoelectric polymeric nanoplatesen_US
dc.typearticleen_US
dc.authorid0000-0003-1390-3551en_US
dc.departmentFen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.contributor.institutionauthorSalahshour, Soheil
dc.identifier.volume11en_US
dc.identifier.startpage1en_US
dc.identifier.endpage20en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster