Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYang, Jun
dc.contributor.authorAli, Ali B.M.
dc.contributor.authorAl-zahy, Younis Mohamed Atiah
dc.contributor.authorSawaran Singh, Narinderjit Singh
dc.contributor.authorAl-Bahrani, Mohammed
dc.contributor.authorOrlova, Tatyana
dc.contributor.authorRahimi, Mojtaba
dc.contributor.authorSalahshour, Soheil
dc.contributor.authorEsmaeili S.
dc.date.accessioned2025-03-24T08:38:21Z
dc.date.available2025-03-24T08:38:21Z
dc.date.issued2025en_US
dc.identifier.citationYang, J., Ali, A. B., Al-zahy, Y. M. A., Singh, N. S. S., Al-Bahrani, M., Orlova, T., ... & Esmaeili, S. (2025). The effect of copper oxide nanoparticles on the thermal behavior of silica aerogel/paraffin as a phase change material in a cylindrical channel with molecular dynamics simulation. Progress in Nuclear Energy, 181, 105645.en_US
dc.identifier.issn0149-1970
dc.identifier.urihttps://hdl.handle.net/20.500.12960/1745
dc.description.abstractThe thermal conductivity of phase change materials was substantially enhanced by nanoparticles, improving the overall performance of thermal energy storage systems through more efficient heat transfer during the phase change process. This study investigates the effect of varying amounts of copper oxide nanoparticles on the thermal behavior of silica aerogel/paraffin as a phase change material in a cylindrical channel. LAMMPS and molecular dynamics simulations were employed to analyze this using a computer program. Results show that the atomic sample density and velocity reached 0.1393 ų and 0.0119 Å/fs, respectively, with the addition of 5% nanoparticles to the target structure. The atomic samples also reached a maximum temperature of 635 K when 5% of nanoparticles were added. The heat flux and thermal conductivity increased from 66.43 W/m2 and 1.74 W/m·K to 71.25 W/m2 and 1.82 W/m·K with a CuO-NP concentration increase of 3%. Adding nanoparticles enhanced thermal conduction, improving the overall interaction between the PCM and the nanoparticles. This led to better thermal contact and reduced thermal resistance at interfaces. However, adding more nanoparticles may lead to agglomeration, where the nanoparticles cluster together instead of remaining evenly dispersed. This can negatively affect thermal properties, as agglomerated particles create larger voids in the material, reducing the effective contact area for heat transfer. Using molecular dynamics simulations provided valuable insights into optimizing nanoparticle concentration for improved thermal performance in energy storage applications.en_US
dc.language.isoengen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofProgress in Nuclear Energyen_US
dc.relation.isversionof10.1016/j.pnucene.2025.105645en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMolecular dynamics simulationen_US
dc.subjectNanocompositeen_US
dc.subjectNanoparticlesen_US
dc.subjectPhase change materialsen_US
dc.subjectSilica aerogelen_US
dc.titleThe effect of copper oxide nanoparticles on the thermal behavior of silica aerogel/paraffin as a phase change material in a cylindrical channel with molecular dynamics simulationen_US
dc.typearticleen_US
dc.authorid0000-0003-1390-3551en_US
dc.departmentFen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.contributor.institutionauthorSalahshour, Soheil
dc.identifier.volume181en_US
dc.identifier.startpage1en_US
dc.identifier.endpage10en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster