Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÖrenç, Sedat
dc.contributor.authorAcar, Emrullah
dc.contributor.authorÖzerdem, Mehmet Sıraç
dc.contributor.authorBakış, Enes
dc.date.accessioned2025-04-16T06:19:14Z
dc.date.available2025-04-16T06:19:14Z
dc.date.issued2024en_US
dc.identifier.citationÖrenç, S., Acar, E., Özerdem, M. S., & BakiŞ, E. (2024, December). Prediction of Electricity Production from Wind and Solar Energy by Employing Regression Models. In 2024 Global Energy Conference (GEC) (pp. 1-5). IEEE.en_US
dc.identifier.isbn979-833153261-1
dc.identifier.urihttps://hdl.handle.net/20.500.12960/1772
dc.description.abstractAccurately predicting electricity production from renewable energy sources is critical for sustainable energy systems. Wind and solar energy play key roles in reducing greenhouse gas emissions and reliance on fossil fuels. However, forecasting their production is challenging due to weather variability and seasonal changes. This study employs advanced regression models to predict energy production, including Linear Regression, Gradient Boosting, AdaBoost, XGBoost, and Random Forest. The dataset comprises hourly wind and solar energy data from France in 2020, containing 59,807 samples. Model performance was evaluated using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R2 metrics. Random Forest demonstrated the best performance, with an MAE of 219.30 MW, RMSE of 391.11 MW, and R2 of 0.97. XGBoost also showed strong results, achieving an MAE of 729.43 MW, RMSE of 1200.45 MW, and R2 of 0.75. These results highlight the Random Forest model's superior accuracy and reliability in capturing complex patterns. This work contributes to improving the integration of renewable energy into power grids by enhancing forecasting precision.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE Global Energy Conference 2024, GEC 2024en_US
dc.relation.isversionof10.1109/GEC61857.2024.10881522en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectElectricity production forecastingen_US
dc.subjectMachine learningen_US
dc.subjectRegression modelen_US
dc.subjectWind and solar energyen_US
dc.titlePrediction of Electricity Production from Wind and Solar Energy by Employing Regression Modelsen_US
dc.typeconferenceObjecten_US
dc.authorid0000-0003-0086-0206en_US
dc.departmentMühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.contributor.institutionauthorBakış, Enes
dc.identifier.startpage326en_US
dc.identifier.endpage330en_US
dc.relation.publicationcategoryKonferans Öğesi - Ulusal - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster