Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBakış, Enes
dc.contributor.authorAcar, Emrullah
dc.date.accessioned2025-04-16T06:36:21Z
dc.date.available2025-04-16T06:36:21Z
dc.date.issued2024en_US
dc.identifier.citationBakisş, E., & Acar, E. (2024, December). Deep Learning-Based Time Series Prediction of Micro Gas Turbine Power Output. In 2024 Global Energy Conference (GEC) (pp. 270-275). IEEE.en_US
dc.identifier.isbn979-833153261-1
dc.identifier.urihttps://hdl.handle.net/20.500.12960/1773
dc.description.abstractMicro gas turbines play an important role in energy production, and it is critical to make accurate predictions in order to ensure that these turbines operate efficiently. The objective of this study is to predict the power output of micro gas turbines using three different deep learning models (artificial neural network (ANN), convolutional neural network (CNN) and long short-term memory (LSTM)) based on the input voltage data. A time series approach is employed to model the impact of the input voltage on power generation. Another objective of the study is to analyze the efficacy of deep learning-based methods for predicting the power output of micro gas turbines. The results indicate that the ANN model has a MAPE value of approximately 16%, the CNN model has a value of about 26%, and the LSTM model has a value of almost 20%. The ANN model demonstrates the lowest error rate, while the LSTM and CNN models exhibit satisfactory performance. These findings indicate that time series data can be effectively used to predict the power output of micro gas turbines. It is anticipated that in the future, the approaches will be further developed and applied more widely in industry as larger data sets and more sophisticated model improvements become available.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE Global Energy Conference 2024, GEC 2024en_US
dc.relation.isversionof10.1109/GEC61857.2024.10880993en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDeep learningen_US
dc.subjectMicro gas turbinesen_US
dc.subjectPredictionen_US
dc.subjectTime seriesen_US
dc.titleDeep Learning-Based Time Series Prediction of Micro Gas Turbine Power Outputen_US
dc.typeconferenceObjecten_US
dc.authorid0000-0003-0086-0206en_US
dc.departmentMühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.contributor.institutionauthorBakış, Enes
dc.identifier.startpage270en_US
dc.identifier.endpage275en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster