Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBeyaztaş, Ufuk
dc.contributor.authorShang, Han Lin
dc.date.accessioned2021-06-05T19:56:35Z
dc.date.available2021-06-05T19:56:35Z
dc.date.issued2021
dc.identifier.issn0943-4062
dc.identifier.issn1613-9658
dc.identifier.urihttps://doi.org/10.1007/s00180-020-01058-z
dc.identifier.urihttps://hdl.handle.net/20.500.12960/313
dc.description0000-0002-5208-4950en_US
dc.description0000-0003-1769-6430en_US
dc.descriptionWOS:000605125400001en_US
dc.description.abstractA partial least squares regression is proposed for estimating the function-on-function regression model where a functional response and multiple functional predictors consist of random curves with quadratic and interaction effects. The direct estimation of a function-on-function regression model is usually an ill-posed problem. To overcome this difficulty, in practice, the functional data that belong to the infinite-dimensional space are generally projected into a finite-dimensional space of basis functions. The function-on-function regression model is converted to a multivariate regression model of the basis expansion coefficients. In the estimation phase of the proposed method, the functional variables are approximated by a finite-dimensional basis function expansion method. We show that the partial least squares regression constructed via a functional response, multiple functional predictors, and quadratic/interaction terms of the functional predictors is equivalent to the partial least squares regression constructed using basis expansions of functional variables. From the partial least squares regression of the basis expansions of functional variables, we provide an explicit formula for the partial least squares estimate of the coefficient function of the function-on-function regression model. Because the true forms of the models are generally unspecified, we propose a forward procedure for model selection. The finite sample performance of the proposed method is examined using several Monte Carlo experiments and two empirical data analyses, and the results were found to compare favorably with an existing method.en_US
dc.language.isoengen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofComputational Statisticsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBasis Functionen_US
dc.subjectFunction-On-Function Regressionen_US
dc.subjectFunctional Partial Least Squaresen_US
dc.subjectInteraction Effectsen_US
dc.subjectQuadratic Termen_US
dc.titleA partial least squares approach for function-on-function interaction regressionen_US
dc.typearticleen_US
dc.departmentİktisadi ve İdari Bilimler Fakültesi, Ekonomi ve Finans Bölümüen_US
dc.department-temp[Beyaztas, Ufuk] Piri Reis Univ, Dept Econ & Finance, TR-34940 Istanbul, Turkey; [Shang, Han Lin] Macquarie Univ, Dept Actuarial Studies & Business Analyt, Sydney, NSW, Australiaen_US
dc.contributor.institutionauthorBeyaztaş, Ufuk
dc.identifier.doi10.1007/s00180-020-01058-z
dc.identifier.volume36en_US
dc.identifier.issue2en_US
dc.identifier.startpage911en_US
dc.identifier.endpage939en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster