Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBeyaztaş, Ufuk
dc.contributor.authorShang, Han Lin
dc.date.accessioned2021-06-05T19:56:38Z
dc.date.available2021-06-05T19:56:38Z
dc.date.issued2020
dc.identifier.issn0266-4763
dc.identifier.urihttps://doi.org/10.1080/02664763.2020.1856351
dc.identifier.urihttps://hdl.handle.net/20.500.12960/324
dc.description2-s2.0-85096999162en_US
dc.description.abstractThe bootstrap procedure has emerged as a general framework to construct prediction intervals for future observations in autoregressive time series models. Such models with outlying data points are standard in real data applications, especially in the field of econometrics. These outlying data points tend to produce high forecast errors, which reduce the forecasting performances of the existing bootstrap prediction intervals calculated based on non-robust estimators. In the univariate and multivariate autoregressive time series, we propose a robust bootstrap algorithm for constructing prediction intervals and forecast regions. The proposed procedure is based on the weighted likelihood estimates and weighted residuals. Its finite sample properties are examined via a series of Monte Carlo studies and two empirical data examples. © 2020 Informa UK Limited, trading as Taylor & Francis Group.en_US
dc.description.sponsorshipWe thank an Associate Editor and two anonymous reviewers for their careful reading of our manuscript and valuable suggestions and comments, which have helped us produce an improved version of our manuscript. The second author acknowledges the financial support from a research grant at the College of Business and Economics at the Australian National University.en_US
dc.language.isoengen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofJournal of Applied Statisticsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAutoregressionen_US
dc.subjectMultivariate Forecasten_US
dc.subjectPrediction İntervalen_US
dc.subjectResampling Methodsen_US
dc.subjectVector Autoregressionen_US
dc.subjectWeighted Likelihooden_US
dc.titleRobust bootstrap prediction intervals for univariate and multivariate autoregressive time series modelsen_US
dc.typearticleen_US
dc.departmentİktisadi ve İdari Bilimler Fakültesi, Ekonomi ve Finans Bölümüen_US
dc.department-tempBeyaztas, U., Department of Economics and Finance, Piri Reis University University, Istanbul, Turkey; Shang, H.L., Department of Actuarial Studies and Business Analytics, Macquarie University, Sydney, Australiaen_US
dc.contributor.institutionauthorBeyaztaş, Ufuk
dc.identifier.doi10.1080/02664763.2020.1856351
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster