dc.contributor.author | Mert, Ahmet | |
dc.contributor.author | Akan, Aydın | |
dc.date.accessioned | 2021-06-05T19:57:00Z | |
dc.date.available | 2021-06-05T19:57:00Z | |
dc.date.issued | 2015 | |
dc.identifier.isbn | 978-1-4673-7386-9 | |
dc.identifier.issn | 2165-0608 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12960/416 | |
dc.description | 0000-0001-8894-5794 | en_US |
dc.description | 0000-0003-4236-3646 | en_US |
dc.description | WOS:000380500900204 | en_US |
dc.description.abstract | In this study, a new method is presented to analyze electroencephalography (EEG) signals by deploying recently proposed adaptive and data driven signal processing method called Empirical Mode Decomposition (EMD). The EMD algorithm represents a signal as a combination of Intrinsic Mode Functions (IMFs) which are extracted from the signal. It is possible to analyze each component of a multi-component signal by using the IMFs. Thus, detrended Fluctuation Analysis (DFA) which is suggested to characterize the auto-correlation properties of non-stationary signals. Frequency and time-frequency domain methods are successfully employed to analyze EEG signals during epileptic seizure. In this study, however, we present a time domain method to analyze and classify EEG signals by investigating the auto-correlation properties of their IMFs extracted by EMD. In the proposed method the IMF features are analyzed by using DFA to determine the epileptic EEG signals. | en_US |
dc.description.sponsorship | Dept Comp Engn & Elect & Elect Engn, Elect & Elect Engn, Bilkent Univ | en_US |
dc.language.iso | tur | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2015 23Rd Signal Processing and Communications Applications Conference (Siu) | en_US |
dc.relation.ispartof | 23nd Signal Processing and Communications Applications Conference (SIU) -- MAY 16-19, 2015 -- Inonu Univ, Malatya, TURKEY | en_US |
dc.relation.ispartofseries | Signal Processing and Communications Applications Conference | |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Empirical Mode Decomposition | en_US |
dc.subject | Detrended Fluctuation Analysis | en_US |
dc.subject | Electroencephalogram | en_US |
dc.subject | Epilepsy | en_US |
dc.subject | Seizure Detection | en_US |
dc.title | Epilepsy detection using Empirical Mode Decomposition and detrended Fluctuation Analysis | en_US |
dc.type | conferenceObject | en_US |
dc.department | Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.department-temp | [Mert, Ahmet] Piri Reis Univ, Elekt Elekt Muhendisligi Bolumu, Istanbul, Turkey; [Akan, Aydin] Istanbul Univ, Elekt Elekt Muhendisligi Bolumu, Istanbul, Turkey | en_US |
dc.contributor.institutionauthor | Mert, Ahmet | |
dc.identifier.doi | 10.1109/SIU.2015.7129974 | |
dc.identifier.startpage | 895 | en_US |
dc.identifier.endpage | 898 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |