Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorMert, Ahmet
dc.contributor.authorKılıç, Niyazi
dc.contributor.authorBilgili, Erdem
dc.date.accessioned2021-06-05T19:57:05Z
dc.date.available2021-06-05T19:57:05Z
dc.date.issued2016
dc.identifier.issn0266-4720
dc.identifier.issn1468-0394
dc.identifier.urihttps://doi.org/10.1111/exsy.12149
dc.identifier.urihttps://hdl.handle.net/20.500.12960/432
dc.description0000-0003-4236-3646en_US
dc.descriptionWOS:000383685100005en_US
dc.description.abstractThe random subspace method (RSM) is one of the ensemble learning algorithms widely used in pattern classification applications. RSM has the advantages of small error rate and improved noise insensitivity due to ensemble construction of the base-learners. However, randomness may cause a reduction of the final ensemble decision performance because of contributions of classifiers trained by subsets with low class separability. In this study, we present a new and improved version of the RSM by introducing a weighting factor into the combination phase. One of the class separability criteria, J3, is used as a weighting factor to improve the classification performance and eliminate the drawbacks of the standard RSM algorithm. The randomly selected subsets are quantified by computing their J3 measure to determine voting weights in the model combination phase, assigning lower voting weight to classifiers trained by subsets with poor class separability. Two models are presented including J3-weighted RSM and optimized J3 weighted RSM. In J3 weighted RSM, computed weighting values are directly multiplied by class assignment posteriors, whereas in optimized J3 weighted RSM, computed weighting values are optimized by a pattern search algorithm before multiplying by posteriors. Both models are shown to provide better error rates at lower subset dimensionality.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.ispartofExpert Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRandom Subspace Methoden_US
dc.subjectClass Separability Measureen_US
dc.subjectJ3 Criteriaen_US
dc.subjectPattern Searchen_US
dc.subjectWeighted Averagingen_US
dc.titleRandom subspace method with class separability weightingen_US
dc.typearticleen_US
dc.departmentMühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.department-temp[Mert, Ahmet; Bilgili, Erdem] Piri Reis Univ, Dept Elect & Elect Engn, TR-34940 Istanbul, Turkey; [Kilic, Niyazi] Istanbul Univ, Dept Elect & Elect Engn, TR-34320 Istanbul, Turkeyen_US
dc.contributor.institutionauthorMert, Ahmet
dc.contributor.institutionauthorBilgili, Erdem
dc.identifier.doi10.1111/exsy.12149
dc.identifier.volume33en_US
dc.identifier.issue3en_US
dc.identifier.startpage275en_US
dc.identifier.endpage285en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster