Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorMert, Ahmet
dc.contributor.authorKılıç, Niyazi
dc.contributor.authorBilgili, Erdem
dc.contributor.authorAkan, Aydın
dc.date.accessioned2021-06-05T19:57:07Z
dc.date.available2021-06-05T19:57:07Z
dc.date.issued2015
dc.identifier.issn1748-670X
dc.identifier.issn1748-6718
dc.identifier.urihttps://doi.org/10.1155/2015/265138
dc.identifier.urihttps://hdl.handle.net/20.500.12960/439
dc.description0000-0003-4236-3646en_US
dc.description0000-0001-8894-5794en_US
dc.descriptionPubMed: 26078774en_US
dc.descriptionWOS:000355461600001en_US
dc.description.abstractThis paper explores feature reduction properties of independent component analysis (ICA) on breast cancer decision support system. Wisconsin diagnostic breast cancer (WDBC) dataset is reduced to one-dimensional feature vector computing an independent component (IC). The original data with 30 features and reduced one feature (IC) are used to evaluate diagnostic accuracy of the classifiers such as k-nearest neighbor (k-NN), artificial neural network (ANN), radial basis function neural network (RBFNN), and support vector machine (SVM). The comparison of the proposed classification using the IC with original feature set is also tested on different validation (5/10-fold cross-validations) and partitioning (20%-40%) methods. These classifiers are evaluated how to effectively categorize tumors as benign and malignant in terms of specificity, sensitivity, accuracy, F-score, Youden's index, discriminant power, and the receiver operating characteristic (ROC) curve with its criterion values including area under curve (AUC) and 95% confidential interval (CI). This represents an improvement in diagnostic decision support system, while reducing computational complexity.en_US
dc.description.sponsorshipIstanbul UniversityIstanbul University [YADOP-6987, 36196, 38262, 42330, 35830]en_US
dc.description.sponsorshipThis work was supported by the Istanbul University Scientific Research Projects, Project numbers YADOP-6987, 36196, 38262, 42330, and 35830.en_US
dc.language.isoengen_US
dc.publisherHindawi Ltden_US
dc.relation.ispartofComputational and Mathematical Methods in Medicineen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keywords]en_US
dc.titleBreast Cancer Detection with Reduced Feature Seten_US
dc.typearticleen_US
dc.departmentMühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.department-temp[Mert, Ahmet; Bilgili, Erdem] Piri Reis Univ, Dept Elect & Elect, TR-34940 Istanbul, Turkey; [Kilic, Niyazi; Akan, Aydin] Istanbul Univ, Dept Elect & Elect, TR-34320 Istanbul, Turkeyen_US
dc.contributor.institutionauthorMert, Ahmet
dc.contributor.institutionauthorBilgili, Erdem
dc.identifier.doi10.1155/2015/265138
dc.identifier.volume2015en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster