dc.contributor.author | Sirunyan, A. M. | |
dc.contributor.author | Tumasyan, A. | |
dc.contributor.author | Adam, W. | |
dc.contributor.author | Ambrogi, F. | |
dc.contributor.author | Bergauer, T. | |
dc.contributor.author | Brandstetter, J. | |
dc.contributor.author | Özdemir, Kadri | |
dc.contributor.author | CMS Collaboration | |
dc.date.accessioned | 2021-06-05T20:00:39Z | |
dc.date.available | 2021-06-05T20:00:39Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 1748-0221 | |
dc.identifier.uri | https://doi.org/10.1088/1748-0221/15/06/P06005 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12960/972 | |
dc.description | WOS:000545350900005 | en_US |
dc.description.abstract | Machine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characterized in simulated events and directly compared with data. The algorithms are validated using proton-proton collision data at root S = 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1). Systematic uncertainties are assessed by comparing the results obtained using simulation and collision data. The new techniques studied in this paper provide significant performance improvements over non-ML techniques, reducing the background rate by up to an order of magnitude at the same signal efficiency. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Iop Publishing Ltd | en_US |
dc.relation.ispartof | Journal on Instrumentation | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Large Detector-Systems Performance | en_US |
dc.subject | Pattern Recognition, Cluster Finding, Calibration And Fitting Methods | en_US |
dc.title | Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques | en_US |
dc.type | article | en_US |
dc.authorid | 0000-0002-0103-1488 | |
dc.department | Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.contributor.institutionauthor | Özdemir, Kadri | |
dc.identifier.doi | 10.1088/1748-0221/15/06/P06005 | |
dc.identifier.volume | 15 | en_US |
dc.identifier.issue | 6 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |