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Abstract
It is of increasing importance to carry out port terminal operations in an environ-
mentally sustainable way. We approach the yard block assignment and internal 
transportation problem in a way that establishes an optimum trade-off between the 
time of internal truck moves and environmental objectives. The framework has a 
dynamic structure and aims to offer different berthing alternatives according to yard 
block occupancy rates. Earlier limitations of deterministic modelling are addressed. 
Probabilistic methods are considered in an attempt to bring our outcomes closer 
to real terminal circumstances. Discrete Monte Carlo simulation, integer-linear 
programming and multi-objective optimisation methods are integrated to address 
container terminal modelling complexity. The uncertainty arising from situations 
such as irregular vehicle queuing at the yard or quay crane stations is successfully 
addressed. The opinions of managers involved in decisions regarding the ‘time–
environment dilemma’ are weighted and included in the optimisation model. In 
five scenarios, we show that internal truck time efficiency can improve by 27.8% to 
42.8%, and  CO2 emissions reduction by 30.1% to 70.3%.

Keywords Carbon footprint minimisation · Container terminals · Monte Carlo 
simulation · Port management · Yard block assignment · Berth allocation

1 Introduction

In 2019, 793.3 million TEUs were handled by world ports, entailing an average 
annual growth of 3.4% between 2019 and 2024 (UNCTAD 2019). Such massive vol-
umes of cargo handled at container terminals obviously generates significant atmos-
pheric emissions accompanied by impacts only too well known. That said, efforts 

 * Mehmet Kirmizi 
 Mehmet.kirmizi@pru.edu.tr

1 Piri Reis University, Postane Mahallesi, Eflatun SK. No. 8, 34940 Tuzla, Istanbul, Turkey

http://crossmark.crossref.org/dialog/?doi=10.1057/s41278-021-00186-7&domain=pdf


 S. Karakas et al.

of the port industry to ‘green’ its profile are also noticeable and have started to pay 
fruit.

There is a vast number of studies on the optimisation of terminal operations. Most 
of them generally include yard crane (YC), quay crane (QC) and yard truck (YT) 
scheduling, as well as berth allocation and yard storage allocation issues. These sub-
processes are heavily interdependent (Zhen et  al. 2016a; b). In the literature, QC 
performance is generally referred to as one of the bottlenecks of terminal opera-
tions, and QC productivity is invariably emphasised (Zhang et al. 2015), depending 
in its turn on YT transportation time. Therefore, in this study, internal yard truck 
transportation is considered as another bottleneck in terminal operations. Yard truck 
transportation time (YTTT) represents the time to move a container between the 
berth and the yard block. Yard trucks are the primary source of the terminal’s  CO2 
emissions (Yu et  al. 2017). The YTTT value is affected by the distance travelled 
between yard blocks and berth, the traffic density in the terminal area, the number 
of deployed YCs in blocks, and the queuing time in YC/QC stations. For this reason, 
yard pattern (Petering 2009) and yard storage allocation (Jin et al. 2014) are essen-
tial in terms of the effectiveness of terminal operations. At present, a shortcoming 
in the extant literature is that the ‘yard vacancy’ variable is mostly ignored. Yard 
vacancy data for each sub-block is however of importance for effective container 
allocation. It is necessary (but, as we argue here, not sufficient) for a realistic model 
to draw the empty yard layout before venturing into the optimisation model.

Berth distances from yard blocks are different, and terminals operate different 
types of trucks that differ from each other in terms of fuel consumption and  CO2 
emissions. The problem of berth selection could thus be the attempt to optimise 
internal truck movements in terms of transport time and emission costs. In other 
words, in allocating a berth to a ship, the management needs to decide on the trade-
off between GHG emissions and the duration of truck operations. Two critical fac-
tors are thus evaluated simultaneously: minimise the carbon footprint of truck move-
ment and minimise the time of track operations.

We propose a framework that can be used for the berth allocation problem that 
considers both environmental objectives and operational priorities. The framework 
has a dynamic structure and aims to offer different berthing alternatives according 
to yard block occupancy rates. This study approaches the yard block assignment and 
internal transportation issues holistically and realistically by focusing on operational 
and environmental factors. More specifically, we employ Monte Carlo Simulation 
to predict the average vacancy of container blocks and queuing times at the YC and 
QC. This, then, is input to the subsequent optimisation model. Next, a linear inte-
ger programming model is built with the objective to minimise yard truck time and 
carbon-footprint. This step gives answers to: (i) How many containers will be trans-
ported to which sub-block? (ii) Which type of vehicle1 will be used for how many 
times?

1 The type of vehicle refers to the trucks that differ from each other in terms of fuel consumptions and 
 CO2 emissions.
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For each berth, the optimisation problem is solved for the minimum transporta-
tion time and  CO2 emissions. Findings obtained without weighing the ‘time–foot-
print’ trade-off are insufficient to provide decision support as to which berth should 
be selected for an incoming ship, with the scope of optimising internal truck opera-
tions. Managers should therefore determine a priori the relative importance of these 
two criteria, i.e., time and carbon footprint. For this purpose, the analytical hierarchy 
process is utilised, and the decision-making (DM) group is selected out of C-level 
and senior-level terminal managers, as this issue represents a strategic decision. 
Finally, a multi-objective optimisation method, MOORA, is employed, for select-
ing the berth of an incoming ship, by considering the importance ratings of the two 
criteria.

Our contribution to the literature is as follows: (i) we provide an optimum solu-
tion to the trade off between truck time costs and environmental impacts and (ii) 
we address the complexity of port operations through probabilistic methods. The 
vacancy of yard blocks and the total time spent the terminal vehicles at the QC/
YC stations are included in the model, with three discrete Monte Carlo simulations, 
based on historical data. Monte Carlo simulation is utilised in three discrete stages, 
bringing the model closer to the complexity of actual port operations. Probabilis-
tic optimisation models are very scarce in the literature (Gupta et al. 2017). What 
makes our study different is its holistic approach, proposing a framework of analy-
sis, rather than focusing only on a part of the problem. Instead, the main problem is 
divided into sub-problems and thoroughly analysed. Thus, a holistic evaluation is 
made by synthesising the sub-problems.

The rest of the study is structured as follows: Sect. 2 is dedicated to the review 
studies on equipment scheduling optimisation and terminal yard management. The 
definition of the research problem is given in Sect. 3. The methodology, assumptions 
and solution approach are presented in Sect. 4. Section 5 is devoted to results and, 
finally, the study concludes with Sect. 6, which discusses our contributions.

2  Literature review

Optimisation studies related to container terminal operations generally include QC, 
YT, YC scheduling, berth allocation, yard storage design and yard allocation top-
ics. In what follows, the literature is examined under two headings, according to our 
methodology: (a) equipment (YT, YC and QC) scheduling and optimisation studies 
and (b) yard storage design and optimisation studies.

2.1  Equipment scheduling and optimisation

There is a vast number of studies on equipment scheduling, generally including 
combinations of two or more of QC, YC and YT equipment. In their study, Zeng 
and Yang (2009) propose simulation and optimisation algorithms for QC, YC and 
YT scheduling for minimising the duration of loading and unloading operations. 
He (2016) established his model focusing on a trade-off between two management 
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strategies, namely time-saving and energy-saving. The author proposed a mixed 
integer programming model (MIP) and integrated optimisation and simulation 
method for the QC assignment and berth allocation problem.

Zhen et al. (2016a, b) addressed the integrated QC and YT scheduling problem, 
utilising particle swarm optimisation (PSO). The method reduced computation time 
by 47.78% in solving the optimisation problem. Chen et al. (2013) examined, via a 
heuristic approach, crane handling (QC/YC) and YT routing problems to improve 
overall efficiency by increasing coordination between terminal equipment. In the 
first stage of that study, the crane scheduling data are obtained and subsequently 
used in the second stage of the study to solve the YT routing problem. Zhang et al. 
(2015) discussed double-cycling to improve the operational performance of the ter-
minal. Here, the working sequence is established between QCs and YCs to minimise 
operational time, while the YT assignment is not considered.

Lu et al. (2016) developed the PSO algorithm in a QC/YT scheduling optimisa-
tion model. The authors considered YT travel speed and QC handling speed ele-
ments as uncertain factors that determine the terminal’s operating efficiency. The 
aim of the model was to minimise QC handling time with an effective YT allocation.

2.2  Yard storage management

Yard management problems are discussed in different ways in the literature. These 
can be grouped into two main categories: container allocation and yard template 
design. Zhen et al. (2016a; b) developed a yard template model with particle swarm 
optimisation (PSO), for cases of yard traffic congestion and various vessel arrival 
patterns. Petering (2009) used discrete event simulation to study yard designs of 
varying block widths. The paper found that the optimal block width varies between 
6 and 15 rows, depending on handling equipment used, and terminal cargo through-
put. Gupta et  al. (2017) examined yard template design from the viewpoint of its 
direction, i.e., being perpendicular or parallel to the quay. An integrated queuing 
model was used. The authors concluded that a parallel design provides an advantage 
over a vertical one (4–12% improvement in throughput handled). Tan et al. (2017) 
proposed a flexible design to increase operational efficiency, instead of a fixed yard 
layout. In summary, the current literature regarding equipment scheduling and yard 
management practices is presented in Table 1.

3  Problem definition

The scenario begins with the berth selection problem for an incoming ship carry-
ing 1500 TEUs. An operations manager needs to decide which berth would be the 
optimum, in terms of satisfying minimum truck time and minimum carbon footprint. 
Before assigning a berth, the management needs to first determine the availability of 
empty yard slots, as well as the transportation means that could do the job efficiently 
and with minimum environmental impact. Berthing plans of scheduled vessels can 
be done in few days to a week in advance. Considering this time frame, the future 
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occupancy rate of the yard blocks/sub-blocks may be uncertain due to various fac-
tors such as the irregular arrival patterns of ships, irregular dwell times of import 
containers and other changes that lead to an uncertain impact on yard occupancy 
ratio. Therefore, it is necessary to estimate the average occupancy rate for the future 
through simulation.

The next problem is to assign terminal trucks to the terminal blocks simultane-
ously, based on the management’s ‘transport-footprint’ trade off decision. The opti-
misation issue to confront here is that the truck waiting time at YC/QC stations is 
not known. We forecast this using probabilistic methods. The integrated solutions 
of yard block assignment and internal transportation problems guide the decision-
maker to choose an appropriate berth for an incoming vessel.

The terminal has three berths, three types of trucks with different fuel consump-
tions and  CO2 emissions, and 11 blocks, each with 18 sub-blocks,2 illustrated in 
Fig. 1. The following assumptions are made for the specification of the problem:

• The route between each sub-block and each berth is fixed.
• Trucks move seamlessly without obstructing each other.
• The containers are considered homogeneous (TEU). Each yard truck carries one 

TEU at a time.
• Yard truck travel speed is set since there is a speed limit within the terminal.
• Variation in truck fuel consumption (depending on the status of a container, i.e., 

loaded or empty) is not taken into account.

Fig. 1  Problem definition

2 Port authorities do not consent to the disclosure of the terminal name.
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4  Solution approach

This study is designed in stages, as shown in Fig. 2. The aim is to optimise internal 
truck operations, considering our ‘time–footprint’ trade off policy. The problem is 
divided into sub-problems, so that a solution is developed accordingly for each. Then, 
the main solution is obtained by synthesising each sub-solution, which yields to select-
ing a berth for an incoming ship.

In stage 1, Monte Carlo simulation estimates the average future occupancy/vacancy 
of container blocks based on historical data. The importance of conducting this analysis 
is obvious, since berth planning is done days before ship arrival. In stage 2, we take into 
account truck idling times at quay and yard, again via Monte Carlo simulation (trucks 
spend time and fuel while idling). In stages 3 and 4, berth-block truck movements are 
minimised, including the number of containers to be moved by each type of truck. In 
stage 5, the time and footprint criteria are weighed through analytical hierarchy pro-
cess (AHP). In stage 6, a multi-objective optimisation method (MOORA) is utilised, 
using time and carbon footprint data from linear programming and the time–footprint 
weights from AHP to select the berth for the incoming containership. Besides, random-
ness due to truck waiting times at quay and yard crane queues is considered to influence 
the berth selection decision, and this needs to be demonstrated. Therefore, a series of 
analyses from stages 2 to 6 are carried out to eliminate deviation of randomness and 
validate the stability of the methodology.

4.1  Stage 1: predicting average occupancy rate of container blocks by Monte 
Carlo simulation

Monte Carlo simulation is used to generate random case scenarios through com-
puter models (Takeshi 2013; Kroese et al. 2014). As the random case scenarios 

Fig. 2  Solution approach
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are repeated many times, the result is a steady-state condition (Tekiner et al. 2010, 
Taylor III and Bernard 2013) as intended. Monte Carlo simulation is a widely 
preferred, easy and efficient technique, whereas randomness gives the flexibility 
to better understand the probabilities (Kroese et al. 2014).

As regards block occupancies, first the container throughput of 200 days in our 
case port is obtained and organised in a frequency distribution (Table 2).

Subsequently, 5000 random numbers are generated, and the corresponding 
occupancy range is determined for random data which satisfies the randomness 
rule since p (0.821) > 0.05. Thus, we use the middle number of each occupancy 
range, for instance 4200 containers for category 1, to determine the total num-
ber of containers in that simulated case. The average occupancy of the blocks for 
5000 simulated cases is found to be 6479 containers. This value is validated by 
sampling error calculations. Therefore, the sampling error is calculated as 34 (for 
5000 sampling data points, with a standard deviation of 1218). Thus, population 
mean will be between  Xmax (6513) and  Xmin (6445), with a 95% confidence level 
(Taylor III and Bernard 2013). In conclusion, the sample mean is used for future 
average yard occupancy. Container blocks are divided into sub-blocks, each 
with its own capacity. Thus, it is necessary to distribute the predicted average 
occupancy rate into sub-blocks evenly, as in the historical data. The total capac-
ity of each container sub-block is known, and thus, the vacancy of sub-blocks is 
calculated.

4.2  Stage 2: introducing truck idling times at quay‑ and yard‑crane queues

To determine truck idling times at the quay- and yard-crane queues with Monte 
Carlo simulation, the time each of the 150 trucks waited in the queue has been 
recorded. The probabilities of time spent at quay and yard were calculated by fol-
lowing the steps described in the previous section and randomly distributed to each 
berth and sub-block. Idling time was added to truck operation time. The correspond-
ing carbon footprint was also counted as an idling emission value. Figure 3 shows all 
the steps in which the Monte Carlo method was utilised. These three stages reflect 
the uncertainty factors related to queue and equipment failure at YC/QC stations, 
and future uncertainties regarding utilisation of yard blocks.

Table 2  Frequency distribution of container yard occupancy

Number of 
categories

Occupancy range Frequency of 
occupancy

Probability of 
occupancy (P(x))

Cumulative 
probability

Random 
number 
interval

1 4150–4250 5 0.025 0.025 0–25
2 4251–4350 4 0.02 0.045 26–45
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

50 9051–9150 1 0.005 1.00 996–1000
Σ = 200 Σ = 1
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4.3  Stage 3 and 4: Truck operations time and carbon footprint aspects

Internal truck movements take considerable time and cause atmospheric emissions 
and other externalities both of which need to be limited in every responsible port 
environmental management. As said above, our objective(s) is to minimise truck 
operation time from each berth to container blocks and determine the number of 
containers to be carried to each container sub-block by satisfying all constraints. 
Distance data from each berth to each container sub-block is obtained from geo-
graphic information systems (GIS) equipment. The average truck speed is assumed 
to be 20 km/h. Thus, operation time is obtained. Truck idling times during crane 
handling at the berth and yard have already been calculated in the previous stage. 
Thus, total transportation time is calculated by summing three time factors. The car-
bon footprint of each truck is obtained by multiplying average fuel consumption per 
hour by the  CO2 emission factor, as shown in Table 3. Carbon footprint data of each 
truck were not readily available. However, fuel consumption data for both running 
and idling time are utilised to obtain carbon footprint values.

The problem is structured as a linear integer programming optimisation one since 
the objective function and constraints are linear and satisfy optimality conditions. 
The linear programming model for the minimisation problem can be defined as in 
Eq. 1:

Fig. 3  Different phases of simulation
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Objective function minZ =

(

C1ijk + C2ijk + C3ijk
)

Xijk
(1)

Constraints subject to
Vacant capacity constraint (Table 5)
(Vacant capacity of container sub-blocks is an input)

Aji =
∑11

j=1

∑18

i=1

∑3

k=1
Xijk ≤ Vji

(18 × 11 matrix)
Max. container constraint for each block
(Capacities of container blocks are not equal. Therefore, the 

number of trucks to be assigned is given equally for each 
block to avoid congestion.)

Bj =
∑11

j=1

∑18

i=1
Aij ≤ Tj

(1 × 11 vector)

The total number of containers to be handled from ship to 
shore

∑11

j=1

∑18

i=1

∑3

k=1
Xjik = 1500

Number of times each truck type is used
(There are three types of trucks that differ from each other in 

terms of fuel consumptions and  CO2 emissions. There needs 
to be 1500 truck moves for 1500 containers. Truck allocation 
can be done accordingly.)

Dk =
∑3

k=1

∑11

j=1

∑18

i=1
Xkji ≤ Yk

(1 × 3 matrix)

Road blockage (between berths and sub-blocks.)
(Berth 1 cannot reach sub-block 1,2,3)
(Berth 2 cannot reach sub-block 5, 6, 7)
(Berth 3 cannot reach sub-block 8, 10, 11)

Berth 1: 
{

X1,1,1 ∶ X18,3,3

}

= 0

Berth 2: 
{

X1,5,1 ∶ X18,7,3

}

= 0

Berth 3: 
{

X1,8,1 ∶ X18,8,3

}

= 0

Berth 3:
{

X1,10,1 ∶ X18,11,3

}

= 0

X = integer and X ≥ 0

i: number of sub-blocks (1:18)
j: number of blocks (1:11)
k: number of truck type (1:3)
C1: Idling time or carbon-footprint of the truck at berth
C2: Transportation time or carbon-footprint between berth (1,2,3) and container sub-block
C3: Idling time or carbon-footprint of the truck at sub-block
X: Number of containers to be transported to each sub-block by each truck type
V: Container sub-block vacancy matrix (Table 5)
T: Container block capacity vector (T = [272 272 272 312 312 312 312 312 312 312 312])
Y: Number of times of usage for each truck type vector (Y = [500 500 500])

Each objective is minimised in terms of time, and carbon footprint factors 
for three berths; namely, six minimisation problems are solved simultaneously 
to generate data for determining the best berthing solution for incoming ship. 
Besides, six different container allocations are made for each of the container 
sub-blocks according to each berth.

4.4  Stage 5: balancing sustainability dimensions

As detailed above, to select the optimum berth for an incoming ship, the relative 
importance (weights) the management ascribes to our two criteria (truck time and 
carbon footprint) must first be decided. The analytical hierarchy process (AHP) is 
used for this purpose. The decision-maker (DM) group we approached were highly 
experienced port managers, in C-level and senior level positions; their profiles are 
presented in Table 4.

AHP is a multi-criteria decision-making method developed by Thomas Saaty 
(Saaty 1994), and it is widely used in many applications concerned with decision-
making. The method has a simple structure and is based on the pair-wise compari-
sons of criteria with a 1–9 Saaty scale. AHP data are obtained from the DM group.
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4.5  Stage 6: selection of berth with MOORA method

Multi-objective optimisation based on ratio analysis (MOORA) is a multi-criteria 
decision-making technique for ranking a set of alternatives by a set of criteria. The 
method is proposed by Brauers and Zavadskas (2006) for privatisation projects. 
According to Stanujkic et al. (2012), MOORA is more straightforward in its applica-
tion and less complicated than other MCDM methods. Moreover, it can be classi-
fied as both performance-based with ratio analysis, similar to COPRAS and SAW, 
and distance-based with reference point approach, identical to TOPSIS (Stanujkic 
et al. 2012). Akkaya et al. (2015) describe the MOORA method as having a very 
low computational time, straightforward application, minimum mathematical calcu-
lation, and good stability. Therefore, we decided to apply the MOORA ratio method 
together with the importance weights obtained from AHP analysis to rank alterna-
tive solutions to the berth allocation problem. Both methods (AHP and MOORA) 
have found applications in bank branch location (Görener et al. 2013), ERP system 
selection (Vatansever and Uluköy 2013), etc.3

5  Results

We have employed a multi-staged solution approach, consisting of discrete simula-
tion, integer linear programming and multi-criteria decision-making. In this section, 
our findings from this analysis are discussed.

Monte Carlo simulation predicts the average vacant capacity of each sub-block 
where incoming containers could be transferred. Data on two hundred days of total 
vacant capacity and 30 days of the vacant capacity of each sub-block were collected. 
The simulation determines the average vacant spots in each sub-block where incom-
ing containers can be stored. Results are shown in Table 5.

Table 4  Profiles of DM group Number of 
participants

Position Experience 
(years)

Graduate degree

1 CEO 10 MS
2 CEO 7 MS
3 COO 27 BS
4 Managing director 19 BS
5 Operation manager 7 BS
6 Operation manager 8 BS

3 The detailed MOORA calculation procedure is not given here, but it is carried out according to (Brau-
ers and Zavadskas 2006) and is available from the authors upon request.
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Once vacant container sub-block capacity is obtained, Monte Carlo simu-
lation is employed again to determine the queuing time of trucks (at quay and 
yard). Samples of 150 data points at each queue were collected. The probabili-
ties of queuing times are presented in Table 6. Random samples were generated 
to obtain the queuing times, and these were added to truck transportation times 
(from berth to block).

Linear integer programming is utilised to determine the minimum transporta-
tion time and minimum  CO2 emissions from each berth to container blocks. Six 
problems are set to solve two different minimisations for three berths. Minimum 
time and emissions are derived, together with the distribution of incoming con-
tainers to sub-blocks by type of truck. The solution for truck time minimisation 
in berth-1 is shown in Table 7. For instance, 51 containers are transported to sub-
block 1 of block 11 with type-2 trucks, and 17 containers are transported to sub-
block 3 of block 11 with type-3 trucks, which have lower fuel consumption and 
 CO2 emissions than type-2 trucks.

The remaining five other solutions are not shown in detail but in summary, as 
in Table 8. The first three rows of that table are the results of time minimisation 
problems and their corresponding carbon footprint values. The next three rows 
are the results of carbon-footprint minimisation problems and their corresponding 
time values. For instance, when an incoming ship is berthed at berth-1, and the 
problem is to minimise the time of internal truck operations, the solution yields 
7471.32 min, and the corresponding  CO2 emission is 1423.25 kg.

Table 5  Container blocks vacant capacity

Block
Sub-block

B-1 B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-9 B-10 B-11

S-1 30 22 14 20 8 16 0 0 3 40 51
S-2 0 0 0 0 0 0 66 14 0 22 36
S-3 28 44 4 29 2 2 48 0 3 63 17
S-4 0 39 0 0 0 0 77 41 0 25 34
S-5 3 3 6 5 45 2 53 55 7 64 54
S-6 0 0 0 0 22 0 54 2 0 30 38
S-7 7 4 4 35 37 2 52 0 7 45 43
S-8 0 0 0 55 59 0 62 5 0 42 7
S-9 3 12 16 2 5 47 34 0 12 27 61
S-10 0 0 68 0 61 31 0 48 0 62 41
S-11 3 33 3 7 7 57 57 2 48 35 41
S-12 0 7 0 0 55 4 49 0 38 37 39
S-13 3 68 4 26 10 0 51 48 3 44 42
S-14 0 9 0 54 0 3 56 6 0 43 53
S-15 7 0 32 58 2 0 58 0 42 48 48
S-16 0 7 24 11 0 55 45 48 52 47 44
S-17 0 0 57 0 2 2 8 5 2 54 32
S-18 0 3 4 11 0 0 0 0 0 47 62
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Table 6  Probability distribution 
of queuing time at quay- and 
yard-crane

Quay-crane Yard-crane

Probability (%) Time (min) Probability (%) Time (min)

1.33 0.75 4.00 1.00
4.67 1.00 12.67 1.25

16.00 1.25 13.33 1.50
18.00 1.50 14.67 1.75
20.67 1.75 17.33 2.00
16.00 2.00 12.67 2.25
8.00 2.25 6.00 2.50
8.67 2.50 5.33 2.75
3.33 2.75 5.33 3.00
3.33 3.00 4.67 3.25

4.00 3.50

Table 7  Numbers of containers transported from berth 1 to each sub-block with time minimisation

Block-1 … Block-11

Sub-block Truck type

Type-1 
truck

Type-2 
truck

Type-3 
truck

… Type-1 
truck

Type-2 
truck

Type-3 truck

1 0 0 0 … 0 51 0
2 0 36 0
3 0 0 17
4 0 34 0
5 0 0 0
6 0 0 38
7 0 0 0
8 0 0 7
9 61 0 0
10 41 0 0
11 0 0 0
12 0 0 0
13 0 0 0
14 0 0 0
15 0 0 0
16 27 0 0
17 0 0 0
18 0 0 0
Minimum 

time
7471.32 min

Correspond-
ing  CO2 
emission

1423.25 (kg  CO2)
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AHP is used to determine the weights of ‘truck time’ and ‘carbon footprint’ 
(Table  4). Truck time is deemed to be slightly more important (54.57%) vis à 
vis carbon footprint (45.43%). In the last stage, a multi-objective optimisation 
method, MOORA, is utilised, together with the AHP weights above, to select the 
optimum alternative berth for the incoming ship. The rankings of the alternative 
solutions are shown in Table 9.

Therefore, berth 3 with  CO2 minimisation gives the optimum result when the 
time and carbon footprint criteria are taken into account. Incoming containers are 
distributed to the sub-blocks as shown in Table 10.

A series of analyses from stages 2 to 6 are carried out to eliminate the devia-
tion of randomness that results from the determination of truck waiting times in 
the queue. In stage 2, random waiting times are generated according to the prob-
ability distribution of collected waiting times of trucks, and these queuing times 
are added to the total time of truck operations. However, the generated random 
waiting times change in each iteration and create a minor deviation in the result 
of subsequent stages. Therefore, we repeat the problem from stage 2 to 6 a total 
of 15 times to see how this deviation affects the decision. From the MOORA 
method, the rankings for each repetition are shown in Fig. 4.

As seen in Fig. 4, even though there exists a minor deviation for the first three 
alternative solutions, the last three solutions do not change.

An operations manager can thus consider ‘berth-3 carbon footprint minimisation 
solution’ as the first option (10 times out of 15 iterations in #1 position), and ‘berth-3 
time minimisation solution’ as the second option (8 times out of 15 repetitions as 
#2 position) for an incoming ship. Both scenarios provide effective solutions to a 

Table 8  Linear integer 
programming results

Scenario Time (min) Carbon 
footprint (kg 
 CO2)

Berth 1 (min time) 7471.32 1423.25
Berth 2 (min time) 8091.31 944.85
Berth 3 (min time) 8235.33 923.60
Berth 1 (min  CO2) 7513.25 1402.12
Berth 2 (min  CO2) 8711.12 890.06
Berth 3 (min  CO2) 8718.31 838.65

Table 9  Multi-objective 
optimisation results

Scenario Ranking

Berth-1 (min Time) 6
Berth-2 (min Time) 2
Berth-3 (min Time) 3
Berth-1 (min  CO2) 5
Berth-2 (min  CO2) 4
Berth-3 (min  CO2) 1
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manager who wants to balance truck time and  CO2 emissions. Our analysis shows 
that the results are consistent for each repetitive solution. The critical point here is 
that the values given in Table*** are calculated on a single truck basis. For the opti-
mal solution, considering that ten terminal trucks are used, the total unloading time 
of the 1500 TEU container ship will be (8718.31 / 10 = 871.83 min). The number 
of vehicles assigned to the vessel will vary depending on how many resources the 
terminal is willing to allocate. It should be noted, however, that the ranking of the 
alternatives can change depending on operational and environmental policies of the 
different terminals, the approaches of the decision-makers, and the number of con-
tainers to be unloaded and moved to vacant blocks.

Once the stability of the methodology is ascertained through repetitive analysis, 
five transportation scenarios are created to demonstrate the efficiency and effective-
ness of the proposed approach. In each scenario, the number of incoming contain-
ers is varied from 500 to 1500, with an increment of 250. Then, each scenario is 

Fig. 4  Rankings comparisons for each repetitive solution

Fig. 5  Time efficiency of the optimisation problem
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optimised six times for each berth (berth 1, 2 and 3). In the first three optimisations, 
total time is minimised. In the next three optimisations, total  CO2 emissions is mini-
mised. Each total value (time and  CO2) is rated with the total number of containers, 
and the units are converted to show minutes/TEU and kg  CO2/TEU. To benchmark 
the efficiency of the solutions for each scenario, the terminal’s average time produc-
tivity and its corresponding  CO2 emission values are used from 2016 to 2019.

The average truck operating time from berth to the yard varies from 7.40 to 
7.76 min between 2016 and 2019. According to our optimisation results, these val-
ues range from 4.44 to 5.34 min, including each berth at five scenarios as in Fig. 5. 
Therefore, time efficiency improves between 27.8% and 42.8%.

The average truck  CO2 emissions from the berth to the yard varies between 1.36 
and 1.40  kg between 2016 and 2019. According to our results, this value ranges 
from 0.42 to 0.95 kg  CO2, including each berth at five scenarios as in Fig. 6. There-
fore,  CO2 emissions efficiency improves between 30.1% and 70.3%

6  Conclusions

We have combined Monte Carlo simulation, integer linear programming and multi-
criteria decision-making methods in a multi-staged solution to address several 
research objectives. Specifically, we have established the average vacant capacity in 
yard blocks, the queuing times of trucks at berth and yard and the distribution of 
incoming (import) containers to blocks by type of truck, satisfying minimum time 
and carbon footprint goals, the relative importance (weights) of truck time and car-
bon footprint in our optimisation exercise and, finally, on the basis of the above, the 
optimum berth allocation for an arriving ship.

Many of the problems that may arise during container terminal operations are 
unpredictable, for instance uncertainty in the arrival of ships. Deterministic methods 
for the solution of terminal-related problems are, therefore, often questioned in view 
of the many uncertainties involved in terminal operations. For instance, the selection 
of berths in modern container terminals can become a rather complex problem due 

Fig. 6  CO2 emissions efficiency of the optimisation problem
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to the many factors involved. These include the container blocks occupation, irregu-
lar vehicle queuing at the yard- and quay-crane stations, failure-induced waiting and 
so on. Therefore, we have approached the berth selection problem with a multi-stage 
operations research model in which different optimisation methods are integrated 
with three discrete probabilistic models. The most important contribution of this 
study to the literature is that our model provides an optimum solution between time 
costs and environmental costs – an optimum balance was established between these 
two factors.

Once our approach is proven to be valid through repetitive analysis, the efficiency 
and effectiveness of our methodology are demonstrated with five transportation 
scenarios. The rated time and  CO2 emissions values from each scenario are com-
pared with those of the terminal from 2016 to 2019. We show that time efficiency 
is improved between 27.8 and 42.8%, and  CO2 emissions efficiency is improved 
between 30.1 and 70.3%.
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