Detrended fluctuation thresholding for empirical mode decomposition based denoising
Abstract
Signal decompositions such as wavelet and Gabor transforms have successfully been applied in denoising problems. Empirical mode decomposition (EMD) is a recently proposed method to analyze non-linear and non-stationary time series and may be used for noise elimination. Similar to other decomposition based denoising approaches, EMD based denoising requires a reliable threshold to determine which oscillations called intrinsic mode functions (IMFs) are noise components or noise free signal components. Here, we propose a metric based on detrended fluctuation analysis (DFA) to define a robust threshold. The scaling exponent of DFA is an indicator of statistical self-affinity. In our study, it is used to determine a threshold region to eliminate the noisy IMFs. The proposed DFA threshold and denoising by DFA-EMD are tested on different synthetic and real signals at various signal to noise ratios (SNR). The results are promising especially at 0 dB when signal is corrupted by white Gaussian noise (WGN). The proposed method outperforms soft and hard wavelet threshold method. (C) 2014 Elsevier Inc. All rights reserved.